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Understanding drugs in breast cancer 
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Abstract 

With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance 
to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to 
understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal 
drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 
compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. 
Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related 
mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically 
clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related 
mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-
correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values 
in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships 
between drugs which might have implications for cancer treatment regimens.
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Background
Life expectancy and survival of breast cancer patients 
have increased significantly over the last decades, due 
to—amongst other factors—an increasing number of 
effective drug therapies (Berry et  al. 2005; Lichtenberg 
2009, 2011). Drug resistance remains a major issue (Gon-
zalez-Angulo et  al. 2007) and since the discovery that 
expression of the protein markers ER, PR and her-2/neu 
determines response to a given targeted therapy (Bast 
et al. 2001), the assessment of their expression in breast 
cancer has become an important first step in selecting 
a patient’s treatment (Bast et  al. 2001). Subsequently, 
microarray studies have shown insight into molecular 
processes active in the tumor and linked those to diverse 
clinical outcomes (Sorlie et  al. 2001; Van’t Veer et  al. 

2002; Wang et al. 2005) including therapy failure (Jansen 
et  al. 2005). In the last couple of years large scale next 
generation sequencing efforts have made a big contribu-
tion to our understanding of breast cancer by delivering 
precise information on cancer driver mutations (Kan-
gaspeska et  al. 2012; Desmedt et  al. 2012; Previati et  al. 
2013; Radovich et  al. 2013; The Cancer Genome Atlas 
Network 2012). All these sources of information com-
bined have helped to elucidate how breast cancer evolves, 
progresses and metastasizes and some of them have led 
to the development of diagnostic tests to characterize 
breast cancer better (Kittaneh et  al. 2013). Neverthe-
less, there is still significant room for improvement in 
regard to available drug therapies, as many patients do 
not respond to current treatments or become resistant 
during the course of treatment (Gonzalez-Angulo et  al. 
2007). New agents are therefore needed to target breast 
cancer, and screenings of multiple compounds for their 
activity against the various breast cancer subtypes are 
a good starting point. As a first step to test new com-
pounds breast cancer cell lines are a good model, because 
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they are easy to maintain, represent different subtypes of 
breast cancer, and the response to drug treatment can be 
easily assessed. For these reasons, we studied the activ-
ity of a wide variety of cytotoxic and targeted drugs in 
a large panel of breast cancer cell lines. The drugs were 
chosen based on current clinical utility e.g. for discrete 
cancer subtypes, potential clinical utility such as promis-
ing compounds in pre-clinical testing, aiming at molecu-
lar targets, and—for comparison—current state of the art 
drugs for the therapy of breast cancer. We investigated 
which drugs showed similar activity in the panel of breast 
cancer cell lines and could therefore potentially substi-
tute or complement each other in the clinic, and, in addi-
tion, we aimed to identify shared biology in cell lines that 
are affected by highly correlated drugs.

Results
Relationships between drugs: clustering and correlation 
analysis
To investigate the relationships between different drugs 
the IC50 values of all 7 cytotoxic drugs and 30 targeted 
agents, measured in the 42 breast cancer cell lines, were 
correlated (Fig.  1). Capecitabine, cMet 605 and Cyclo-
phosphamide exhibited no differential IC50 values and 
were consequently omitted from the clustering and fur-
ther analyses. To express the relationships among drugs 
and cell lines hierarchical clustering was performed 
(Fig. 2). Clustering and correlation performed fairly simi-
larly and are therefore discussed together.

Strong correlation and expected co-clustering was 
observed between Gefitinib and Erlotinib (cluster 1; 
r = 0.88), between Quisinostat, Panobinostat, Vorinostat 
and Belinostat (cluster 2; r =  0.85–0.96), between Doc-
etaxel and Paclitaxel (cluster 3; r =  0.73), between JNJ-
707 and JNJ-493 (cluster 4; r = 0.62) and between MI-219 
and Nutlin-3 (cluster 6; r  =  0.98); all correlations are 
listed additionally in Table 1. To illustrate the close rela-
tionship between related drugs, the IC50 values of MI-219 
and Nutlin-3, the two drugs with the highest correlation, 
were ranked and plotted for all cell lines (Fig.  3). Inter-
estingly, Serdemetan, a drug which acts on cholesterol 
transport but also targets MDM2 (Jones et  al. 2013)—a 
mechanism shared with Nutlin-3 and MI-219 (Shangary 
and Wang 2009)—showed no correlation with these two 
compounds.

Unanticipated but highly significant correlations were 
observed between particularly Doxorubicin and Azac-
itidine (cluster 5; r  =  0.70), between Decitabine and 
5-Fluorouracil (r = 0.58) and Serdemetan (r = 0.56); and 
between Serdemetan and Tipifarnib (r  =  0.52). Addi-
tional weaker, but expected correlations were found 
for Vandetanib with Erlotinib and Gefitinib (r  =  0.47, 

r  =  0.56). Decitabine was correlated with Lapatinib 
(r  =  0.52) and Veliparib with Serdemetan and Decit-
abine (r = 0.51, r = 0.48). Furthermore, we also detected 
a remote relation between various tyrosine kinase inhibi-
tors like JNJ-493 with the multi-receptor tyrosine kinase 
inhibitor Sunitinib (Keyvanjah et  al. 2012) (r  =  0.48), 
JNJ-707 with FGFR- and VEGFR-inhibitor Brivanib 
(Huynh et  al. 2008) (r  =  0.46) and between Docetaxel 
and ARQ197 (r = 0.47). The DNA targeting drug Cispl-
atin (Becker et  al. 2014) showed surprisingly a correla-
tion with Sunitinib (r = 0.47); Bortezomib was correlated 
with Vandetanib (r = 0.47) and the type II topoisomerase 
inhibitor Mitoxantrone (Hajihassan and Rabbani-Chade-
gani 2009) was correlated with JNJ-707 (r  =  0.45). In 
total, 25 pairs of positively correlated drugs were found.

Apart from positive correlations—and even more 
interesting—we also discovered significant negative 
correlations between certain drugs (Table  1). Particu-
larly, Doxorubicin and the correlated drug Azacitidine 
had negative correlations with Cisplatin (r  =  −0.73, 
r  =  −0.55), the ERR1 targeting JNJ-208 with Bort-
ezomib (r = −0.66), and the MDM2-targeting Nutlin-3 
(Shangary and Wang 2009) with the FGFR inhibitor JNJ-
707 (r = −0.45).

Shared pathways between correlated drugs
To further understand the biology behind correlated 
drugs we used mRNA expression data of the untreated 
cell lines and the pathway information of the databases 
Biocarta and KEGG (Ogata et  al. 1999) to characterize 
drug resistance in R (R_Core_Team 2013). We identified 
significant pathways for each of the evaluable drugs, but 
focused on the pathways which were shared among cor-
related drugs, i.e. for the 23 positively and 3 negatively 
correlated remaining drug–drug pairs. Furthermore, 
we performed a pathway analysis where cell lines were 
grouped per subtype to identify subtype-related path-
ways. Subtype-specific pathways were excluded from fur-
ther study in the pathway-drug resistance analysis. At a 
significance level of p < 0.01, only one of all 26 correlation 
pairs had pathways in common. This pair, Nutlin-3 and 
MI-219, had, after correction for subtype-specific path-
ways, only the DNA replication pathway in common. The 
Nutlin-3- and MI-219-associated genes of this pathway 
are displayed in Fig. 4.

Breast cancer subtype specific drugs
Earlier, several subtype-specific differences in drug sensi-
tivity were observed (Heiser et al. 2012) and since breast 
cancer subtypes are biologically very different (Parker 
et  al. 2009), we also explored whether drug response in 
our study was ER- or subtype-related. Only one drug, 
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Sirolimus, exhibited a significantly different subtype-
specific effectiveness. Normal-like and basal cell lines 
were more resistant to this drug compared to luminal 
and ERBB2-overexpressing cell lines with a change in 
sensitivity of two orders of magnitude (p =  0.005). The 
expression of ER by the latter two subtypes was not the 
sole explanation though, as none of the screened drugs 
was associated with ER status (p value >0.01).

Discussion
Drug response to one drug indicates the response 
to another
To understand drug resistance in breast cancer, we com-
pared drug sensitivity of a large set of drugs within a large 
panel of breast cancer cell lines. It became evident that 

some drugs target breast cancer cell lines similarly and 
thus may have unanticipated overlapping mechanisms 
while others display opposing effects indicating that vul-
nerability to a given drug is protective for another unre-
lated treatment.

The results of the overall clustering (Fig. 2) show that 
every breast cancer cell line had a unique drug response 
profile, which might be true for patients as well. This—
first—observation underlines the personal factor in drug 
sensitivity, which we need to understand upfront to pro-
vide optimal patient care.

The second, expected, conclusion is that drugs with 
identical targets such as MDM2-antagonists (MI-219 and 
Nutlin-3) (Shangary and Wang 2009), EGFR-inhibitors 
(Gefitinib and Erlotinib) (Cohen 2003), FGFR-inhibitors 
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Fig. 1  Pearson correlation plot of absolute drug IC50 values. The red color indicates a positive correlation between the IC50 values of two drugs, and 
blue a negative correlation. The color intensity illustrates the correlation coefficient as shown in the legend at top right. Drugs are clustered on the 
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(JNJ-707 and JNJ-493), HDAC inhibitors (Quisinostat, 
Panobinostat, Vorinostat, Belinostat) (Lemoine and 
Younes 2010) and taxanes (Docetaxel and Paclitaxel) 
(Hagiwara and Sunada 2004), showed correlated sensi-
tivities and clustered together explaining five of the six 
observed clusters.

More interesting was the third observation that unre-
lated drugs showed co-clustering, which is best exem-
plified by the sixth cluster (Figs.  1, 2), made up of the 
positively correlated intercalating agent Doxorubicin 
(Frederick et  al. 1990) and the DNA-methyltransferase-
targeting Azacitidine (Creusot et  al. 1982). Interestingly 
and remarkably, Decitabine, a derivative of Azacitidine 
(Lyko and Brown 2005), which also targets a DNA-methyl-
transferase (Creusot et al. 1982), did not cluster with these 
two drugs. The reason for this might be that both Azac-
itidine and Doxorubicin have, next to their well-known 

properties, also the less known capability to interfere with 
RNA synthesis (Momparler et al. 1976; Christman 2002), 
while Decitabine can only act on DNA (Christman 2002). 
Next to this most notable finding we also observed a less 
strong correlation of Decitabine sensitivity with sensitiv-
ity to various unrelated drugs, i.e. the thymidylate syn-
thetase inhibitor 5-Fluorouracil (Longley et al. 2003), the 
cholesterol transport inhibitor and MDM2-antagonist 
Serdemetan (Lehman et  al. 2013; Jones et  al. 2013), the 
EGF-receptor- and HER2-inhibitor Lapatinib (Huang and 
Rizzo 2012) and the PARP-inhibitor Veliparib (Glenden-
ning and Tutt 2011). Some of these drugs additionally 
correlated with each other. Although several of these 
compounds target DNA synthesis and/or repair, there is 
no real common denominator between them. While these 
drugs could be targeted by the same drug efflux pumps, 
we could not find any among the drug-associated genes 
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(pre-treatment gene expression) and suspect another, 
unknown mechanism. The same holds true for the asso-
ciations of Serdemetan with Veliparib and the farnesyl-
transferase inhibitor Tipifarnib (Armand et al. 2007).

Additionally, we also observed a rather surprising cor-
relation between Docetaxel, which disorganizes micro-
tubules (Hagiwara and Sunada 2004), and the c-met 
kinase inhibiting agent ARQ197 (Scagliotti et  al. 2013). 
However, supporting our findings, ARQ197 has also 
been linked to inhibition of microtubuli polymerization 
recently (Katayama et al. 2013).

Finally, sensitivity to Bortezomib, a proteasome inhibi-
tor (Teicher et al. 1999), was also predictive of sensitivity 
to the multi-kinase inhibitor Vandetanib (Sathornsume-
tee and Rich 2006)—the combination of these two drugs 
is currently in clinical trial testing (Gramza et al. 2013). 

Thus, a protein or complex whose stability is proteasome-
dependent, may affect sensitivity to this multi-kinase 
inhibitor. Furthermore, Cisplatin and JNJ-493 were 
somewhat correlated to Sunitinib sensitivity and JNJ-707 
weakly correlated with response to Mitoxantrone, find-
ings which remain to be understood.

The fourth finding was the absent or poor correlation 
of drugs acting on the same target, such as Serdemetan 
which was not correlated with the other two well-known 
and highly correlated MDM2-inhibitors Nutlin-3 and 
MI-219 (Shangary and Wang 2009). Furthermore, Serdem-
etan lacked a correlation with TP53 mutation status (data 
not shown) highlighting that this putative MDM2-inhibi-
tor acts differently from the other MDM2-inhibitors. This 
unexpected observation can be explained by the additional 
characteristics of Serdemetan, inhibition of the cholesterol 

Table 1  Correlated drugs

Correlation pairs were determined using IC50 values. Statistical thresholds for significance were defined as a p-value <0.01 and a Pearson correlation coefficient above 
0.45 or below −0.45

Drug 1 Drug 2 p-value Pearson correlation 
coefficient

MI-219 Nutlin-3 1.77E−28 0.98

Panobinostat (Faridak®) Vorinostat (Zolinza®) 2.14E−24 0.96

Panobinostat (Faridak®) Quisinostat 1.66E−19 0.93

Belinostat Vorinostat (Zolinza®) 2.05E−18 0.92

Belinostat Panobinostat (Faridak®) 1.70E−16 0.91

Erlotinib (Tarceva®) Gefitinib (Iressa®) 3.49E−14 0.88

Quisinostat Vorinostat (Zolinza®) 1.05E−13 0.87

Belinostat Quisinostat 8.08E−13 0.85

Paclitaxel (Taxol®, OnxalTM) Docetaxel (Taxotere®) 4.61E−08 0.73

Azacitidine (Vidaza®) Doxorubicin (Adriamycin®) 3.77E−07 0.7

JNJ-493 JNJ-707 1.39E−05 0.62

Decitabine (Dacogen®) 5-Fluorouracil 7.77E−05 0.58

Decitabine (Dacogen®) Serdemetan 1.17E−04 0.56

Vandetanib (Zactima®) Gefitinib (Iressa®) 1.52E−04 0.56

Serdemetan Tipifarnib (Zarnestra®) 5.15E−04 0.52

Decitabine (Dacogen®) Lapatinib 5.29E−04 0.52

Veliparib Serdemetan 5.47E−04 0.51

JNJ-493 Sunitinib (Sutent®) 1.37E−03 0.48

Veliparib Decitabine (Dacogen®) 1.63E−03 0.48

Vandetanib (Zactima®) Erlotinib (Tarceva®) 1.78E−03 0.47

Bortezomib (Velcade®) Vandetanib (Zactima®) 1.94E−03 0.47

ARQ197 Docetaxel (Taxotere®) 1.95E−03 0.47

Cisplatin Sunitinib (Sutent®) 2.00E−03 0.47

JNJ-707 Brivanib 2.16E−03 0.46

Mitoxantrone (Novantrone®) JNJ-707 2.98E−03 0.45

JNJ-707 Nutlin-3 2.87E−03 −0.45

Cisplatin Azacitidine (Vidaza®) 2.16E−04 −0.55

JNJ-208 Bortezomib (Velcade®) 1.96E−06 −0.66

Cisplatin Doxorubicin (Adriamycin®) 5.22E−08 −0.73
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transport and the increased degradation of ABCA1 (Jones 
et  al. 2013). Clearly these additional properties dominate 
over the MDM2-inhibiting role. Moreover, another study 
confirms that sensitivity to Serdemetan is independent of 
TP53-mutation status (Jones et al. 2013).

Furthermore, we noted that Lapatinib and Vandetanib, 
two EGFR-antagonists (Nelson and Dolder 2006; Sathorn-
sumetee and Rich 2006) neither clustered immediately 
next to Gefitinib or Erlotinib nor next to each other and 
the correlation coefficient was also lower than expected 
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for Vandetanib, while Lapatinib did not correlate with the 
other EGFR-antagonists at all. In both cases this is less 
surprising as both Vandetanib and Lapatinib act on addi-
tional targets, like HER2 for Lapatinib (Nelson and Dolder 
2006), and the two proteins VEGFR2 and RET Kinase for 
Vandetanib (Sathornsumetee and Rich 2006). We tried to 
support this hypothesis by correlating the drug response 
with mRNA expression data of EGFR, HER2, FGFR, 
VEGFR2, and RET Kinase for all those drugs. However, 
none of the correlations was significant, which might be 
different if pre-treatment protein expression data is used, 
as the proteins are the direct drug targets.

Similarly, Brivanib showed only a weak correlation with 
one of the FGFR-inhibitors, JNJ-707, in our panel, which 
might be due to its additional target VEGFR (Huynh et al. 
2008).

Drug response to one drug indicates resistance to another
The fifth interesting observation was that for some drugs 
sensitivity predicted insensitivity to another drug. For 
instance—and most prominent—Cisplatin resistance 
correlated with Doxorubicin sensitivity. Cisplatin’s mode 
of action involves DNA and RNA interstrand linkage 
(Stordal and Davey 2007), while Doxorubicin blocks DNA 
unwinding (Fornari et al. 1994), this difference does how-
ever not explain the clearly opposing character in drug 
response. The clinical implication might, nevertheless, 
be, that a patient showing insensitivity to Doxorubicin 
upon treatment start, might be more likely to respond 
to a course of Cisplatin therapy (Perilongo et  al. 2009). 
Another implication of this finding is that a mechanism 
responsible for resistance to Doxorubicin reveals a target 
that provides synthetic lethality to Cisplatin or vice versa.

Previously, Cisplatin resistance was found to correlate 
with Taxane sensitivity (Stordal et al. 2007), a finding, we 
could not confirm in the present study.

The FGFR inhibitor JNJ-707 had an inverse correla-
tion with Nutlin-3 response. Therefore, we also investi-
gated whether TP53 wild-type cell lines (Riaz et al. 2013), 
which are sensitive to Nutlin-3, have a different expres-
sion of FGFR genes in contrast to mutant cell lines, but 
found no significant difference (data not shown). While 
a true biological effect cannot be excluded, it has to be 
mentioned that only few cell lines were sensitive to Nut-
lin-3 and our observation might be due to the low num-
bers. Finally, the proteasome inhibitor Bortezomib is 
negatively correlated to JNJ-208. Thus, if this observation 
implies causality, a proteasome-dependent mechanism 
affects vulnerability to this drug.

Biology of correlated drugs
Next, we wanted to uncover shared biology of drug 
sensitivity in correlated drugs by performing a pathway 

analysis. The first thing we discovered was that there 
were hardly any shared pathways after excluding path-
ways with a strong subtype-association. This was 
rather surprising as we did not find many subtype-
associated drugs, but can be explained by the analysis 
type since for the pathway analysis we used only the 
cell lines around the minimum and maximum drug 
response, while for the subtype analysis all cell lines 
were included. Hence the smaller number of cell lines 
might have introduced a bias, but generally, it seems 
that the biology driving the subtypes in breast cancer 
largely obscures the possible drug-related pathways. 
The two correlated drugs which had the DNA replica-
tion pathway in common were Nutlin-3 and MI-219. 
Nutlin-3 has been previously shown to downregulate 
proteins involved in DNA replication (Kumamoto et al. 
2008), a process likely influenced by MI-219, as well. 
The cell lines which were sensitive to these drugs had 
intrinsically low expression of most pathway-associated 
genes pre-treatment and the drug-related shutdown 
of the remaining expression might be contributing to 
lethality.

From the results of the subtype-specific pathways it 
became obvious that normal-like cell lines are very dif-
ferent from luminal ones. However, when we did a global 
test to evaluate whether a certain breast cancer subtype 
showed an overall increased sensitivity to the tested com-
pounds we found no differences. Therefore, we could not 
confirm a general drug resistance of normal-like cells 
which would be expected due to their mesenchymal and 
stem cell like properties (Al-Hajj et al. 2003; Ponti et al. 
2006; Sieuwerts et al. 2009).

Subtype‑specific drugs
Of all tested drugs in this screening only one drug, Siroli-
mus, was more active in the luminal and ERBB2-high 
subtypes, as was noted previously in a comparable study 
(Heiser et  al. 2012). However, in contrast to this earlier 
study (Heiser et  al. 2012), who discovered 23 subtype-
related drugs, we did not find subtype-dependent sensi-
tivity for the other eight drugs screened in both studies. 
This discrepancy is likely due to several differences in 
study design, e.g. drug incubation times, type of read-
out assay, the use of collagen-coated plates in our study 
to mimic cellular context better and differences in the 
assayed cell lines to name a few.

Conclusion
Through our cell line screening with new and well-
known drugs, we found a number of interesting interac-
tions between drugs of which several were not noticed 
earlier. Those findings have great potential for an appli-
cation in the clinic as they might present opportunities 
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when tumors show already resistance upon start of the 
treatment.

Next to expected similar sensitivity profiles for related 
drugs such as Gefitinib and Erlotinib, we also found 
opposing sensitivity profiles such as Cisplatin with Doxo-
rubicin and confirmed one subtype-related drug, Siroli-
mus, which has been identified earlier. Further validation 
on the discovered positive and negative correlations and 
the subtype-specific drug are needed e.g. in the form of 
an animal study. In that aspect it would be very interest-
ing to investigate whether animals with e.g. a Cisplatin-
resistant tumor benefit from Doxorubicin treatment.

To conclude, our study provides new leads in the search 
for effective treatments especially in the context of inher-
ent drug resistance.

Methods
Cell lines and drug screening
Forty-five breast cancer cell lines with confirmed iden-
tity (Riaz et  al. 2013) and known origin (Hollestelle 
et  al. 2010a) were cultured and screened in RPMI 1640 
medium (Life Technologies, Paisley, UK) containing 10 % 
FBS (Lonza, Walkersville, USA). Ninety-six well col-
lagen I-coated plates (BD Biosciences, San Jose, USA) 
were used for drug screening. Each drug—cell line com-
bination was assayed in triplicate. Cells were seeded at 
the density required to reach the end of the exponential 
growth phase at 120  h of culture. Drug incubation was 
started 24 h post-seeding and lasted 96 h. For each drug 
12 different dilutions were tested starting from 1.00−5 to 
3.00−11 M (final concentration), except for Bortezomib 
(2.00−5 to 6.00−11 M), Sirolimus and 17-AAG (both: 
2.00−6 to 6.00−12 M). Drug diluent was used as negative 
control treatment. DMSO was used as drug solvent and 
diluent for all drugs except for Methotrexate (drug sol-
vent: 1 M NaOH, drug diluent: 0.9 % NaCl solution) and 
Cyclophosphamide (drug solvent: PCR-grade water, drug 
diluent: 0.9 % NaCl solution).

Three cell lines, SUM225CWN, MDA-MB-134VI, and 
SKBR5, failed in our drug screening due to slow growth 
or half-suspension growth, which is incompatible with 
the SRB assay, resulting in 42 cell lines for analysis.

Assessment of drug sensitivity and IC50 calculation
Cell line growth was determined by measuring the total 
protein amount per well using the Sulforhodamine B 
Assay (SRB) (Voigt 2005): After the medium was dis-
carded the cells were incubated with 10  % TCA for 
60 min at 4 °C for fixation. Then the cells were thoroughly 
washed 5× with distilled water, air-dried and incubated 
with 0.4  % SRB solution for 2  h for protein-staining. 
Additional washing steps followed using 1 % acetic acid 
(4×) and cells were again air-dried. TRIS (10  mM) was 

added to the cells to dissolve the SRB overnight. Absorb-
ances were measured at 570  nm in an Ascent MultiS-
kan (Thermo Electron Corporation, Waltham, USA). 
If required, samples were further diluted with TRIS to 
ensure optimal measurements. IC50 values were calcu-
lated using the respective absorbance values and are 
listed, besides all IC50 profiles, in the supplemental Excel 
file (Additional file 1).

Clustering of cell lines and drug–drug correlation analyses
Cell lines were clustered in a hierarchical fashion based 
on their IC50 values. For drug correlation analysis, IC50 
values per compound of each cell line were correlated 
with each other in Excel 2007 (Microsoft, Redmond, 
USA) using Pearson correlation. Cell lines with miss-
ing data for several drugs were discarded from corre-
lation and cluster analysis, as were drugs that did not 
show differential IC50 values. The programs Cluster 3.0 
(Eisen Lab, Stanford University, Stanford, USA) and Java 
Treeview version 1.1.6r2 (Saldanha 2004) were used to 
generate heatmaps of the correlation coefficients and 
the cluster analysis (Figs. 1, 2). Cluster 3.0 settings were 
as follows: normalize, median—center and average link-
age using uncentered correlation as similarity metric. 
Figure 3 was generated in Excel. To generate the figures 
Inkscape 0.91 (Free Software Foundation Inc., Boston, 
USA) was used, next to the aforementioned programs.

Association of signaling pathways with drug response
For pathway analysis we analyzed gene expression levels 
of cell lines with a high IC50- versus cell lines with a low 
IC50-value per drug. Cell lines were grouped in the high 
or low group by individual evaluation per drug instead of 
pre-selecting a fixed IC50 value for all drugs. This method 
was chosen to test the drug response extremes rather 
than testing values with little difference, which are pre-
sent in gradual IC50 distributions. For this distribution 
type we used the cell lines at the distribution extremes 
and removed the intermediate values to reduce noise. A 
few drugs showed an IC50 profile that precluded a sensi-
ble grouping; e.g. Paclitaxel had only two cell lines with 
a high IC50 value while the others had a very low IC50; 
too few cell lines in a group renders the pathway analysis 
useless. For this reason, we excluded JNJ-208, Sirolimus, 
Docetaxel and Paclitaxel from the pathway analysis. For 
all other drugs, we were able to use meaningful group 
sizes of at least five samples each (Additional file 1).

For all cell lines, previously published mRNA expres-
sion data of our laboratory (Riaz et  al. 2013) was used 
for pathway analysis (NCBI’s Gene Expression Omnibus 
database, entry GSE41313). Pathway analysis was per-
formed using the Global Test package (Goeman et  al. 
2004) in R (R_Core_Team 2013) with information of the 
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databases BioCarta LLC (San Diego, USA) and KEGG 
(Ogata et al. 1999). This R package was also used to gen-
erate Fig.  4, next to Excel 2007 and Inkscape 0.91. Fur-
thermore, we also tested the identified pathways for a 
stronger association with breast cancer subtypes and dis-
regarded those subtype-associated pathways (Additional 
file 2). The pathways significantly associated with a drug, 
including the subtype-associated ones, are listed in Addi-
tional file 2.

Association of drug response with breast cancer subtype 
and ER status
All drugs were tested for association with breast cancer 
cell line subtypes. First, cell lines were grouped into lumi-
nal, basal, ERBB2-overexpressing and normal-like on the 
basis of intrinsic subtypes as previously reported (Holles-
telle et al. 2010b). Statistical testing was performed either 
in BRB Array Tools version 4.2.1 Class Comparison using 
a T test or in Analyse-it version 2.26 (Leeds, UK) for Chi 
Square tests. To test whether ER protein expression was 
significantly associated with drug response, a Mann–
Whitney test was used for linear IC50 profiles and a Chi 
Square or Fisher’s Exact test for two-group IC50 profiles. 
Previously published ER protein expression data (Riaz 
et  al. 2013) was used as a categorical variable for ER 
status.
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