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Background
Differential-algebraic equations (DAEs) are used to describe many physical problems. 
These types of equations arise for instance in the modelling of electrical networks, opti-
mal control, mechanical systems, incompressible fluids and chemical process simula-
tions. An important quantity that characterizes DAEs and which plays a key role in the 
treatment of these equations is the index. There are various definitions for the index of 
a DAE (Martinson and Barton 2000; Günther and Wagner 2001; Rang and Angermann 
2005; Kunkel and Mehrmann 1996) but the most used one is the differentiation index. It 
is defined as the minimum number of times that all or part of the DAE must be differen-
tiated with respect to time, in order to obtain an ordinary differential equation (Martin-
son and Barton 2000). Higher-index DAEs (differentiation index greater than one) arise 
naturally in many important application problems. For instance, they model constrained 
multibody systems (Simeon 1993, 1996; Benhammouda and Vazquez-Leal 2015), vehi-
cle system dynamics (Simeon et al. 1991, 1994), space shuttle simulation (Brenan 1983) 
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and incompressible fluids. Unfortunately, these DAEs are known to be difficult to solve, 
even with numerical methods, due to their complex structure. One reason for this; 
solutions of higher-index DAEs are constrained for all time by some hidden algebraic 
equations. As a consequence, initial conditions cannot be prescribed arbitrarily for all 
solution components as they have to fulfill the constraint equations. Therefore, to start 
the numerical integration, we need to compute some consistent initial conditions. That 
is to determine those initial conditions which satisfy all the constraints in the system. 
Using inconsistent initial conditions or poor estimates can cause the solution of the DAE 
to drift off the constraints manifold and lead to a non physical solution. Since numeri-
cal integration methods have difficulties in solving higher-index DAEs, these problems 
are usually dealt with by first transforming them to ordinary differential systems (index-
zero) or index-one DAEs before applying numerical integration methods. This proce-
dure, known as index-reduction, can be very expensive and may change the properties of 
the solution of the original problem. Therefore, since important application problems in 
science and engineering often lead to higher-index DAEs, new techniques are needed to 
solve these DAEs efficiently.

Over the past decades, significant progress has occurred in the solution of DAEs. Some 
of these works have focused on the numerical solution and include backward differen-
tiation formula (Brenan 1983), Runge Kutta method (Hairer et al. 1989), pseudospectral 
method (Hosseini 2005) and finite differences method (Wu and White 2004). One can 
find other methods for the solution of DAEs like blended implicit methods (Brugnano 
et  al. 2006), implicit Euler (Sand 2002), Chebyshev polynomials (Husein and Jaradat 
2008), and arbitrary order Krylov deferred correction methods (Huang et al. 2007).

In recent years, some analytical approximation methods have been developed to 
solve DAEs. Among such techniques one can find the Adomian decomposition method 
(ADM) (Hosseini 2006; Celik et  al. 2006), the homotopy perturbation method (HPM) 
(Soltanian et al. 2010; Salehi et al. 2012), the variational iteration method (VIM) (Karta 
and Celik 2012), the homotopy analysis method (HAM) (Awawdeh et al. 2009), the Padé 
method (Celik and Bayram 2003) and the differential transform method (DTM) (Ben-
hammouda and Vazquez-Leal 2015; Liu and Song 2007; Ayaz 2004). The ADM, Ado-
mian polynomials and DTM were also applied to solve many other problems. The ADM, 
for example, was used in computing solutions of algebraic equations (Adomian and Rach 
1985; Fatoorehchi et al. 2014a, b, 2015; Fatoorehchi and Abolghasemi 2014a, b; Fatoore-
hchi et  al. 2015b, d, c). The ADM and Adomian polynomials were applied to various 
problems in engineering fields (Fatoorehchi et al. 2015f, g, c; Fatoorehchi and Abolgha-
semi 2015, 2013b). Recently, the DTM was used as a new tool to compute Laplace trans-
forms to solve many problems (Fatoorehchi et al. 2015a; Fatoorehchi and Abolghasemi 
2012).

In this work, we present a new procedure for solving nonlinear higher-index Hessen-
berg DAEs. The method is based on Adomian polynomials (Rach 1984, 2008; Wazwaz 
2000; Duan 2010a, b, 2011) and the DTM (Odibat et  al. 2010; Lal and Ahlawat 2015; 
El-Zahar 2013; Fatoorehchi and Abolghasemi 2013a; Gökdoğan et  al. 2012; Benham-
mouda et al. 2014). The DTM is first applied to the DAE where the differential trans-
forms of nonlinear terms are found using Adomian polynomials to obtain a recursion 
system for the power series coefficients. Based on the index condition, a nonsingular 
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linear recursion system is then derived and solved. It is important to note that the devel-
oped procedure does not require an index-reduction nor a linearization. Also it does not 
depend on complicated tools like perturbation parameters, trial functions, or Lagran-
gian multipliers as required for perturbation method, HPM or VIM. To enlarge the 
domain of convergence of the truncated power series, we apply a post-treatment based 
on Laplace-Padé resummation method (Benhammouda et  al. 2014; Torabi and Yag-
hoobi 2011; Raftari and Yildirim 2011; Bararnia et al. 2012; George A Baker et al. 1996; 
Vazquez-Leal et al. 2012; Vazquez-Leal and Guerrero 2014; Khan et al. 2013; Benham-
mouda et al. 2014).

Two examples of nonlinear higher-index Hessenberg DAEs are solved to demonstrate 
the effectiveness of the proposed method. Finally, our procedure is straightforward and 
can be programmed in Maple or Mathematica.

This paper is organized as follows: in "Differential transform method", we review the 
DTM. Next, in "Padé approximant", "Laplace-Padé resummation method" and "Adomian 
polynomials and their relation with DTM" we give the basic concepts of Padé approxim-
ants, Laplace-Pad é resummation method and Adomian polynomials and their relation 
with DTM. In "Solution of higher-index Hessenberg DAEs by Adomian polynomials and 
DTM", we present our analytical method for the solution of nonlinear higher-index Hes-
senberg DAEs. Then in "Cases study", we apply the developed method to solve two non-
linear higher-index Hessenberg DAEs. Finally, a discussion and a conclusion are given in 
"Discussion" and "Conclusion", respectively.

Differential transform method
For convenience of the reader, we will review the DTM (Odibat et al. 2010; Lal and Ahla-
wat 2015; El-Zahar 2013; Fatoorehchi and Abolghasemi 2013a; Gökdoğan et  al. 2012) 
and show how this method is used to solve ordinary differential equations.

Definition 2.1  If a function u(t) is analytical with respect to t in the domain of interest, 
then

is the transformed function of u(t).

Definition 2.2  The differential inverse transforms of the set {Uk}
n
k=0

 is defined by

Substituting (1) into (2), we deduce that

(1)Uk =
1

k!

[

dku(t)

dtk

]

t=t0

,

(2)u(t) =

∞
∑

k=0

Uk(t − t0)
k .

(3)u(t) =

∞
∑

k=0

1

k!

[

dku(t)

dtk

]

t=t0

(t − t0)
k .
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From the above definitions, it is easy to see that the concept of the DTM is obtained 
from the power series expansion. To illustrate the application of the DTM to solve ordi-
nary differential equations, we consider the nonlinear equation

where f (u(t), t) is a nonlinear smooth function.
Equation (4) is supplied with some initial condition

DTM establishes that the solution of (4) can be written as

where U0, U1, U2, . . . are unknowns to be determined by DTM.
Applying the DTM to the initial condition (5) and equation ( 4) respectively, we obtain 

the transformed initial condition

and the recursion equation

where F
(

U0, . . . ,Uk−1, k − 1
)

 is the differential transforms of f (u(t), t).
Using (7) and (8), we determine the unknowns Uk, k = 0, 1, 2, . . . Then, the differential 

inverse transformation of the set of values {Uk}
m
k=0

 gives the approximate solution

where m is the approximation order of the solution. The exact solution of problem (4–5) 
is then given by (6).

If Uk and Vk are the differential transforms of u(t) and v(t) respectively, then the main 
operations of DTM are shown in Table 1.

The process of the DTM can be described as:

1.	 Apply the differential transform to initial condition (5).
2.	 Apply the differential transform to the differential equation ( 4) to obtain a recursion 

equation for the unknowns U0, U1, U2, . . .
3.	 Use the transformed initial condition (7) and the recursion equation (8) to determine 

the unknowns U0, U1, U2, . . .
4.	 Use the differential inverse transform formula (9) to obtain an approximate solution 

for initial-value problem (4– 5).

(4)
du(t)

dt
= f (u(t), t), t ≥ t0,

(5)u(t0) = u0.

(6)u(t) =

∞
∑

k=0

Uk(t − t0)
k ,

(7)U0 = u0,

(8)kUk = F
(

U0, . . . ,Uk−1, k − 1
)

, k = 1, 2, 3, . . .

(9)u(t) =

m
∑

k=0

Uk(t − t0)
k ,
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The solutions series obtained from DTM may have limited regions of convergence. 
Therefore, we propose to apply the Laplace–Padé resummation method to DTM trun-
cated series to enlarge the convergence region as depicted in the next sections.

Padé approximant
Given an analytical function u(t) with Maclaurin’s expansion

The Padé approximant to u(t) of order [L, M] which we denote by [L/M]u(t) is defined 
by George A Baker et al. (1996)

where we considered q0 = 1, and the numerator and denominator have no common 
factors.

The numerator and the denominator in (11) are constructed so that u(t) and [L/M]u(t) 
and their derivatives agree at t = 0 up to L+M. That is

From (12), we have

From (13), we get the following algebraic linear systems

(10)u(t) =

∞
∑

n=0

unt
n, 0 ≤ t ≤ T .

(11)[L/M]u(t) =
p0 + p1t + . . .+ pLt

L

1+ q1t + . . .+ qMtM
,

(12)u(t)− [L/M]u(t) = O
(

tL+M+1
)

.

(13)u(t)

M
∑

n=0

qnt
n −

L
∑

n=0

pnt
n = O

(

tL+M+1
)

.

(14)















uLq1 + . . .+ uL−M+1qM = −uL+1

uL+1q1 + . . .+ uL−M+2qM = −uL+2

...

uL+M−1q1 + . . .+ uLqM = −uL+M ,

Table 1  Main operations of DTM

Function Differential transform

αu(t)± βv(t) αUk ± βVk

u(t)v(t) ∑

k

r=0
UrVk−r

d
n

dtn
[u(t)]

k(k − 1) . . . (k + 1− n)Uk, k ≥ n

e
�t

�
k
e
�t0

k!

sin (ωt) ωk

k!
sin

(

ωt0 +
πk

2

)

cos (ωt) ωk

k!
cos

(

ωt0 +
πk

2

)
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and

From (14), we calculate first all the coefficients qn, 1 ≤ n ≤ M. Then, we determine the 
coefficients pn, 0 ≤ n ≤ L from (15).

Note that for a fixed value of L+M + 1, the error (12) is smallest when the numerator 
and denominator of (11) have the same degree or when the numerator has degree one 
higher than the denominator.

Laplace‑Padé resummation method
Several approximate methods provide power series solutions (polynomial). Neverthe-
less, sometimes, this type of solutions lack large domains of convergence. Therefore, 
Laplace-Padé resummation method is used in literature to enlarge the domain of con-
vergence of solutions or to find the exact solutions.

The Laplace-Padé method can be summarized as follows:

1.	 First, Laplace transformation is applied to power series (9).
2.	 Next, s is substituted by 1/t in the resulting equation.
3.	 After that, we convert the transformed series into a meromorphic function by form-

ing its Padé approximant of order [N/M]. N and M are arbitrarily chosen, but they 
should be smaller than the order of the power series. In this step, the Padé approxim-
ant extends the domain of the truncated series solution to obtain better accuracy and 
convergence.

4.	 Then, t is substituted by 1/s.
5.	 Finally, by using the inverse Laplace s transformation, we obtain the exact or an 

approximate solution.

Adomian polynomials and their relation with DTM
In this section, we briefly review the Adomian polynomials and their relation with the 
DTM. Usually a nonlinear term N(u) in a differential equation is decomposed in terms of 
Adomian polynomials An (Rach 2008, 1984; Wazwaz 2000; Duan 2010a, b, 2011) as

where An are generated for all forms of nonlinearity from

and where un(t), n = 0, 1, 2, . . . denote the components used in the expansion

(15)















p0 = u0
p1 = u1 + u0q1
...

pL = uL + uL−1q1 + . . .+ u0qL.

(16)N (u) =

∞
∑

n=0

An(u0,u1, . . . ,un),

(17)An(u0,u1, . . . ,un) =
1

n!

dn

d�n

[

N

(

∞
∑

i=0

�
iui

)]

�=0

, n ≥ 0,
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There are several algorithms to compute Adomian polynomials but recently a conveni-
ent recursion to calculate Adomian polynomials for the m-variable case is proposed in 
(Duan 2011)

Also an extension of the differential transform to nonlinear terms of any type, known 
as the improved DTM, was given in (Fatoorehchi and Abolghasemi 2013a, 2014b) using 
Adomian polynomials

where Un = DT {u(t)}.

In the coming sections, we make use of (19) and (20 ) to show how to solve nonlinear 
higher-index Hessenberg DAEs.

Solution of higher‑index Hessenberg DAEs by Adomian polynomials and DTM
In this section, we present our method for solving nonlinear higher-index Hessenberg 
differential-algebraic equations (DAEs). The technique is based on Adomian polynomi-
als and the differential transform method (DTM). To solve the DAE, we first apply the 
DTM to it, where Adomian polynomials are used to compute the differential transforms 
of the nonlinear terms. The resulting recursion equations are rearranged in a nonsingu-
lar linear algebraic system for the coefficients of the power series solution. Two classes of 
nonlinear higher-index Hessenberg DAEs are solved.

Higher‑index nonlinear Hessenberg DAEs

The first class of higher-index Hessenberg DAEs we consider here is

where u(m)(t) denotes dmu/dtm, m ≥ 1 and u ∈ R
nu, v ∈ R

nv, g : Rnu −→ R
nv , 

f : Rnu × R
nv −→ R

nu.
The DAE is supplied with some consistent initial conditions

ηi are given constants.
System (21–22) has index (m+ 1) if the product of the Jacobians

is nonsingular for t ≥ 0.

(18)u(t) =

∞
∑

n=0

un(t).

(19)An =
1

n

m
∑

i=1

n−1
∑

k=0

(k + 1)vi,k+1

∂An−1−k

∂vi,0
, n ≥ 1.

(20)DT {N (u)} = An(U0,U1, . . . ,Un),

(21)u(m)(t) = f (u(t), v(t)),

(22)0 = g(u(t)), t ≥ 0,

(23)u(i)(0) = ηi, i = 0, . . . ,m− 1,

(24)

(

∂g

∂u

)(

∂f

∂v

)

∈ R
nv × R

nv
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An important subclass of system (21–22) consists of those DAEs arising from the sim-
ulation of constrained mechanical multibody systems. Such DAEs have the form

where u(t) is the vector of generalized coordinates, ü(t) is the vector that contains the 
system accelerations, ∂g/∂u is the Jacobian of g, v(t) is the Lagrange multipliers vector 
and f (u(t)) is the generalized forces vector.

A standard assumption for these DAEs is the full rank condition

which means that the constraint equations are linearly independent. If condition (27) is 
satisfied then

is nonsingular and DAE (25–26) is index-three.
Let f (u, v) =

(

f 1(u, v), f 2(u, v), . . . , f nu(u, v)
)
T

, then using (19), the Adomian poly-
nomials Fj

k , j = 1, . . . , nu, k = 0, 1, 2, . . . for the (nu + nv)-variable function f j(u, v) are 
given by

where Ui,l and Vi,l are the differential transforms of ui and vi.
Equation (30) can be written as

In vector form, we have

(25)ü(t) = f (u(t))+

(

∂g

∂u

)T

v(t),

(26)0 = g(u(t)), t ≥ 0,

(27)rank

(

∂g

∂u

)

= nv ,

(28)
(

∂g

∂u

)(

∂g

∂u

)T

∈ R
nv × R

nv

(29)F
j
0 = f j

(

U1,0, . . . ,Unu,0,V1,0, . . . ,Vnv ,0

)

,

(30)F
j
k =

1

k

nu
∑

i=1

k
∑

l=1

lUi,l

∂F
j
k−l

∂Ui,0
+

1

k

nv
∑

i=1

k
∑

l=1

lVi,l

∂F
j
k−l

∂Vi,0
, k ≥ 1,

(31)F
j
k =

1

k

nu
∑

i=1

k
∑

l=1

lUi,l

∂F
j
k−l

∂Ui,0
+

1

k

nv
∑

i=1

k−1
∑

l=1

lVi,l

∂F
j
k−l

∂Vi,0
+

nv
∑

i=1

Vi,k
∂F

j
0

∂Vi,0
, k ≥ 1.

(32)F0 = f (U0,V0),

(33)Fk =
1

k

k−1
∑

l=1

l

(

∂Fk−l

∂U0

∂Fk−l

∂V0

)(

Ul

Vl

)

+

(

∂F0

∂U0

)

Uk +

(

∂F0

∂V0

)

Vk , k ≥ 1,
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where Fk =
(

F1
k , . . . , F

nu
k

)
T

, Uk =
(

U1,k , . . . ,Unu,k

)T

, Vk =
(

V1,k , . . . ,Vnv ,k

)T

, 
k = 0, 1, 2 . . .

In a similar manner, let g(u) =
(

g1(u), g2(u), . . . , gnv (u)
)
T

 then the Adomian polyno-
mials Gj

k , j = 1, . . . , nv , k = 0, 1, 2, . . . for the nu-variable function gj(u) are given by

In vector form, we have

where Gk =
(

G1
k , . . . ,G

nv
k

)
T

.

To solve DAE (21–22), we apply the DTM to get

and

where Uk is the differential transform of u(t) and α = k(k − 1) . . . (k + 1−m).
From (38), we obtain the linear algebraic recursion system

where

and

(34)G
j
0 = gj

(

U1,0, . . . ,Unu,0

)

,

(35)G
j
k =

1

k

nu
∑

i=1

k−1
∑

l=1

lUi,l

∂G
j
k−l

∂Ui,0
+

nu
∑

i=1

Ui,k
∂G

j
0

∂Ui,0
, k ≥ 1.

(36)G0 = g(U0),

(37)Gk =
1

k

k−1
∑

l=1

l

(

∂Gk−l

∂U0

)

Ul +

(

∂G0

∂U0

)

Uk , k ≥ 1,

(38)

{

αUk = Fk−m,

0 = Gk , k ≥ m,

(39)Uk = ηk , k = 0, . . . ,m− 1,

(40)















αUk −

�

∂F0

∂V0

�

Vk−m = Rk−m − Fk−m,

−

�

∂G0

∂U0

�

Uk = Sk , k ≥ m,

(41)Rk =
1

k

k−1
∑

l=1

l

(

∂Fk−l

∂U0

∂Fk−l

∂V0

)(

Ul

Vl

)

+

(

∂F0

∂U0

)

Uk ,

(42)Sk =
1

k

k−1
∑

l=1

l

(

∂Gk−l

∂U0

)

Ul .
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System (40) can be decomposed as

Since condition (24) holds, then the first equation of (43) can be solved uniquely for 
Vk−m. Then using the second equation of (43), we can determine Uk. Therefore, an 
approximate analytical solution is given by

Index‑three nonlinear Hessenberg DAEs

The second class of higher-index nonlinear Hessenberg DAEs we consider here is

where u ∈ R
nu, v ∈ R

nv, w ∈ R
nw, g : Rnu −→ R

nw , f : Rnu × R
nv −→ R

nu , 
h : Rnu × R

nv × R
nw −→ R

nv.
The DAE is supplied with some consistent initial conditions

System (45) is index-three if the product of the Jacobians

is nonsingular for t ≥ 0.

Let us assume that f,  g and h are sufficiently smooth and that the Jacobian ∂g/∂u has 
full row rank [i.e. rank 

(

∂g/∂u
)

= nw] for t ≥ 0.

Let f (u, v) =
(

f 1(u, v), f 2(u, v), . . . , f nu(u, v)
)
T

 then the Adomian polynomials Fj
k , 

j = 1, . . . , nu, k = 0, 1, 2, . . . for the (nu + nv)-variable function f j(u, v) are given by

Equation (49) can be written as

(43)















�

∂G0

∂U0

��

∂F0

∂V0

�

Vk−m = −αSk −

�

∂G0

∂U0

�

�

Rk−m − Fk−m

�

,

αUk =

�

∂F0

∂V0

�

Vk−m + Rk−m − Fk−m, k ≥ m.

(44)u(t) =

n
∑

k=0

Ukt
k , v(t) =

n−m
∑

k=0

Vkt
k .

(45)

u̇ = f (u, v),

v̇ = h(u, v,w),

0 = g(u), t ≥ 0,

(46)u(0) = η0, v(0) = η1.

(47)

(

∂g

∂u

)(

∂f

∂v

)(

∂h

∂w

)

∈ R
nv × R

nv

(48)F
j
0 = f j

(

U1,0, . . . ,Unu,0,V1,0, . . . ,Vnv ,0

)

,

(49)F
j
k =

1

k

nu
∑

i=1

k
∑

l=1

lUi,l

∂F
j
k−l

∂Ui,0
+

1

k

nv
∑

i=1

k
∑

l=1

lVi,l

∂F
j
k−l

∂Vi,0
, k ≥ 1.

(50)F
j
k =

1

k

nu
∑

i=1

k
∑

l=1

lUi,l

∂F
j
k−l

∂Ui,0
+

1

k

nv
∑

i=1

k−1
∑

l=1

lVi,l

∂F
j
k−l

∂Vi,0
+

nv
∑

i=1

Vi,k
∂F

j
0

∂Vi,0
, k ≥ 1.
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In vector form, we have

where Fk =
(

F1
k , . . . , F

nu
k

)
T

, Uk =
(

U1,k , . . . ,Unu,k

)T

, Vk =
(

V1,k , . . . ,Vnv ,k

)T

, 
k = 0, 1, 2 . . .

In a similar manner, let Let h(u, v,w) =
(

h1(u, v,w), h2(u, v,w), . . . , hnv (u, v,w)
)
T

 then 
the Adomian polynomials Hj

k , j = 1, . . . , nv, k = 0, 1, 2, . . . for the (nu + nv + nw)-vari-
able function hj(u, v,w) are given by

Equation (54) can be written as

In vector form, we have

where Hk =
(

H1
k , . . . ,H

nv
k

)
T

.

In a similar manner, let g(u) =
(

g1(u), g2(u), . . . , gnv (u)
)
T

 then the Adomian polyno-
mials Gj

k , j = 1, . . . , nv , k = 0, 1, 2, . . . for the nu-variable function gj(u) are given by

(51)F0 = f (U0,V0),

(52)Fk =
1

k

k−1
∑

l=1

l

(

∂Fk−l

∂U0

∂Fk−l

∂V0

)(

Ul

Vl

)

+

(

∂F0

∂U0

)

Uk +

(

∂F0

∂V0

)

Vk , k ≥ 1,

(53)H
j
0 = hj

(

U1,0, . . . ,Unu,0,V1,0, . . . ,Vnv ,0,W1,0, . . . ,Wnw ,0

)

,

(54)H
j
k =

1

k

k
∑

l=1

(

nu
∑

i=1

lUi,l

∂H
j
k−l

∂Ui,0
+

nv
∑

i=1

lVi,l

∂H
j
k−l

∂Vi,0
+

nw
∑

i=1

lWi,l

∂H
j
k−l

∂Wi,0

)

, k ≥ 1.

(55)H
j
k =

1

k

k−1
∑

l=1

(

nu
∑

i=1

lUi,l

∂H
j
k−l

∂Ui,0
+

nv
∑

i=1

lVi,l

∂H
j
k−l

∂Vi,0
+

nw
∑

i=1

lWi,l

∂H
j
k−l

∂Wi,0

)

(56)+

nu
∑

i=1

Ui,k
∂H

j
0

∂Ui,0
+

nv
∑

i=1

Vi,k
∂H

j
0

∂Vi,0
+

nw
∑

i=1

Wi,k
∂H

j
0

∂Wi,0
, k ≥ 1.

(57)H0 = h(U0,V0,W0),

(58)

Hk =
1

k

k−1
�

l=1

l

�

∂Hk−l

∂U0

∂Hk−l

∂V0

∂Hk−l

∂W0

�





Ul

Vl

Wl





+

�

∂H0

∂U0

�

Uk +

�

∂H0

∂V0

�

Vk +

�

∂H0

∂W0

�

Wk , k ≥ 1,

(59)G0 = g(U0),

(60)Gk =
1

k

k−1
∑

l=1

l

(

∂Gk−l

∂U0

)

Ul +

(

∂G0

∂U0

)

Uk , k ≥ 1,
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where Gk =
(

G1
k , . . . ,G

nv
k

)
T

.

To solve DAE (45–46), we apply the DTM to get

and

where Uk ,Vk and Wk are the differential transforms of u(t), v(t) and w(t) respectively.
From the (61), we finally come to the linear recursion system

where

System (63) can be decomposed as

Since condition (47) holds, then the first equation of (65) can solved uniquely for 
Wk−2. Then Vk−1 is obtained from the second equation of (65). Last, the unknown Uk 
is obtained from the third equation of (65). Then, an approximate analytical solution is 
given by

Cases study
In this section, we will demonstrate the effectiveness of proposed technique through two 
nonlinear higher-index Hessenberg DAEs.

(61)







kUk = Fk−1,

kVk = Hk−1,

0 = Gk , k ≥ 1,

(62)U0 = η0,V0 = η1,

(63)































kUk −

�

∂F0

∂V0

�

Vk−1 = Rk−1 − Fk−1,

kVk −

�

∂H0

∂W0

�

Wk−1 = R′
k−1

− Gk−1,

−

�

∂G0

∂U0

�

Uk = Sk , k ≥ 1,

(64)R′
k =

1

k

k−1
�

l=1

l

�

∂Gk−l

∂U0

∂Gk−l

∂V0

∂Gk−l

∂W0

�





Ul

Vl

Wl



+

�

∂G0

∂U0

�

Uk +

�

∂G0

∂V0

�

Vk .

(65)















































�

∂G0

∂U0

��

∂F0

∂V0

��

∂H0

∂W0

�

Wk−2 = −

�

∂G0

∂U0

��

∂F0

∂V0

�

�

R′
k−2

− Gk−2

�

+k(k − 1)Sk − (k − 1)

�

∂G0

∂U0

�

�

Rk−1 − Fk−1

�

, k ≥ 2,

(k − 1)Vk−1 =

�

∂H0

∂W0

�

Wk−2 + R′
k−2

− Gk−2, k ≥ 2,

kUk =

�

∂F0

∂V0

�

Vk−1 + Rk−1 − Fk−1, k ≥ 1.

(66)u(t) =

n
∑

k=0

Ukt
k , v(t) =

n−1
∑

k=0

Vkt
k , w(t) =

n−2
∑

k=0

Wkt
k .
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Example 1

Consider the following nonlinear index-three Hessenberg DAE describing the con-
strained motion of a particle to a circular track

System (67) is supplied with the following (consistent) initial conditions

Note that no initial condition v(0) is given to the variable v(t) as v(0) is pre-determined 
by the DAE and initial conditions (68). System (67) is index-three since three time dif-
ferentiations of the algebraic equation (third equation) of (67) will lead to an ordinary 
differential equation for v(t). As a consequence, this DAE system is difficult to solve 
numerically due to numerical instabilities.

Therefore, to solve (67–68), we apply the DTM to (67) and get the recursion

where the differential transform of the nonlinear terms u3i (t), i = 1, 2 are replaced by the 
Adomian polynomials

Then applying the DTM to initial conditions (68), we get

For k = 0 and k = 1, the third equation of (69) gives

which are satisfied by the transformed initial conditions (70).
Therefore, system (69) reduces to the nonsingular algebraic system for the unknowns 

U1,k ,U2,k and Vk−2

(67)
ü1 = 2u2 − 2u32 − u1v,

ü2 = 2u1 − 2u31 − u2v,

0 = u21 + u22 − 1, t ≥ 0.

(68)u1(0) = 1, u̇1(0) = 0, u2(0) = 0, u̇2(0) = 1.

(69)

k(k − 1)U1,k = 2U2,k−2 − 2A2
k−2 −

k−2
∑

l=0

U1,k−2−lVl ,

k(k − 1)U2,k = 2U1,k−2 − 2A1
k−2 −

k−2
∑

l=0

U2,k−2−lVl , k ≥ 2,

0 =

k
∑

l=0

U1,lU1,k−l + U2,lU2,k−l − δ(k), k ≥ 0,

Ai
k−2 =

k−2
∑

m=0

m
∑

l=0

Ui,k−2−mUi,m−lUi,l , i = 1, 2.

(70)U1,0 = 1, U1,1 = 0, U2,0 = 0, U2,1 = 1.

U2
1,0 + U2

2,0 = 1,

U1,0U1,1 + U2,0U2,1 = 0,
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Using (70) and solving (71), we obtain the following values

From these values, we construct the approximate solution

Applying Laplace transform to u1(t), u2(t) and v(t), we get

For simplicity we let s = 1/t, then we have

All of the [L / M] t-Padé approximants of (75) with L ≥ 1 and M ≥ 1 and L+M ≤ 4 yield

Now since t = 1/s, we obtain from (76)

(71)

k(k − 1)U1,k +U1,0Vk−2 = 2U2,k−2 − 2A2
k −

k−3
∑

l=0

U1,k−2−lVl ,

k(k − 1)U2,k +U2,0Vk−2 = 2U1,k−2 − 2A1
k −

k−3
∑

l=0

U2,k−2−lVl ,

2U1,0U1,k + 2U2,0U2,k = −

k−1
∑

l=1

U1,lU1,k−l + U2,lU2,k−l , k ≥ 2.

(72)

U1,2k =
(−1)k

(2k)!
, U1,2k+1 = 0, k = 1, . . . , 4,

U2,2k+1 =
(−1)k

(2k + 1)!
, U2,2k = 0, k = 1, . . . , 4,

V0 = 1, V1 = 2, V3 = −
4

3
, V5 =

4

15
, V7 = −

8

315
, V2k = 0, k = 1, 2, 3.

(73)u1(t) =

9
∑

k=0

U1,k t
k , u2(t) =

9
∑

k=0

U2,k t
k , v(t) =

7
∑

k=0

Vkt
k .

(74)

L[u1(t)] =

5
∑

k=1

(−1)k−1

s2k−1
, L[u2(t)] =

5
∑

k=1

(−1)k−1

s2k
, L[v(t)] =

1

s
+

4
∑

k=1

(−1)k−122k−1

s2k
.

(75)

L[u1(t)] =

5
∑

k=1

(−1)k−1
t
2k−1

, L[u2(t)] =

5
∑

k=1

(−1)k−1
t
2k
, L[v(t)] = t +

4
∑

k=1

(−1)k−1
2
2k−1

t
2k
.

(76)

[

L

M

]

u1

=
t

1+ t2
,

[

L

M

]

u2

=
t2

1+ t2
,

[

L

M

]

v

=
4t3 + 2t2 + t

1+ 4t2
.

(77)

[

L

M

]

u1

=
s

1+ s2
,

[

L

M

]

u2

=
1

1+ s2
,

[

L

M

]

v

=
s2 + 2s + 4

4s + s3
.
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Finally, applying the inverse Laplace transform to (77) we get

which is the exact solution of DAE initial-value problem (67–68).

Example 2

Consider the following nonlinear index-three Hessenberg DAE

where

System (79) is supplied with the following (consistent) initial conditions

Note that no initial condition w(0) is given to the variable w(t) as w(0) is pre-determined 
by the DAE and initial conditions (80). System (79) is index-three since three time dif-
ferentiations of the algebraic equation (fifth equation) of (79) will lead to an ordinary 
differential equation for w(t). As a consequence, this DAE system is difficult to solve 
numerically due to numerical instabilities.

To solve (79–80), we first expand ϕ1(t) and ϕ2(t) in Taylor series

Then, we apply the DTM to (79) and get the recursion

where �i,k is the differential transform of ϕi(t), for i = 1, 2, 3 and where the differential 
transform of the nonlinear terms eui , i = 1, 2 are replaced by the Adomian polynomials 
Ai
k

(78)u1(t) = cos t, u2(t) = sin t, v(t) = 1+ sin 2t,

(79)

u̇1 = 2v1,
u̇2 = 2v2,
v̇1 = −2v1 + eu2 + w + ϕ1(t),
v̇2 = 2v2 + eu1 + w + ϕ2(t),
0 = u1 + u2 − ϕ3(t), 0 ≤ t < 1,

ϕ1(t) = −
2t4 + 2t3 + 1

2(1+ t)2
, ϕ2(t) =

−2t4 + 2t3 − 1

2(1− t)2
, ϕ3(t) = ln

(

1− t2
)

.

(80)u1(0) = u2(0) = 0, v1(0) = −v2(0) = 1/2.

(81)

ϕ1(t) = − 1

2
+ t − 3

2
t2 + t3 − 3

2
t4 + 2t5 − 5

2
t6 + 3t7 − 7

2
t8,

ϕ2(t) = − 1
2
− t − 3

2
t2 − t3 − 3

2
t4 − 2t5 − 5

2
t6 − 3t7 − 7

2
t8,

ϕ3(t) = −t2 − 1

2
t4 − 1

3
t6 − 1

4
t8.

(82)

kU1,k = 2V1,k−1,

kU2,k = 2V2,k−1,

kV1,k = −2V1,k−1 + A
2
k−1

+Wk−1 +�1,k−1,

kV2,k = 2V2,k−1 + A
1
k−1

+Wk−1 +�2,k−1, k ≥ 1,

0 = U1,k + U2,k −�3,k , k ≥ 0,
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Then, we apply the DTM to initial conditions (80), to get

Using the first two equations of (82) with k = 1 and (83), we get

For k = 0 and k = 1, the last equation of (82) gives

which are satisfied by (83) and (84).
Therefore, system (82) reduces to the following nonsingular linear algebraic system for 

the unknowns U1,k ,U2,k ,V1,k−1,V2,k−1 and Wk−2

Adding the third and the fourth equations and using the last equation, we obtain Wk−2. 
Now replacing Wk−2 by its expression in third and fourth equations, we get U1,k and U2,k . 
Last, we use the first and second equations to obtain V1,k−1 and V2,k−1. Following this 
procedure and using (83) and (84), we obtain the approximations

A
i
0 = e

Ui,0 ,

A
i
1 = Ui,1e

Ui,0 ,

A
i
2 = Ui,2e

Ui,0 +
1

2
U
2
i,1e

Ui,0 ,

A
i
3 = Ui,3e

Ui,0 + Ui,1Ui,2e
Ui,0 +

1

6
U
3
i,1e

Ui,0 ,

A
i
4 = Ui,4e

Ui,0 + Ui,1Ui,3e
Ui,0 +

1

2
U
2
i,2e

Ui,0 +
1

2
U
2
i,1Ui,2e

Ui,0 +
1

24
U
4
i,1e

Ui,0 ,

A
i
5 = Ui,5e

Ui,0 +
(

Ui,2Ui,3 + Ui,1Ui,4

)

e
Ui,0 +

1

2

(

Ui,1U
2
i,2 + U

2
i,1Ui,3

)

e
Ui,0

+
1

6
U
3
i,1Ui,2e

Ui,0 +
1

120
U
5
i,1e

Ui,0 ,

A
i
6 = Ui,6e

Ui,0 +

(

1

2
U
2
i,3 +Ui,2Ui,4 + Ui,1Ui,5

)

e
Ui,0 +

(

1

6
U
3
i,2 +Ui,1Ui,2Ui,3 +

1

2
U
2
i,1Ui,4

)

e
Ui,0

+

(

1

4
U
2
i,1U

2
i,2 +

1

6
U
3
i,1Ui,3

)

e
Ui,0 +

1

24
U
4
i,1Ui,2e

Ui,0 +
1

720
U
6
i,1e

Ui,0 .

(83)U1,0 = U2,0 = 0, V1,0 = −V2,0 = 1/2.

(84)U1,1 = 1, U2,1 = −1.

(85)
0 = U1,0 + U2,0,

0 = U1,1 +U2,1,

(86)

V1,k−1 =
1

2
kU1,k ,

V2,k−1 =
1
2
kU2,k ,

1

2
k(k − 1)U1,k −Wk−2 = −2V1,k−2 + A

2
k−2

+�1,k−2,

1
2
k(k − 1)U2,k −Wk−2 = 2V2,k−2 + A

1
k−2

+�2,k−2,

0 = U1,k + U2,k +
1+(−1)k

k
, k ≥ 2.

(87)

u1(t) = t −
1

2
t2 +

1

3
t3 −

1

2
t4 +

1

5
t5 −

1

6
t6,

u2(t) = −t −
1

2
t2 −

1

3
t3 −

1

2
t4 −

1

5
t5 −

1

6
t6,

v1(t) =
1

2
−

1

2
t +

1

2
t2 −

1

2
t3 +

1

2
t4 −

1

2
t5,

v2(t) = −
1

2
−

1

2
t −

1

2
t2 −

1

2
t3 −

1

2
t4 −

1

2
t5,

w(t) = t2,
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which are the first terms of the Taylor series of the exact solutions

of DAE initial-value problem (79–80).

Discussion
Higher-index differential-algebraic equations (DAEs) still require new numerical and 
analytical methods to solve them efficiently. Such problems are known to be difficult 
to solve both numerically and analytically. In this paper, we introduced a new analyti-
cal method to solve nonlinear higher-index Hessenberg DAEs. The method is based 
on Adomian polynomials and the differential transform method (DTM). Two classes 
of nonlinear higher-index Hessenberg DAEs were treated by this method. The method 
has successfully handled these two classes of DAEs without the need for a preprocessing 
step of index-reduction. The method transformed the DAEs into easily solvable linear 
algebraic systems for the coefficient of the power series solution. For each class, one test 
problem was solved. The examples show that Adomian polynomials combined with the 
DTM are powerful tools to obtain the exact solutions or approximate solutions of non-
linear higher-index Hessenberg DAEs. To improve the power series solution, a Laplace-
Padé post-treatement is applied to the truncated series leading to the exact solution.

Conclusion
This work presents the analytical solution of two classes of nonlinear higher-index Hes-
senberg DAEs using Adomian polynomials and the DTM. Procedures for solving these 
two classes of DAEs are presented. For each class, the technique was tested on one non-
linear higher-index Hessenberg problem. The results obtained show that the method can 
be applied to solve nonlinear higher-index Hessenberg DAEs efficiently obtaining the 
exact solution or an approximate solution. On the one hand, it is important to note that 
these types of DAEs are difficult to solve both numerically and analytically. On the other 
hand, the presented technique based on Adomian polynomials and the DTM in combi-
nation with Laplace-Padé resummation method was able to obtain the exact solution of 
nonlinear higher-index Hessenberg DAEs. The use of Adomian polynomials allowed us 
to obtain an algorithm for the method and also to compute the differential transforms 
of highly nonlinear terms. The technique is based on a straightforward procedure that 
can be programmed in Maple or Mathematica to simulate large problems. Finally, future 
work is needed to apply the proposed technique to higher-index partial differential-
algebraic equations and other nonlinear higher-index DAEs. Our method can be com-
bined with the multi-stage DTM to calculate accurate approximate solutions to these 
problems.
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(88)
u1(t) = ln(1+ t), u2(t) = ln(1− t),

v1(t) =
1

2(1+t) , v2(t) = − 1
2(1−t) , w(t) = t2,
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