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Background
The interest in approaches that allow the estimation of pollutant source release in 
groundwater has increased exponentially over the last decades. This is due to the 
large number of groundwater reclamation procedures that have been carried out and 
the related costs that can be shared among the different actors if the release history is 
known. Moreover a reliable release history can be a useful tool for predicting the plume 
evolution, its concentration and the potential natural attenuation.

Several methodologies were developed in the ‘90 s to estimate the release history of a 
pollutant source for simple cases (1-D homogeneous aquifer) through a maximum like-
lihood (Wagner 1992), the Tikhonov regularization (Skaggs and Kabala 1994), a mini-
mum relative entropy method (Woodbury and Ulrych 1993, 1996), and a geostatistical 
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approach (Bagtzoglou et al. 1991, 1992; Snodgrass and Kitanidis 1997). All these meth-
ods recover the release history of a pollutant at a certain source location starting from 
the observation of several concentrations in the groundwater at a specific sampling time 
T.

The principle of minimum relative entropy (MRE) was introduced by Kullback (1959) 
and was used in several different fields (from geophysics to information theory (Wood-
bury and Ulrych 1996)). The MRE approach, with the aim of recovering the contami-
nant release history in aquifers, was applied on an analytical 1-D case (Woodbury and 
Ulrych 1996) and extended (Woodbury et  al. 1998; Ulrych and Woodbury 2003) to a 
three-dimensional plume evolution described through an analytical solution. The MRE 
methodology was also compared to other approaches with the aim of highlighting the 
pros and cons (Kabala and Skaggs 1998; Neupauer et al. 2000; Neupauer and Borchers 
2001; Woodbury 2011).

Due to the linearity of the governing differential equations of the transport prob-
lem, the afore mentioned methods adopt the convolution integral approach (Jury and 
Roth, 1990) to solve the advection–dispersion equation; then, the concentration at a 
time and at a point of the domain can be computed by means of the convolution of the 
mass release history at the source location with the transfer function (TF) that describes 
the effect in time, at a certain location of the aquifer, of an impulse release of a pollut-
ant at the source. The TF can be analytically determined if the flow field is very simple 
(Skaggs and Kabala 1994; Woodbury and Ulrych 1996; Snodgrass and Kitanidis 1997; 
Butera and Tanda 2003), but in many practical applications, the characteristics of the 
groundwater flow field (conditioned on local heterogeneities, pumping wells, complex 
boundary conditions, etc.) do not allow an analytical formulation of the TF (Butera et al. 
2006, 2013). At this aim, numerical procedures to compute the TF have to be developed 
(Neupauer et al. 2000; Michalak and Kitanidis 2004; Butera et al. 2006; Sun et al., 2006); 
among these the stepwise input function (SIF) procedure, introduced by Butera et  al. 
(2006, 2013), has been adopted in the present study. The SIF procedure was successfully 
applied to compute the TFs considering 2-D synthetic homogeneous and heterogeneous 
aquifers (Butera et al. 2006, 2013), using data obtained from a laboratory device (Cupola 
et al. 2015) and using field data (Gzyl et al. 2014).

The objectives of the present work are to:

1.	 Extend the application of the MRE approach to contaminant release identification, 
developed by Woodbury and Ulrych (1993, 1996), to 2-D heterogeneous aquifers 
using as observations several concentration values at different observation points at a 
given time;

2.	 Extend the application of the MRE approach to contaminant release identification to 
heterogeneous multidimensional aquifers with availability of concentration values in 
few observation points at several monitoring times;

3.	 Analyze the performance of the MRE method, applied to contaminant release esti-
mation, varying the prior information.

Before analyzing the heterogeneous cases we have verified the procedure by investigat-
ing case studies in a 2-D aquifer characterized by homogeneous hydraulic conductivity 
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and uniform flow field, and in this paper we report the results of the application of the 
proposed method in four case studies: two homogeneous (HO1 and HO2) and two het-
erogeneous synthetic aquifers (HE1 and HE2). The results provide an evaluation of the 
influence of the heterogeneities on the solution of the inverse problem.

Mathematical statements
Groundwater transport

Equation (1) describes the transport process in an aquifer corresponding to the injection 
of a non-sorbing, non-reactive solute in a point source (Bear and Verruijt 1987):

where φ [−] is the effective porosity (taken as spatially variable, but constant in time), 
u(x,t) [LT−1] is the effective velocity at location x and time t [T], D(x,t) [L2T−1] the dis-
persion tensor, δ the Dirac delta function, C(x,t) [ML−3] the concentration at location x 
and time t, and

where s(x0,t) [MT−1] is the amount of pollutant per time unit injected into the aquifer 
through the source located at x0, Qin(x0,t) [L3T−1] is the injection flow rate and Cin(x0,t) 
[ML−3] is the concentration injected at x0 at time t [T].

The solution of Eq. (1), by considering uniform porosity, when associated with the ini-
tial and boundary conditions C(x,0) = 0; C(∞,t) = 0, is given by the following integral 
(Jury and Roth 1990):

where f(x, t−τ) [L−p] is the TF that describes the effect at x at time t [T] by an impulse 
injection occurring at x0 at time t−τ (p is the dimension of the problem).

Minimum relative entropy theory

The core of the method is the MRE inversion developed by Woodbury and Ulrych (1993, 
1996), which is briefly summarized in the following.

Considering p(y) as a priori estimation of q(y), which is the multivariate probability 
distribution function (pdf) of occurrence of event (y = y1, . . . , yj . . . yN ), the entropy of 
q(y) relative p(y) can be calculated as

The goal is to calculate the posterior pdf q(y) considering:

(1)φ
∂(C(x, t))

∂t
= ∇ · [φD(x, t)∇C(x, t)]− ∇ · [φu(x, t)C(x, t)]+ s(x0, t)δ(x − x0)

(2)s(x0, t) = Qin(x0, t)Cin(x0, t)

(3)C(x, t) =

t
∫

0

s(x0, τ)f (x, t − τ)dτ

(4)E(q, p) =

∫

q(y)ln

[

q(y)

p(y)

]

dy

(5)

∫

q(y)dy = 1
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where the integration is over the full domain of the random variable y and the informa-
tion is given in the form of expected value

where wi(y) and w̄i are known and the index i goes from 1 to M which represents the 
number of known data (in this case is the number of observations).

So, after the minimization of the expression (4), the posterior estimate q(y) assumes 
the form (for more details about mathematical statement, see Woodbury and Ulrych 
1993)

where μ and λi are Lagrange multipliers determined by Eqs. (5) and (6). Therefore, the 
calculation of the multipliers is essential to estimate the posterior pdf.

Inverse problem

For the case of a non-sorbing, non-reactive solute, the relationship between the concen-
trations observed at monitoring points and the release history is linear, as described in 
Eq. (3), and can be written as

where z (M × 1) is an M known vector of observations, s = (s1,…sj,…sN) is the (N × 1) 
vector of unknowns, and H (M × N) is the transfer matrix which describes the relation 
between the unknowns and observations. It is defined as

where xi denotes i-th monitoring point location, T [T] is the latest time considered (for 
instance the sampling time) and �t [T] is the time interval. The goal is to obtain an esti-
mate ŝ (N × 1) of s that satisfies Eq. (8). Equation (8) can also be written in discretization 
form

where j =  1,…, N is the index of the j-th unknown and fij is the shortened form of 
f
(

xi,T − j�t
)

. Let ŝ be the expected value of the random vector s; it can be calculated 
as: ŝ =

∫

M sq(s)ds; consequently the Eq. (10) becomes

(6)

∫

q(y)wi(y)dy = wi

(7)q(y) = p(y) exp

[

−1− µ−

M
∑

i=1

�iwi(y)

]

(8)z = Hs

(9)H = �t

















f (x1,T −�t) · · · f
�

x1,T − j�t
�

· · · f (x1,T − N�t)
...

...
...

f (xi,T −�t) · · · f
�

xi,T − j�t
�

· · · f (xi,T − N�t)
...

...
...

f (xM ,T −�t) · · · f
�

xM ,T − j�t
�

· · · f (xM ,T − N�t)

















(10)zi =

N
∑

j=1

fij · sj
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where q(s) is the pdf of s and the integration is over all the allowed values of s. Equa-
tion  (11) can be rewritten in the form of Eq.  (6), where zi corresponds to the known 
observation w̄i and 

∑N
j=1 fij · sj corresponds to wi(y). Woodbury and Ulrych (1996) con-

strained the value of s in the range (L, U), which represent the lower and upper bounds. 
This knowledge a priori is used to define a joint Boxcar pdf (uniform distribution 
between an upper and lower bound). The Boxcar pdf, b(s), is defined as

where Lj and Uj are the individual lower and upper bounds. In this work the lower and 
upper bounds are considered constant for each j and in particular the lower bound is 
zero.

Let r be the expected value vector of the vector s which has p(s) as prior pdf, chosen 
in such a way that it has minimum relative entropy to a Boxcar pdf and let take that it 
assumes the expected value constraints, r̄ = (r̄1, . . . , r̄j , . . . , r̄N ). Woodbury and Ulrych 
(1993) showed that the a priori estimation p(s) has the form

which is a multivariate truncated exponential; βj are Lagrange multipliers which can be 
estimated from the upper and lower bounds and the expected value constraints. By defi-
nition, p(s) satisfies the expected value constraints

Finally, the posterior pdf q(s) is determined by minimizing its entropy relative to p(s) 
(subjected to the constraints of Eqs.  (5) and (11). As demonstrated by Woodbury and 
Ulrych (1993), the posterior pdf has expression:

where

in which � is a Lagrange multipliers vector (M × 1). The expected value of the vector of 
unknowns is given by

(11)zi =

�

M

q(s)





N
�

j=1

fijsj



ds

(12)

{

b(sj) =
1

Uj−Lj
, Lj ≤ sj ≤ Uj

b(sj) = 0, otherwise

(13)p(s) =

N
∏

j=1

−βj

exp
(

−βjUj

)

− 1
exp

(

−βj r̄j
)

∫

p(s)sds = r̄

(14)q(s) =

N
∏

j=1

−aj

exp
(

−ajUj

)

− 1
exp

[

−sjaj
]

(15)aj = βj +

M
∑

i=1

�ifij
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Substituting Eq. (16) into Eq. (10), we obtain

where ẑi are the estimated concentrations.
Minimizing the objective function

the appropriate multipliers � can be determined using the Newton–Raphson algorithm 
(Johnson 1987) (see Woodbury and Ulrych (1996), for more details).

Determination of confidence intervals

As expressed by Eq.  (14), the posterior pdf q(s) is non-Gaussian and confidence inter-
vals cannot be easily derived in the classic way. However, they can be calculated starting 
from the cumulative distribution function (cdf ) for s, defined as

which, integrating terms by terms, gives (see for more details Woodbury and Ulrych 
1993)

The goal is to define sj corresponding to the defined probability P:

Assuming for instance P = 0.95, sj results:

Numerical TF computation

The SIF procedure developed by Butera et al. (2006) is a numerical strategy for the TF 
computation. According to Jury and Roth (1990), the concentration C(x, t) at a certain 

(16)ŝj (�) =
exp

(

−ajUj

)

· ajUj + exp
(

−ajUj

)

− 1

aj
[

exp
(

−ajUj

)

− 1
]

(17)ẑi =

N
∑

j=1

fij ŝj(�)

(18)F(�)i = zi − ẑi = zi −

N
∑

j=1

fij ŝj(�)

s
∫

0

p(x) dx = P(s)

P(sj) =
exp

(

−ajsj
)

− 1

exp
(

−ajUj

)

− 1
0 ≤ sj ≤ U , ∀ j = 1, . . . ,N

sj = −
log

[

P
(

exp
(

−ajUj

)

− 1
)

+ 1
]

aj

(19)sj = −
log

[

0.95
(

exp
(

−ajUj

)

− 1
)

+ 1
]

aj



Page 7 of 19Cupola et al. SpringerPlus  (2015) 4:656 

location x at a time t, due to a release s(x0, t) at x0 at time t can be calculated through 
Eq.  (3). If we assume a stepwise input function s(x0, t) = S0HSF (t) = Q0C0HSF (t) 
[MT−1], where HSF(t) [−] is the Heaviside function, C0 [ML−3] is the concentration 
(known and constant in time), and Q0 [L3T−1] is the known and constant injected dis-
charge, integral (3) becomes:

Taking the time derivative of Eq. (20) one gets

Equation (21) shows that the TFs can be computed at a generic point x by processing 
the concentration history at the same location originated by a step tracer injection at x0 
and t = 0. The RHS of Eq. (21) can easily be obtained with a numerical flow and trans-
port model able to simulate the effect of a pollutant injection into the aquifer of interest. 
The function C(x,t) is the so called breakthrough curve computed by the model at each 
monitoring point; applying the Eq. (21) for each monitoring point it is possible to fill the 
H matrix introduced in Eq. (9).

Study cases
The method proposed by Woodbury and Ulrych (1996) for a 1-D uniform flow field was 
extended to 2-D uniform and non-uniform flow fields. Both cases are based on numeri-
cal flow and transport models. The flow model, developed with MODFLOW (Harbaugh 
et al. 2000), reproduces a 2-D confined aquifer (1 layer) having rectangular shape (400 m 
long, 100 m wide) and 10 m thickness (Fig. 1). The computational grid is discretized into 
2 × 2 × 10 m cells, obtaining 200 × 50 computational nodes. The boundary conditions 
are no flow at the North and South borders, constant head on the upstream (West) side 
hU = 24 m and on the downstream (East) side hD = 20 m (see Fig. 1). The hydraulic con-
ductivity of the case (HO) is equal to 2.31 × 10−4 m/s, and the resulting flow through 
the aquifer is 2.3 ×  10−3 m3/s. The transport model, developed with MT3D (Zheng 
and Wang 1999), uncoupled from the flow model, considers a solute non-sorbing, 

(20)C(x, t) =

t
∫

0

Q0C0f (x, t − τ )dτ = Q0C0

t
∫

0

f (x, t − τ)dτ , t > 0

(21)f (x, t) =
1

S0

∂C(x, t)

∂t
, t > 0

Fig. 1  Sketch of the numerical model. The constant head boundary conditions are showed as red lines. The 
black dots indicate the measurement points of Case HO1, while P1 and P2 are the measurement points of 
Case HO2. The black diamond denotes the source location
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non-reactive release located in a point source at x0 (x =  49.0  m and y =  49.0  m, see 
Fig. 1). The longitudinal and transversal dispersivities and the porosity are assumed con-
stant and equal to αL = 1.0 m, αT = 0.1 m, and φ = 0.20. The pollutant release at x0 is 
simulated as an injection with a constant water discharge and variable tracer concentra-
tion over time. The amount of the conservative pollutant per time unit injected into the 
aquifer at the source is given by Eq.  (2), where Qin(x0, t) [L3T−1] is the constant water 
discharge and Cin(x0, t) [ML−3] is the concentration release history, variable in time, 
of the injected solution. Following the works of Skaggs and Kabala (1994), Woodbury 
and Ulrych (1996), Snodgrass and Kitanidis (1997), Neupauer and Borchers (2001) and 
Butera et al. (2013), we considered a concentration release history with the expression:

Since Qin(x0, t) is of unit value, the identification of the release history s(x0, t) is equiv-
alent to the identification of the concentration history Cin(x0, t). The total time of the 
test is T = 600 days and the release history is discretized in 300 intervals with a time step 
of Δt = 2 days. According to previous works the results are made dimensionless dividing 
the concentration by C0 = 1 mg/L and the time by the time step Δt.

Two scenarios were studied: the first (HO1) recovered the release history by means of 
the observations collected at 20 monitoring points (black dots in Fig. 1) at time T, while 
the second (HO2) recovered the release history by means of the observations collected 
at only 2 monitoring points (P1 with coordinates 65.0 m, 49.0 m and P2 with coordinates 
115.5 m, 49.0 m in Fig. 1) at 15 sampling times (see Table 1 for the summary of the study 
cases).

The non-uniform flow field (HE) was realized considering the heterogeneous hydrau-
lic conductivity field proposed by Butera et al. (2013). The conductivity field was built 
considering an exponential covariance function and it is characterized by a mean value 
of 3.2 × 10−4 m/s, a standard deviation of 4.2 × 10−4 m/s and a correlation length equal 
to 20  m. The hydraulic conductivity has a very broad range from 2.6 ×  10−6 m/s to 
5.5 × 10−3 m/s. Figure 2 shows the normalized log conductivity field Z =  (Y − μY)/σY 
where Y = log K with mean μY and standard deviation σY. The log conductivity field vari-
ance is σY

2 = 1.32 and the resulting flow through the aquifer is about 1.20 × 10−3 m3/s. 
The assumption of a known hydraulic conductivity field is rather unrealistic; in fact, in 

(22)Cin(x0, t) = exp

(

−
(

t

�t
− 130

)2

50

)

+ 0.3 exp

(

−
(

t

�t
− 150

)2

200

)

+ 0.5 exp

(

−
(

t

�t
− 190

)2

98

)

Fig. 2  Normalized log-conductivity field (σY
2 = 1.32). The black dots indicate the measurement points of 

Cases HE1; P3 and P4 are the measurements points of Case HE2. The black diamond is the source location
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field condition it is difficult to obtain detailed information on hydraulic parameters and 
for this reason there is a huge collection of literature on estimating hydraulic conductiv-
ity variability (for example see Fienen et al. 2009; Zanini and Kitanidis 2009; Cardiff et al. 
2013). The present paper has the goal of testing the goodness of the MRE procedure 
applied to contaminant release history identification, assuming known the conductivity 
field and transport parameters.

The transport parameters and the source location are the same as the previous cases 
HO1 and HO2. As for the HO case, two scenarios were studied: in the first case (HE1) 
the release history is recovered using the observations from 20 monitoring points (black 
dots in Fig. 2) at time T, while in the second application (HE2) the observations from 2 
monitoring points (P3 with coordinates 60.0 m, 45.0 m and P4 with coordinates 100.0 m, 
35.0 m in Fig. 2) with 25 samples at different times have been used. The Fig. 3 shows the 
concentration distribution due to the heterogeneities at time T.

The tests were carried out in the following sequence: (1) the numerical flow and trans-
port models were used to estimate the TFs at each monitoring points by using the SIF 
procedure; (2) the numerical models were used to compute the concentrations at the 
monitoring points due to the release function described by Eq. (22); (3) the observations 
collected at the monitoring points were used in the inverse procedure aimed at recover-
ing the release history at the source location.

The MRE approach requires information on the prior pdf distribution of the release 
history; in this work we tested the method under the two alternatives of a Gaussian 
(Eq. 23) and a Boxcar (Eq. 24) function.

where αg, µg, σ 2
g  are the parameters of the Gaussian function, r̄b,max is the constant value 

used as expected value constraint, and ts and te are the temporal limits of the Boxcar 
function. The parameters of the prior information, then, were different in each case: 
using the Gaussian expression (23) one has to assume mean and variance value while the 
function (24) requires an estimate of the start and end of the injection and its maximum 
value. Finally, also the upper values of the U (Eq. 12) have to be estimated.

Besides the graphical comparison, the results were analyzed considering the normal-
ized root mean square error (nRMSE) between the computed and observed concentra-
tions and between the estimated and true release history (Table 1).

Case HO1: analysis with concentration data collected at 20 locations at the same time

20 observations collected at 20 positions (Fig.  1) at time T =  300Δt were considered 
in the recovery process (Fig.  4) in order to determine the release history at 300 time 
intervals (unknowns), i.e. the s vector with dimension (300 × 1). The above described 
(23) and (24) expressions for the expected value of the prior distribution of the release 
history have been considered; the results obtained are shown in Fig. 5a, b. Initially, the 
processed data were considered error free, and then they were corrupted with a random 

(23)
r̄(t) = αg · e

−
(t−µg)

2

2·σ2g ∀t ∈ [0,T ]

(24)

{

r̄(t) = r̄b,max ts ≤ t ≤ te

0 elsewhere
ts, te ∈ [0,T ]
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error with mean value equal to 10−3 mg/L; in Figs. 4 and 5 the results obtained using 
corrupted observations are shown.

The results of the procedure, using a Gaussian function as expected value (Fig. 5a), are 
very satisfactory. The recovered release history is very similar to the true one. Moreo-
ver, the concentrations estimated at the monitoring point (due to the recovered release 
history) are very close to the one observed (Fig.  4). The maximum nRMSE computed 
between the recovered and true release history results 2.20 % (see Table 1), while the one 
maximum computed between the estimated and observed concentration at the moni-
toring points is 1.52 %. Considering a Boxcar function as expected value (Fig. 5b), the 
estimated release history is even better than the previous one; that is confirmed by the 
nRMSE computed, in the worst case, between the recovered and true release history in 
1.34 % (see Table 1), while the one computed between the estimated and observed con-
centration at the monitoring points is 1.16 %.

The results are very sensitive to the prior information required by the method, in 
particular to the upper value U and to the parameters of the expected value function. 
The knowledge of these parameters requires a rough idea of the true release history, so 

Fig. 3  Plume at T = 300Δt. The black dots indicate the measurement points of Cases HE1; P3 and P4 are the 
measurements points of Case HE2. The black diamond is the source location

Fig. 4  Observed and estimated concentrations at time T for Case HO1. These data were collected at 20 
monitoring points depicted in Fig. 1. The estimated concentrations shown here were calculated by using the 
Gaussian function as prior estimate. The observed concentrations are corrupted by error
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the goodness of the results is conditioned by some strong, in a certain sense arbitrary, 
hypothesis. Several tests, not reported here for briefness, were carried out to investi-
gate the sensitivity of the MRE method to the expected value functions and to the upper 
value. Basically, the results showed that the solutions are relatively insensitive to the 
kind of previously expected value functions, while it is more sensitive to the upper value. 
In particular, if the maximum of the expected value function is greater than the upper 
value, the method is not able to converge to a solution. Moreover, the results worsen as 
the value (assumed constant) of the upper bound U increases.

Case HO2: analysis with concentration data collected at 2 locations at different times

The goal of this second application is to investigate the reliability of the MRE method 
using several pieces of information collected at few locations at different times. This case 
is very realistic, as it is common to have only few monitoring points and several sampled 
concentration values for each point at different times. The test case is the same as case 
HO1, but only two observation points (P1 and P2 of Fig. 1) were used. At these points 
15 concentration values are considered available in 600 days, with a time step equal to 
20Δt (Fig. 6). The transfer functions for the two observation points were the same as the 
previous case but the H matrix of Eq. (9) becomes H = �t

[

HP1 HP2

]T where HPi are 
the matrices that contains the TF of each monitoring point evaluated at the specified 
sampling time; the vector of the observations can be written as: z =

[

zP1 zP2
]T so that 

Eq. (8) is still valid.

Fig. 5  Recovered release function using observations corrupted by error. True solution (blue line), best 
estimate (dashed line), prior estimate (green dashed line) and 5–95 % confidence interval (grey band). a Case 
HO1 with Gaussian function estimate; b Case HO1 with Boxcar function estimate; c Case HO2 with Gaussian 
estimate; d Case HO2 with Boxcar estimate



Page 13 of 19Cupola et al. SpringerPlus  (2015) 4:656 

Figure 5c, d show the results once again using two different expected value functions 
(Gaussian and Boxcar). In these cases the results do not appear to be as good as the pre-
vious case; in particular neither of the release histories recovered is totally included in 
the 5–95 % confidence interval, although both the peaks values and times are well esti-
mated. By considering the nRMSE (Table 1) it is clear that the results are less accurate 
than the ones obtained in case HO1.

Case HE1: analysis with concentration data collected at 20 locations at the same time

The tests were carried out in the sequence described above for the cases HO1 and HO2. 
In these cases (HE1 and HE2), the monitoring points cannot be the same as the ones 
used in the cases HO1 and HO2, since the plume evolution is very different: in fact the 
local heterogeneities increase the complexity of the recovering process originating a 
plume evolution that involves the monitoring points of Fig. 1 to a negligible extent.

The monitoring points, depicted in Fig.  3, are located in the nodes of a grid cover-
ing the region 60 ≤ x ≤ 220 m and 15 ≤ y ≤ 45 m. After the calculation of the TFs at 
each point, the MRE method has been applied at first without considering any meas-
urement error, with good results: then the observations have been corrupted by a ran-
dom error normally distributed with σR = 10−3 mg/L. Figure 7 shows the observations 
(corrupted by errors) collected at T =  600  days in each monitoring point and those 
estimated through the inverse procedure. Two prior expected functions have been con-
sidered, the Gaussian and the Boxcar expression. The results are shown in Fig. 8a, b and 
Table 1. Considering the Gaussian function (Fig. 8a) the MRE procedure estimates the 
true release history reasonably for both with and without error cases (see Fig. 8; Table 1). 
The nRMSE, computed between the true and the estimated (with the Gaussian prior pdf 
and in presence of measurement errors) release history is close to 9 %. While, analyzing 
the release history obtained through the boxcar expression (Fig. 8b), even if it is overesti-
mated, it seems acceptable for t/Δt > 100 only and this misfit is quantified in an nRMSE 
of about 39 %. The nRMSE between the computed and observed concentrations shows, 
in all cases, values below 7 % that indicates an acceptable estimation of the observations. 

Fig. 6  Observed and estimated concentrations for Case HO2. The line represents the concentration at the 
monitoring point. The circle represents the sampled concentration and the cross is the estimated concentra-
tion by using the Gaussian function as expected estimate value. The observed concentrations are corrupted 
by error
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Case HE2: analysis with concentration data collected at 2 locations at different times

In this scenario, only two monitoring points (P3 and P4 depicted in Fig. 3) are consid-
ered and 25 concentration values are taken as observations in 600 days, with a time step 
equal to 12Δt (Fig. 9).

Fig. 7  Observed and estimated concentrations at time T for Case HE1. These data were collected at 20 
monitoring points depicted in Fig. 3. The estimated concentrations shown here were calculated by using the 
Gaussian function as expected estimate value. The observed concentrations are corrupted by error

Fig. 8  Recovered release function using observations corrupted by error. True solution (blue line), best esti-
mate (dashed line), expected value function (green dashed line) and 5–95 % confidence interval (grey band). a 
Case HE1 with Gaussian function estimate; b Case HE1 with Boxcar function estimate; c Case HE2 with Gauss-
ian function estimate; d Case HE2 with Boxcar function estimate
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Like in HE1, two different conditions have been considered: the first assumes noise-
free data, while the second considers an error with a standard deviation equal to 10−3 
mg/L. The processing of the error free data has provided very encouraging results, with 
nRMSE values between the computed and observed data and the true and estimated 
release histories close to 4  %. In presence of measurement errors, both the Gaussian 
(Fig. 8c) and Boxcar functions (Fig. 8d) have resulted in good release histories (nRMSE 
about 5 %) and in a satisfactory reproduction of the observed concentrations (see Fig. 9 
for the Gaussian expression and Table 1).

Both graphical (Figs. 8, 9) and numerical (Table 1) results show that, in this scenario, 
the release history is better recovered and presents a smaller confidence interval than in 
HE1; surely this is due to the high values of the TF at the monitoring points P3 and P4, 
which provide very reliable information. Moreover, 50 observations (as a total) are avail-
able instead of only 20 (HE1). It is important to remark that considering information 
in few points at several times allows to capture the leading and the trailing edge of the 
plume and provides information about the entire release history. Whereas considering 
information at several monitoring points at a specific time does not allow to capture the 
leading edge of the plume and consequently the data do not contains information about 
the early times of the release history distribution. That demonstrates the need for either 
good spatial coverage or good temporal coverage or both.

Comparison to other approach

Butera et al. (2006, 2013) have presented an improvement of the geostatistical approach 
to contaminant release history identification developed by Snodgrass and Kitanidis 
(1997) and have tested the method on several cases. The Case HE1, discussed in this 
paper, is the same of Case 1 presented by Butera et al. (2013); this allows a comparison 
of the results between the two methodologies. Figure 8a, b show the estimated release 
histories using two different prior estimates. It is evident that the Gaussian prior pro-
vides better results than the Boxcar one. Comparing Figs. 5a to 8 of Butera et al. (2013), 

Fig. 9  Observed and estimated concentrations for Case HE2. The line represents the concentration at the 
monitoring point. The circle represents the sampled concentration and the cross is the estimated concentra-
tion by using the Gaussian function as expected estimate value. The observed concentrations are corrupted 
by error



Page 16 of 19Cupola et al. SpringerPlus  (2015) 4:656 

it seems that both methods recover well the two main peaks of the release function and 
do not identify the middle one. The MRE reproduces better the magnitude and the tim-
ing of the peaks, but on the downside it presents non zero values on the first part of the 
release. This problem seems reduced in the geostatistical approach but instead a larger 
confidence interval is present.

The Case HE2 (Figs. 8c, d) can be compared to the results obtained in Case 3 (true 
source location in Fig. 7) of Butera et al. (2013). The geostatistical approach estimates 
a large confidence interval at the head and at the tail of the estimated release function; 
while MRE at the same times estimates non zero concentration values but it presents a 
narrow confidence interval.

However, both methods are able to reproduce the three peaks of the release history, 
their magnitude and timing that in the reclamation and forensic activities are the most 
important issues (Atmadja and Bagtzoglou, 2001).

Discussion and conclusions
In this paper the minimum relative entropy method for recovering the contaminant 
release history in 2-D homogeneous and heterogeneous aquifers involved in a pollut-
ant event has been applied. In the applications here referred, the SIF numerical method 
(Butera et al., 2006) has been applied for the computation of the TFs. The performances 
of the MRE have been tested in uniform and non-uniform flow field, considering differ-
ent scenarios, and with different prior information. They have been quantified by the 
nRMSE calculated between the true source release and the estimated ones, and between 
the concentration observed and the computed ones; the nRMSE quantities are summa-
rized in Table 1.

Two scenarios have been considered: the first uses 20 observations collected at dif-
ferent locations at the same time while the second processes several observations col-
lected at different times at two monitoring points only. For each scenario, the method 
has been applied using two different expected value functions r̄: the Gaussian and the 
Boxcar expression. The results show that in the homogeneous case (HO) the methodol-
ogy works very well; this is clearly shown by the nRMSE, which is lower than 2.2 % in all 
tests. The release function is well recovered in the two cases studied with the two differ-
ent expected value functions. It is important to remark that in this case the release func-
tion presents 300 unknowns (N) and it is recovered with 20 observations (M) (HO1, with 
a ratio M/N of 0.067) or 30 observations (HO2, with a ratio M/N of 0.100), while Wood-
bury and Ulrych (1996) estimated 200 unknowns with 61 observations with a ratio M/N 
of 0.305. The results have demonstrated that the method is efficient with few observa-
tions too.

Regarding the non-uniform flow field, the presented cases have a heterogeneous 
hydraulic conductivity field with a log conductivity variance of σY

2 =  1.32; the results 
obtained in these cases are not as good as in the homogeneous ones but still appreciable 
and meaningful. The method performs better using several observations collected in few 
monitoring points rather than one observation at different points. However, in HE1, 300 
unknowns (N) were estimated by using 20 observations (ratio equal to 0.067), while in 
HE2 50 observations collected at two different points at different times (ratio equal to 
0.167) have been used. The observations have been compared with the ones reproduced 
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by the forward transport model by using the estimated release history as source term: 
the results show that the agreement is acceptable in both cases. Note again that the ratio 
of the number of observations on the unknowns (M/N) is very low (0.067) in compari-
son with the ratio M/N =  0.305 used by Woodbury and Ulrych (1996) in their appli-
cations to homogeneous 1-D aquifers. The present results have demonstrated that the 
method is efficient with few observations too and the less performance can be ascribed 
to the non-uniformity of the flow field rather than to the amount of available data.

Another important issue, in a non-uniform context, is the monitoring point location: 
it is crucial to have available information in spots with high peak TF values; in HE1, 
several monitoring points have TFs with a very low peak value which means that moni-
toring locations provide very poor information about the pollutant event development 
and numerically they generated a matrix H that is ill-conditioned. This H matrix causes 
failing in the convergence procedure and consequently errors on the results. During the 
design of a monitoring network we suggest to consider the monitoring points that pre-
sent the higher peak values of the TF. It is important to note that a monitoring point can 
have a high peak TF value and a zero concentration; this information is very important 
and allows to bound the plume.

The comparison between the different cases shows that, while in the homogenous case 
the spatial data are more informative and the methodology performs better, in the het-
erogeneous case, the temporal data allow a better estimation of the release history. Basi-
cally, they give opposite indications. This is due to the position of the monitoring points 
respect the shape of the plume. In fact, in the case HO1 all the points are interested by 
the pollution phenomenon and all of them give information different from the others. 
All together, they provide a very good framework of the evolution of the plume. In case 
HO2, the information given by two points is not as comprehensive as those provided in 
case HO1. Moreover, since the field is homogenous, the concentration data at P1 and 
P2 cannot be so different (considering their position). Looking at the case HE1, instead, 
several monitoring points have TFs with a very low peak value. For sure, they provide 
information, but globally, the quantity of data is less than the case HO1.

In case HE2 the two monitoring points are along the plume and they provide very 
good information about the concentration evolution. This proves, once again, how much 
a good reconstruction of the flow field is important, in order to design a monitoring 
network.

It is worth to add some considerations about the prior information that the MRE 
method requires. If the assumed prior is very far from the right posterior and the TF is 
poor at the point or in time, the Newton–Raphson method cannot converge to a solu-
tion. The method requires a prior expected value of the unknown release history and a 
guess of the collocation in time. By using a Gaussian expression, this means to choose 
the mean and the variance of the Gaussian curve, while, for the Boxcar, a rough idea of 
the concentration maximum value and the start and the end time of the injection are 
necessary. The MRE prior should reflect what is known before the new information is 
considered and should be maximally uncommitted with respect to unknown informa-
tion (Woodbury and Ulrych 1993; Woodbury et al. 1998). For this reason the prior infor-
mation are not subjective to the user; a useful guidance on their selection was given in 
Woodbury and Ulrych (1996) and Woodbury (2011).
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The MRE approach, thanks to the lower limit L (that in this work is set to zero), 
does not require the transformation of variables, as other methods do, to constrain the 
unknown function (for instance the concentrations) to only positive values. This fact 
avoids the increase of unknowns (parameters of the transformation) in the inverse pro-
cedure and does not affect the stability of the procedure that can happen choosing the 
wrong transformation.

In conclusion, the MRE approach developed by Woodbury and Ulrych (1993, 1996) 
integrated with the SIF procedure (Butera et al. 2006) works fine in simple study cases 
(such as 1-D and 2-D with uniform flow field), even with few observations, and in com-
plex cases, the reliability of the results depends on the number of the available observa-
tions and the location of the monitoring points. However, the procedure is considered 
satisfactory; all three peak times have been detected, and the best estimate falls in the 
5–95 % confidence interval for all cases. Thanks to the numerical modeling and the SIF 
procedure, the MRE can be applied to field cases, using the data that normally are spread 
in space and time.

Future studies will use the experimental data collected in laboratory (Cupola et  al. 
2015), where different transport processes can be realized in controlled conditions. 
Another interesting subject is to test the MRE procedure for the simultaneous identifi-
cation of the source location and release history and compare the results with the ones 
obtained by Butera et al. (2013) by using a geostatistical approach.
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