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Background
A total laryngectomy is a surgical procedure which consists in a complete removal of the 
larynx for the treatment of a cancer for example. Thus, the patient loses his/her vocal 
cords that allowed him/her a laryngeal voice. After surgery, some patients may waive any 
oral communication attempt because of the physical and mental bouleversement caused 
by the surgical act. Indeed, the anatomical changes deprive temporarily the patient of 
his/her voice. Only the whispered voice allows communication in a postoperative life. 
An alternative speaking rehabilitation method allows him/her to get a new voice called 
esophageal speech (ES) generated without vocal folds. The air from the lungs, original 
source of all human speech, no longer passes through the cavities of the phonatory appa-
ratus. It is released directly from the stomach through the esophagus. The features of 
esophageal speech such as the envelope of the waveform and the spectral components 
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differ from the features extracted from natural speech. Furthermore, the esophageal 
speech is characterized by specific noises and low intelligibility; the fundamental fre-
quency of this voice is less stable than that of laryngeal voice. All these aspects cause a 
production of a hoarse, creaky and unnatural voice, difficult to understand.

Currently, researchers are mostly concentrated on the recognition and evaluation of 
alaryngeal speech, in such fields as laryngology and biomedical application of speech 
technology (Pravena et  al. 2012; Dibazar et  al. 2006). The evaluation of esophageal 
speech by perception judgments is one of the most used methods in clinical practice. 
It consists in following postoperative vocal evolution and efficiency of reeducation. The 
major drawbacks of this approach are the missing of reliability, as well as the difficulty 
of establishing a jury of experts for listening. Given the limitations of this perceptual 
analysis, the establishment of a more objective assessment protocol becomes a necessity. 
Nowadays, instrumental analysis (Wuyts et  al. 2000; Yu et  al. 2001) aims to provide a 
solution based on acoustic and aerodynamic measurements of speech sounds. Recently 
in (Lachhab et  al. 2014), we proposed a new objective technique to assess esophageal 
speech. The originality of this approach is based on the use of an automatic speech rec-
ognition system in order to extract phonetic information of pathological voice signals.

In this paper, we propose a new hybrid system based on statistical voice conversion for 
improving the recognition of esophageal speech. This enhancing system combines a 
voice conversion algorithm that transforms esophageal speech into a “target” laryngeal 
speech, with an automatic speech recognition system based on HMM1/GMM2 models. 
This approach aims to correct and extract the lexical information contained in esopha-
geal speech. Our hybrid system does not apply a speech synthesizer for reconstructing 
the converted speech signal, because the automatic speech recognition system used 
needs only as input data, converted Mel cepstral features. The discriminant information 
of the converted acoustic vectors is increased by the HLDA (heteroscedastic linear dis-
criminant analysis) transformation in order to improve system performance.

This paper is organized as follows: “Previous and current research on enhancing patho-
logical speech” details previous and current works on enhancing pathological voice. The 
used corpora for voice conversion and the HLDA transformation method are described 
in “The FPSD corpus” and “The HLDA transformation” respectively. In “The hybrid sys-
tem for enhancing esophageal speech”, the proposed hybrid system for improving the 
recognition of esophageal speech is discussed. In “Experiments and results”, we present 
the experiments and obtained results. Finally, a conclusion of this paper is provided in 
“Conclusion and future works” as well a list of possible future works.

Previous and current research on enhancing pathological speech
The esophageal speech is characterized by high noise perturbation, low intelligibility and 
a fundamental frequency which is unstable. All these characteristics when compared 
with those of the laryngeal speech produce a hoarse, creaky and unnatural voice, difficult 
to understand. For this reason, several approaches have been proposed to improve the 
quality and intelligibility of the alaryngeal speech. One such a method described in (Qi 

1  Hidden Markov Model.
2  Gaussian Mixture Model.
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et al. 1995), consists in resynthesizing tracheoesophageal (TE) speech using a simulated 
glottal waveform and a smoothed F0. A similar approach (del Pozo and Young 2006), 
uses a synthetic glottal waveform and a jitter and shimmer reduction model to reduce 
breathiness and harshness of original TE speech. Some other authors have proposed 
a signal processing based speech prosthesis, such Mixed-Excitation Linear Prediction 
(MELP) (Türkmen and Karsligil 2008), which consists in synthesizing normal speech 
from whispered voice by using pitch estimation and formant structure modification on 
voiced phonemes. The unvoiced phonemes in this study remain unmodified. However, 
this technique is unsuited to real-time operation. Another exemple has been reported 
by (Sharifzadeh et al. 2010), with a Code-Excitation Linear Prediction (CELP) in order 
to produce more natural characteristics by reconstructing the missing pitch elements 
from whispered speech. However, it is still difficult to mechanically generate realistic 
excitation signals similar to the one naturally generated by vocal fold vibrations. Other 
attempts for enhancing pathological speech based on the modifications of their acous-
tic features have been proposed, such as formant synthesis (Matui et  al. 1999), back-
ground noise reduction based on auditory masking (Liu et al. 2006), approximation of 
vocal tract using LPC (Garcia et al. 2002, 2005) and comb filtering (Hisada and Sawada 
2002), denoising electrolarynx (EL) speech by combined spectral substraction and root 
cepstral substraction procedure (Cole et al. 1997). This subtractive-type method is lim-
ited and lacks of accuracy in estimation of the background noise. In (Mantilla-Caei-
ros et al. 2010), the esophageal speech enhancement system proposed aims to replace 
voiced segments of alaryngeal speech, selected by pattern recognition techniques, with 
corresponding segments of normal speech. The silence and unvoiced segments remain 
unchanged. Another work reported in (del Pozo and Young 2008), consists in repairing 
TE phone durations by those predicted by regression trees built from normal data.

Recently, a statistical approach for enhancing alaryngeal speech based on conversion 
voice has been proposed in (Doi et al. 2014). This technique consists in converting the 
alaryngeal speech sound, in order to be perceived as pronounced by a target speaker 
with a laryngeal voice. In (Tanaka et  al. 2014), a new hybrid method for alaryngeal 
speech enhancement based on noise reduction by spectral subtraction (Boll 1979) and 
using statistical voice conversion for predicting the excitation parameters was devel-
oped. These two recent approaches aim to improve the estimation of acoustic features in 
order to reconstruct an enhanced signal with best intelligibility. However, the conversion 
process used in these methods is quite complex and can generate errors in parameters 
estimation and thus produce unnatural synthesized sounds due to the lack of realistic 
excitation signals related to the converted spectral parameters. Consequently, in practice 
it is difficult for them to compensate for the differences existing in the alaryngeal acous-
tic parameters when compared with those of the laryngeal speech.

To overcome this drawback, we propose a new hybrid system for improving the recog-
nition of esophageal speech based on a simple voice conversion algorithm. In this con-
version process, an iterative statistical estimation of a transformation function is used. 
This estimation method is computationally inexpensive when compared to the classical 
EM (Werghi et al. 2010). On the other hand, we do not use a synthesizer for reconstruct-
ing the converted speech signal, because our hybrid system integrates a speech 
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recognition system in order to extract the phonetic information directly from converted 
MFCC*3 vectors.

The FPSD corpus
We chose to develop our esophageal speech recognition system with our own database. 
This French database entitled FPSD (French Pathological Speech Database), was estab-
lished to simplify the training of phonetic models of esophageal speech recognition sys-
tems. This corpus contains 480 audio files saved in wav format, accompanied with their 
orthographic transcription files. The sentences are pronounced by a single laryngecto-
mee speaker. We organized all the data in packets of five categories:

C1.	 Sentences with one-syllable words.
C2.	 Sentences with words of one and two syllables.
C3.	 Sentences with words of three syllables.
C4.	 Sentences with falling intonation.
C5.	 Sentences with rising intonation.

It is necessary to have a fairly large training corpus in order to process the intra-
speaker variability. The more important is the training data, the better are the obtained 
performances. We divided our corpus into two subsets: one for training and the other 
one for the test. The training subset contains 425 sentences and the test one contains 55 
sentences. The structure of our FPSD corpus is similar to the one used in the TIMIT cor-
pus (Garofolo et  al. 1993). We have for each sentence, the French text stored in a file 
(.txt), the audio signal recorded in the (.wav) format and sampled at 16 KHz with 16 bits 
by sample with a single input channel, a file (.wrd ) containing the word transcription 
and a file (.phn) containing the manual segmentation into phonemes. For realizing this 
manual segmentation we used the Praat4 software which allows both transcriptions, 
annotations and analysis of the acoustic data. This software allows also viewing spectro-
grams and calculating prosodic parameters such as intensity, fundamental frequency, 
and other parameters such as energy and formants. Indeed, although it is difficult to 
assess the quality of a phonetic segmentation, there is a broad consensus on the fact that 
manual segmentation is more accurate than automatic segmentation. The phonetic labe-
ling of the sentences was carried out with SAMPA5 (Speech Assessment Methods Pho-
netic Alphabet) characters. This labeling method offers the advantage of using only 
simple ASCII characters. With SAMPA there is up to two characters to represent a pho-
neme. There exists another standard phonetic transcription method called International 
Phonetic Alphabet (IPA). Unfortunately, in the IPA method each phoneme is repre-
sented by a symbol that may not be entered on a computer keyboard. Table  1 shows the 
list of the 36 French phonetic labels used in our own FPSD database, with the IPA corre-
spondence and examples.

3  Represents the converted MFCC vectors.
4  http://www.praat.org.
5  http://www.phon.ucl.ac.uk/home/sampa/index.html.

http://www.praat.org
http://www.phon.ucl.ac.uk/home/sampa/index.html
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The HLDA transformation
The goal of HLDA (Kumar and Andreou 1998) method consists in transforming the 
original data in a reduced dimension space while preserving discriminant information 
and the de-correlation of the different classes (phonemes). The n-dimensional feature 
vectors are projected into a space of p ≤ n dimension. Mathematically, we can express 
this reduction by applying the following linear transformation function:

(1)Y = �X =

[

�pXn

�n−pXn

]

=

[

Yp
Yn−p

]

Table 1  SAMPA transcription of the standard French phones

Number IPA SAMPA Example

1 p p pont [po∼]

2 b b bon [bo∼]

3 t t temps [ta∼]

4 d d dans [da∼]

5 k k coût [ku]

6 g g gant [ga∼]

7 f f femme [fam]

8 v v vent [va∼]

9 s s sans [sa∼]

10 z z zone [zOn]

11 j j  ion [jo∼]

12 m m  mont [mo∼]

13 n n  nom [no∼]

14  N  ring [riN]

15 ʃ S champ [Sa∼]

16 ʒ Z gens [Za∼]

17 ɔ O comme [kOm]

18 o o gros [gRo]

19 u u doux [du]

20 y y du [dy]

21 ə @ de [d@]

22 l  l  long [lo∼]

23 ʁ  R  rond [Ro∼]

24 w  w  quoi [kwa]

25 ɥ  H  juin [ZHe∼]

26 i  i  si [si]

27 e  e  blé [ble]

28 ɛ  E  seize [sEz]

29 a  a  patte [pat]

30 ø  2  deux [d2]

31 œ  9  neuf [n9f ]

32 9∼  brun [br9∼]

33 e∼  vin [ve∼]

34 a∼  vent [va∼]

35 o∼  bon [bo∼]

36 sil - or sil silence
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where �p represents the p first rows of the transformation matrix and �n−p represents 
the remaining n− p rows. To obtain the transformed vectors Yp, we multiply the trans-
formation matrix �p of dimension (p× n) by the input vector Xn. Heteroscedastic LDA 
(HLDA) is an extension of LDA (Haeb-Umbach and Ney 1998). LDA assumes that the 
mean is the discriminating factor and not the variance, because the class distributions 
are Gaussians with different means and common covariance (Homoscedasticity). Due 
to this homoscedasticity, LDA may provide unsatisfactory performances when the class 
distributions are heteroscedastic (unequal variances or covariances). In order to over-
come this limitation, HLDA has been proposed for treating the heteroscedasticity prop-
erty. Each class is modeled as a normal distribution of xi training vectors.

where µc(i),�c(i) represent the mean vector and covariance matrix of class c(i) respec-
tively. The objective is to find the optimal solution that respects a maximization criterion 
of log-likelihood probability function of the data in terms of �.

The efficient iterative algorithm based on the generalized Expectation Maximization 
(EM) proposed in (Gales 1999; Burget 2004), is used in our experiments to simplify the 
estimation of matrix �.

The hybrid system for enhancing esophageal speech
In this section, the theory and implementation of the hybrid system for esophageal 
speech enhancement are described in detail. A block diagram of the proposed system is 
shown in Fig. 1.

Features extraction

The speech signals of the source and target speakers undergo a parameterization phase. 
The objective of this phase is to extract MFCC (Davis 1980) cepstral vectors. In this pro-
cessing, the speech signal is sampled at 16 Khz with pre-emphasis of 0.97. A Hamming 
window of 25 ms shifted every 10 ms is used for obtaining the short time sections from 
which the cepstral coefficients are extracted. The first 12 cepstral coefficients (c1–c12) 
obtained from a bank of 26 filters in a Mel frequency scale, are retained. The logarithm 
of the energy of the frame, normalized over the entire sentence is added to the 12 ceps-
tral coefficients in order to form a vector of 13 static coefficients (12 MFCC+ E).

Statistical voice conversion

The voice conversion process can be decomposed into two steps: training and trans-
formation. During the training step, a parameterization phase (features extraction) is 
applied on two parallel corpora (source and target voices) containing sentences with 
the same phonetic content. The extracted cepstral vectors are used for determining an 
optimal conversion function that transforms the source vectors into target ones while 

(2)p(xi) =
|�|

√

(2π)n|�c(i)|
exp

(

−

1

2
(�xi − µc(i))

T�−1
c(i)(�xi − µc(i))

)

(3)�̃ = arg max
�

∑

∀i

log p(xi)
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minimizing the mean square error between the converted and target vectors. The sec-
ond step is the transformation in which the system uses the previously learned conver-
sion function for transforming the source speech signals in order to be perceived as 
pronounced by the target speaker.

The purpose of voice conversion is to convert the characteristics of a sound signal 
from a source speaker into the characteristics of a target speaker. In this paper, we will 
consider the GMM Gaussian mixture-based method described by Stylianou et al. (1998) 
and improved by Kain and Macon (1998), Toda et al. (2007) and then by Werghi et al. 
(2010). The Werghi’s algorithm has been used in this study as our basic voice conversion 
procedure.

1.	 Training process: The X (source) sentences are normalized in a first step in order to 
have the same length in samples of their corresponding Y (target) normal voice sen-
tences (this process is realized by the free Unix “sox” software) and aligned in a sec-
ond step by the Dynamic Time Warping (DTW) algorithm. This latest phase consists 
in mapping the source vectors with the target vectors in order to create a huge map-
ping list. The corresponding vectors are concatenated then jointly in a single vec-
tor z = [x y]T before classification. These extended vectors are classified using the 
“k-means” vector quantization algorithm (Kanungo et al. 2000) in order to determine 
the initial GMM parameters. The joint probability of vector z is given by:

Fig. 1  Block diagram of the proposed hybrid system for improving the recognition of esophageal speech
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where N (·,µ,�) denotes a Gaussian distribution with a mean vector µ and a covari-
ance matrix �, α is the mixture weight. This combination is used to model a joint 
GMM that depends on the source and target parameters. We obtain all the parame-
ters at once, the mean vectors source and target (µx,µy), the source and target covari-
ance matrices (�xx,�yy) and the cross-covariance matrices (�xy,�yx) for each class 
i. The parameters are estimated by the iterative algorithm ISE2D (Iterative Statisti-
cal Estimation Directly from Data) described in (Werghi et al. 2010). The conversion 
function F(x) is then defined as the expectation E[y / x]:

where p(x/i) represents the posterior probability that x is generated by the ith com-
ponent and G is the number of Gaussians. The ISE2D method is computationally less 
expensive and gives better results than the classical EM method. This approach con-
sists in estimating the GMM parameters directly from data by statistical computa-
tions shown below:

•	 The weight αi of each normal distribution is estimated as the ratio between Ns,i the 
number of source vectors of class i and Ns the total number of source vectors. 

• 	 The mean source vector µx and mean target vector µy are computed as follows: 

where xk , yk and Nt,i represent the kth source vector, the kth target vector and the 
number of target vectors of class i.

2.	 Conversion process: Once the GMM parameters are calculated, the previously esti-
mated conversion function is applied to all the vectors of the FPSD database for con-
verting the 12 MFCC*+E*6 vectors ŷk .

(k represents the vector number)
We do not use a synthesizer to reconstruct the speech signal. The converted vectors 
are used directly as input data of our speech recognition system.

(4)p(z) =

G
∑

i=1

αiNi(z,µi,�i)

�i =

[

�xx
i �

xy
i

�
yx
i �

yy
i

]

and µi =

[

µx
i

µ
y
i

]

(5)F(x) = E[y/x] =

G
∑

i=1

p(x/i)(µ
y
i +�

yx
i (�xx

i )
−1

(x − µx
i ))

(6)p(x/i) =
αiN (x,µx

i ,�
xx
i )

∑G
j=1 αjN (x,µx

j ,�
xx
j )

(7)αi =
Ns,i

Ns

(8)µx
i =

∑Ns,i

k=1 x
k
i

Ns,i
and µ

y
i =

∑Nt,i

k=1 y
k
i

Nt,i

6  Represents the converted logarithm energy.

(9)ŷk = F(xk)
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Adding derivatives and reducing the dimensionality by HLDA

We have developed the same algorithm used in HTK for calculating the three deriva-
tives. Let C(t) the cepstral coefficients of the converted frame at time t, then the cor-
responding delta coefficients �C(t) are calculated on an analysis window of five frames 
(N� = 2) by using the following formula:

The same formula (10) is applied to the delta coefficients to obtain the acceleration (��) 
coefficients. Similarly the third differential coefficients are computed by applying Eq. 10 
on the acceleration (��) coefficients. The derivatives of the energy are calculated also 
in the same way. As mentioned above in “Statistical voice conversion”, the conversion is 
applied on the 13 static coefficients MFCC (12MFCC + E). The differential coefficients 
of order 1, 2 and 3 called dynamic coefficients (�, �� and ���) are calculated from 
converted static coefficients and concatenated in the same space in order to increase the 
number of coefficients to d = 52. In order to improve the discriminant information and 
reduce the space dimensionality, the HLDA transformation matrix has been estimated 
using the method described in “The HLDA transformation”. The new converted discri-
minant vectors contain 39 coefficients which represents the reference dimensionality 
used in most Automatic Speech Recognition systems (ASR).

The training of esophageal speech recognition system

Our esophageal speech recognition system is based on a statistical approach integrat-
ing acoustic and language levels in one decision process. These levels are represented by 
Hidden Markov Models (HMM). The 36 phones described in “The FPSD corpus” (see 
Table  1) are all modeled by left-to-right HMMs (see Fig.  2) with five states each (but 
only three of them can emit observations). The training of the acoustic models consists 
in estimating the mean vectors and covariance matrices of a set of weighted Gaussians. 
These parameters allow the computation of probability densities that constitute likeli-
hood values associated with the emission of an observation by a state of a HMM. Fur-
thermore the estimation of discrete probabilities associated with transitions between 
different states of the HMM are calculated. The converted discriminant vectors belong-
ing to the training part of our FPSD database are used to estimate the optimal param-
eters {A,πi,B}.

(10)�C(t) =

∑N�

i=1 i(Ct+i − Ct−i)

2
∑N�

i=1 i
2

Fig. 2  Topology of the context-independent phonetic HMM
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Where:

• • πi: An initial state probability.
• • A = aij: The probability of transition from state i to state j (A is a transition probabil-

ity matrix).
• • B = bi(ot): the matrix containing the distribution probability of emission the obser-

vation ot in state i.
• • The output distribution bi(ot) for observing ot in state i is generated by a Gaussian 

Mixture Model (GMM) and more precisely by a mixture of multivariate Gaussian 
distribution probabilities N (ot ,µik ,�ik) of mean vector µik and covariance matrix 
�ik:

where ni represents the number of Gaussians in state i, ot corresponds to an observation 
o at time t and cik represents the mixture weight for the k th Gaussian in state i. The rec-
ognition system is implemented using the platform HTK (Young et al. 2006). The HMM 
parameters are estimated based on maximum likelihood criterion MLE (Rabiner 1989).
The obtained models are improved by increasing the number of Gaussians used to esti-
mate the probability of emission of an observation in a state. The choice of the optimal 
number of Gaussians is a delicate issue, generally guided by the amount of training data. 
In our case, we limited this number to 16 Gaussians by state.

Phone recognition

The phone decoding is the heart of speech recognition systems. Its goal is to find the 
most likely states sequence corresponding to the parameters observed, in a composite 
model, and deducing the corresponding acoustic units. This task is performed using 
the Viterbi decoding algorithm applied on the converted Test vectors using the opti-
mal parameters {A,πi,B} already estimated. In parallel of this alignment, a bigram lan-
guage model is calculated on all of the training part of our FPSD database to improve 
the decoding. The bigram language can be represented by a two-dimensional table giv-
ing the probability of occurrence of two successive phonemes. In this study the bigram 
language has been trained using only 425 sentences from HTK modules. The inclusion 
of this model allows approximately a 10  % gain in accuracy. Our language model can 
be of course enriched by various textual contents of large French databases in order to 
improve the performances of our system.

Experiments and results
In order to convert esophageal speech into a “normal speech” we recorded 50 esophageal 
and laryngeal sentences uttered respectively by a French male laryngectomee (the same 
one who participated in the creation of the FPSD database) and a French male speaker 
having a non-pathological voice. These new recordings do not belong to the FPSD 

(11)

bi(ot) =

ni
∑

k=1

cik
√

(2π)d |�ik |

exp

(

−

1

2
(ot − µik)

T�−1
ik

(ot − µik)

)

(

with

ni
∑

k=1

cik = 1

)
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database. They were uttered in order to determine the statistical conversion function. 
During the first iteration of training, the DTW alignment is applied on the source vec-
tors x and target y containing 13 static coefficients. From the second iteration, the DTW 
alignment is realized between the converted static vectors ŷ and target vectors y in order 
to refine the mapping list. The conversion function is estimated using 64 classes. For 
evaluating our hybrid system we performed three experiments on the phone recognition 
system level (the conversion experiment described previously does not change). In the 
first experiment, we computed the derivatives of order 1 and 2 from the converted static 
vectors using the same HTK regression formula. The purpose of this experiment is to 
recover dynamic information and have new dimension vectors = 39 (12 MFCC∗,E∗

; 12 
�MFCC∗,�E∗

; 12 ��MFCC∗,��E∗) representing the reference dimensionality in 
most ASR systems. In experiment 2, another derivative (���) is added and concate-
nated in the vectors space in order to increase the number of coefficients at d = 52 (12 
MFCC∗,E∗

; 12 �MFCC∗,�E∗
; 12 ��MFCC∗,��E∗

; 12 ���MFCC∗,���E∗). In 
experiment 3, the space of 52 coefficients used in experiment 2 is reduced to 39 coef-
ficients using the HLDA (52 → 39) transformation for improving the discriminant infor-
mation and reducing the space dimensionality.

The phone accuracy and correct rates are calculated by Eq. 12, in order to evaluate our 
esophageal speech recognition system where N represents the total number of labels of 
the test utterances. The Substitution (S), Insertion (I) and Deletion (D) errors are com-
puted by the DTW algorithm between the correct phone strings and the recognized 
phone strings.

Table  2 shows the results of the three experiments described above on the converted 
MFCC* vectors of the Test part of our own FPSD database containing 55 sentences.

An additional evaluation with the same experiments has been performed on our 
phone recognition system using the original FPSD database (without vector conversion). 
We also realized these experiments on the laryngeal voice TIMIT database (Garofolo 
et al. 1993) with the same 39 phonetic classes as described by Lee and Hon (1989).

The two tables, Tables  3 and 4 present the accuracy and correct rates for the three 
experiments described above respectively on the Test part of the original FPSD data-
base (without vector conversion), and on the Core Test of the TIMIT database. From 
the results of experiment 3 (in Table 2) we can observe that the proposed hybrid system 
provides an improvement in phone recognition accuracy with an absolute increase of 

(12)Accuracy =
N − (S + D + I)

N
; Correct =

N − (S + D)

N

Table 2  Influence of the number of differential coefficients with the HLDA transformation 
on phone recognition rates on the converted MFCC

∗ vectors of the Test part of FPSD data-
base

36 monophone HMMs with 16 Gaussians  
per state + Bigram

Accuracy (%) Correct (%)

Exp 1 : 39MFCC
∗ coefficients 63.48 68.58

Exp 2 : 52MFCC
∗ coefficients 61.78 67.36

Exp 3 : HLDA (52 → 39) 65.29 69.85
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3.40 %. Although this increase in performance seems to not be important, it is essen-
tial to point out that this is mainly due to the great complexity of the task undertaken. 
The resulting increase in performance obtained establishes that the HLDA and the voice 
conversion techniques can improve the discriminative properties of the cepstral frames 
used and therefore the recognition rates. So we think this article opens the way for fur-
ther future successes in this very important topic that is the recognition of pathological 
voice.

Conclusion and future works
In this paper, we present our hybrid system for improving the recognition of esophageal 
speech. This system is based on a simplified statistical GMM voice conversion that pro-
jects the esophageal frames into a clean laryngeal speech space. We do not use a speech 
synthesizer for reconstructing the converted speech signals, because the converted Mel 
cepstral vectors are used directly as input of the phone recognition system we used. We 
also projected the converted MFCC* vectors by the HLDA transformation into a smaller 
space for improving the discriminative properties. The obtained results demonstrate that 
our proposed hybrid system can improve the recognition of the esophageal speech. Con-
cerning future works we are interested in realizing a portable device that will process the 
recognition of ES speech and synthesize the recognized speech using a text-to-speech 
synthesizer. Such a device would permit laryngectomees an easier oral communication 
with other people. However, the ES speech recognition system should be able to restore 
a greater part of the phonetic information (speech-to-text). For this reason, we intend to 
extend our FPSD corpus in order to make possible the use of context-dependent HMM 
models (triphones). Moreover, we plan to replace our simple voice conversion method 
by Toda’s algorithm [maximum likelihood estimation of spectral parameter trajectory 
considering global variance (GV) Toda et al. 2007] in order to improve the voice conver-
sion process and consequently the accuracy of ES speech recognition.

Table 3  Influence of the number of differential coefficients with the HLDA transformation 
on phone recognition rates on the Test part of the original FPSD database (without vector 
conversion)

36 monophone HMMs with 16 Gaussians  
per state + Bigram

Accuracy (%) Correct (%)

Exp 1 : 39MFCC coefficients 61.89 67.62

Exp 2 : 52MFCC coefficients 58.49 65.29

Exp 3 : HLDA (52 → 39) 63.59 69.43

Table 4  Influence of the number of differential coefficients with the HLDA transformation 
on phone recognition rates on the core test of the TIMIT database

39 monophone HMMs with 16 Gaussians  
per state + Bigram

Accuracy (%) Correct (%)

Exp 1 : 39MFCC coefficients 69.19 71.78

Exp 2 : 52MFCC coefficients 67.96 71.38

Exp 3 : HLDA (52 → 39) 71.32 74.07
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