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Background

The Bernoulli polynomials of the second kind b, (x) are given by the generating function

o0
t” .
m(l +)* = nz_o bn(x)ﬁ, (see Kim et al. 2014, 2015; Roman 1984). (1.1)

When x = 0, b,, = b, (0) are called Bernoulli numbers of the second kind. The degener-
ate version of the Bernoulli polynomials of the second kind are called Korobov polyno-
mials of the first kind. We note here that the Carlitz degerate Bernoulli polynomials were
rediscovered by Ustinov under the name of Korobov polynomial of the second kind (see
Pylypiv and Maliarchuk 2014; Ustinov 2003).

The Daehee polynomials D, (x) are defined by the generating function

log (1+1¢ - t"
PBUYD (1 4y =3 Dy, (see Kim etal. 2014,2015). (1.2)
t = n!

For x = 0, D,, = D,,(0) are called Daehee numbers.
The Korobov polynomials K, (4, x) of the first kind are given by the generating function

ot > "
m(l +1)* = Z[(n(x | A)E, (see Korobov 1996; Korobov 2001). (1.3)
=0
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When x = 0, K,,(A) = K,,(0 | A) are called Korobov numbers of the first kind.

In the following, we will review very briefly some necessary things on umbral calculus.
Our basic reference is Roman (1984). Also, one is asked to look at more recent papers on
umbral calculus (Nisar et al. 2015; Srivastava et al. 2014).

Let C be the complex number field and let F be the set of all formal power series in the
variable ¢ over C with

Mg

={f(t)= kl akeC}. (1.4)
k=0

Let P = C[x] and let P* be the vector space of all linear functionals on IP. For L € P¥, the
action of the linear functional L on a polynomial p(x) is denoted by ( L|p(x)) with

(L+Mlpx) = (LIpx)) + (Mlp(x)), (cLlp(x)) = c(L|p(x)),

where ¢ is a complex constant (see Kim 2014; Roman 1984).
For f(£) = > peoak f{—k, € F, we define a linear functional on PP by setting

(f®)|x") = an, forallnm>0, (seeKim etal. 2014; Roman 1984). (1.5)

Thus, by (1.5), we easily get

(¢

where §,, s is the Kronecker’s symbol.
Let f1.(6) = Y rp <L|x >k' Then, by (1.6), we get <fL(t)‘x > (L|x™). Additionallly, the
mapping L — f1(¢) is a vector space isomorphism from P* onto F. Henceforth, F denotes

x"> = b (mk > 0), (1.6)

both the algebra of formal power series in ¢ and the vector space of all linear functionals on
P, and so an element f(¢) of F can be regarded as both a formal power series and a linear
functional. We refer to F as the umbral algebra. The umbral calculus is the study of umbral
algebra (see Kim 2014; Roman 1984). From (1.6), we can easily derive <eyt }x"> =y" So
< e | p(x)> =p (y) The order o (f (t)) of a power series f(£)(# 0) is the smallest nonnegative
integer k for which the coefficient at ¢k does not vanish. For f(t) € Fand p(x) € P, we have

=Y (rolt) Vo P =§j<tk\p(x>>’,‘<—k!. (1.7)
k=0 k=0

Thus, by (1.7), we get

d k
(k) N — [ +k — (k)
p®© = (dx) peo| = (tlpe) = (10 ). (1.8)
From (1.8), we note that
tkp(x) (k) %) = —p(x), &p(x) = p(x + y), (see Roman 1984). (1.9)

Let f(t),g(¢t) € F such that o(f(t)) =1 and o(g(t)) = 0. Then there exists a unique

sequence S;(x) (deg Sp(x) = n) of polynomials such that < gf Ok s,,(x)> = nld, i for
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n,k > 0. The sequence s,(x) is called the Sheffer sequence for the pair (g(t), f (t)), which
is denoted by s,,(x) ~ (g(t),f(t) ) For s, (x) ~ (g(t),f(t)) ,we have

S@®)sn(x) = nsp—1(x), (€ NU{0}), (1.10)
and
71 O = i Mtk, forallx € C.
o) TE .
Here f(t) is the compositional inverse of f(t) (see Kim and Mansour 2014; Roman
1984).

The conjugation representation for s,(x) ~ (g(2),f (¢)) is given by

S =3 %<g(f<t>)_lf<t>"

x">xk, (n>0), (see Carlitz 1979; Roman 1984).

k=0
(1.12)
Let us consider the following two Sheffer sequences:
su(@®) ~ (g, f @), rux) ~ (h(1),1(2)). (1.13)
Then, we have
n
0@ =Y Comrm(x), (1> 0), (1.14)
m=0

(1.15)

The first degenerate version of the Bernoulli polynomials of the second kind appeared
in the paper by Korobov (2001; 1996). In this paper, we study two degenerate versions of
the Bernoulli polynomials of the second kind which will be called Korobov polynomials
of the third kind and of the fourth kind. Some properties, identities and recurrence rela-
tions for them are investigated by using umbral calculus. In addition, some connections
with other polynomials are studied for which one refers to the related papers (Dattoli
et al. 2006, 2004).

Korobov polynomials of the third kind and of the fourth kind
Now, we introduce Korobov polynomials of the third kind K,,3(x | 1) and of the fourth
kind K, 4(x | Z), respectively, given by the generating functions

log (1 + At)

o tn
— (1 * = ] —,
Hog TP HZ_OK”’B(x 9% 2.1

and
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log (1 + A¢)

X _ > ﬁ
Q10T = > Knax | ) 2.2)

n=0

When x = 0, K;,3(1) = K;,;3(0, 2) and Kj4(4) = K;;4(0 | A) are called Korobov numbers
of the third kind and of the fourth kind, respectively.

, o 1 , . 1
As all ot _ t log (14+4t) _ log(14+42) % log (14+4t) _ log (1+(Lt) 7

_t
(404 —1 — a+pi-1’ 2log(A+t) — log(I+8) * (141 -1 ~  awxini-1 tend to log (1+t)
A ya

as A— 0, lim; ,oK,(x | 2) =lim; ,gK,3(x | 4) =lim;_,oKya(x | L) = by(x), (n>0).
We observe first that K, 3(x | 4) and K, 4(x | Z) are Sheffer sequences for the respective

. t ¢ M1 ¢ :
palrs(m,e — 1) and(m,e — 1) That 1S,

Kna(x | 1) ~ “ o1
e log (1+ A(ef — 1))’ ’

and

Kpa(x | 2) ~ -1 t_q
nALE |4 log(l—f—ﬂ(et—l))’e ' 2.3)

From (1.12) and (2.2), we have
" 1< log (1 + /t)

Kua@ | 4) =)
s k'\ Zlog (1+1¢)

(log (1 + 1))

2" >xk : 2.4)
We observe that

log (1 + A¢)
Alog (1+1¢)

_ < log (1 + At)
~ \ Alog (1 +1)

(log 1+ x))k

(log 1+ x))kx”>

log (14 48) |, ~— ¢
= = T NT S (k) — "
</110g(1+t) : Zk: 1R

=Ky (7)Sl(z,k)< e 420

t xnfl
log (1 +1¢)

I=k
" In log(1+28) | =, t" ,
= k! (l>Sl(l’k)</lt me%x
I=k m=0
n n—I ,
_ n n—1 log(14+8)| ,1om
3 ()i 5 (7 o B0 o
I=k m=0
n n—I i
= k! s> (" AT iu;ig x1l=m
=K. / 18, m m v ]'
I=k m=0 j=0
oS (Msian S (! et
= K: l 1, k) Z men—l—m)v
I=k m=0
n n—l I
= k! ( 7 ) ( n}’l_’l >Sl , k)men—l—minilim’ 2.5)
I=k m=0

Page 4 of 23
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where S; (1, m) is the Stirling number of the first kind defined by

xE—1...x—n+D)=@®,=> Simha', =0
=0

Therefore, by (2.4) and (2.5), we have
Theorem 1 Forn > 0, we have

n n—|
Kps(x | 4) = Z ( < ) <n,; Z)Sl (, k)bn—z—mDmim>xk-
k=0 \I=k m=0

m=!

From (1.12) and (2.3), we have

"1 /log(1+it
Kuax | 1) =" k,<0g(~)1(10g(1 +6)" x”>xke (2.6)
k=0 " o

1+t

We observe that

< log (1 —!—it) ( k x”>
aQ+n*-1

" log (1 + A¢) it _
— S (M) sik — " l>
Z(z 1( )< it A+or-1l
( )sl(z k)<log(1+/tt) S K (;L)’t:'xn_z>
m=0 )
n log (1 + At)
= k! S1d, k)z Ky (4) —
m=0
= k! ( )Sl(l k)Z( >I<m(/“)Dn - m)n b=m
k

n n—l
- ( ) ( l>51 (4 )K= (2) D ™. 2.7)
0

log (14 £))

xn—l—m>

Therefore, by (2.6) and (2.7), we obtain the following theorem.

Theorem 2 Forn > 0, we have

n n—I
Kpa(x | ) = Z (Z ( > (”; ! >51 a, k)](nlm(i)Dm/lm)xk
0

k=0 \l=k m=

By (1.6) and (2.1), we easily get

Page 5 of 23



Kim and Kim SpringerPlus (2015)4:608

log (1 + At)
Zlog (1 +1)

< log (1 + /¢)

I(n3y|i ————— 1+t

")

1+ t)x" >

()le”>
no ¢ )<y>l<%°g““"‘> >
(1) 5 (ot oo

n—I[
.y .
(7) (y)[ (nm )bnlml)m/L

m=0

= (i <7 ) (n”_f l)b”‘l—mDm”"> )

m=0

Alog (1 +1¢t)

log 1+ 1)
Jlog (1 + t)

l

[
M:

I

Il
- IM-
(]

Thus, by (2.8), we get

n n—I
1<n,3<x|z>=z<z(’})(”nj’>bn 1-mD >(x>1, (n=0).

=0 \m=0

From (1.6) and (2.2), we note that
log (1 + Af)

Kua(y14) =<(1+ v [+ >
< log (1 +At) ‘(1 R >
(1+0)"—
_ - n>( <log(1+At) >
= y) ————x
— (l (1+1)
n n—I
= ('Z)@)IZ (”;Z)KM(A)DH A
=0 m=0
n n—l
=S (D)X (" Koo

Thus, by (2.10), we get
n n—l
Kyatx| )=y ( (’Z ) (” ” l)Kn_z_mu)Dmﬂf") o
=0

From (2.2), we note that

Page 6 of 23
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it ,
Kna 1 D~ | o ey !

= “ Kz | ) = (%), ~ (Le —1)
log (14 A(et — 1)) 2 177 0 = A '

By (2.12), we get
log (1+4(e" — 1))
At

—251( k)log 1—1—;1)5(6 _1))xk

Ky3(x | 2) = X

—1llog (14 (et —1
=ZSI(”‘”‘)6 Og(i(etfel) =

= 251(1’1, ZD[/II e _ 1 k
t__ m
= ZSl(n, k)% ZDM’ Zsz(m, 1)%%
=l
_ZSl(n,k)ZDMlZ< )

m=I[

-1 k—m

We observe that
g1

e —1 k—m N k—m
R =l

Thus, by (2.13) and (2.14), we have

Kys(x|2)
n k k k—m
() (57)
- Z Z : S1 (1, k)So (m, 1) Dy 215/
/<:01:0m:1j=ok_m_1+1 m j
n k k=l m
1 .
=222 1 (;fq) T)Sl(n, k)Sy (k — m, Dyl od/
=0 1= m=0j=0 " T/t

Page 7 of 23
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(2.14)

(m]* 1 )sl (1, k) Sy (k — m, zw,ﬂ) o, 215
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where S»(n, k) is the Stirling number of the second kind given by

2= S h@)y, (1= 0).

=0

Therefore, by (2.15), we obtain the following theorem expressing K, 3(x | A) in terms of
the Stirling numbers of the first kind and of the second and Daehee numbers.

Theorem 3 Forn > 0, we have

Ky3(x | 2)
n n k—j k—I

S (EE Y () (7 )simbosatk—mnpit ).
j=0 '

k=j =0 m=j

From (2.3), we have

e),t -1
log (14 A(et — 1))

Kpax | 1) = (), ~ (Le —=1), (n=0). (2.16)

Thus, by (2.16), we get

log (14 A(ef — 1))
et —1

1<n,4-(x | )”) = (x)n

" log (1+ (et — 1
:Z&mm%(ﬂﬁ )

k=0 e -

1 (et — 1) log (1 t_1
=> Si(mk) (jt 1) og(}—i—t/l(e ))xk
o et — v(e —1)

- K&k et—1 It
_ y - —m
_kZ_OS1(n,k)§DM ;<m>sz(m,l) TS LA 2.17)

Now, we observe that

e—1 I 4., -1 v
-m __ Y k—m
£ et—1 T ¢ 2 B "
j=0
k—m
4 J Tt
j=0
k—m i 'k—m—j 1 p . o
- (“.’”)B,ﬂ 3 ,(‘_’71_/>xk—m—/—l, (2.18)
=0 ] Py i+1 l

where B,, is the n-th Bernoulli number given by the generating function

o n
= Z Bu—, (see Bayad and kim 2010; Kim et al. 2012, 2015).
n!
n=0

el —1

Page 8 of 23
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Thus, by (2.17) and (2.18), we get

1<n4(x | /1)
k—1

_§ sl(nk)}jD,ﬂE ( >Sz(k m, )
=0
j

k—i k=l m

i
:Z( ZZkL(Z:ll)(TLl)(jtlwm_j

i =i [=0 m=i j=i
x S1(1,k)Sa(k — m,1)DB—;j)x'. (2.19)

Therefore, by (2.19), we obtain the following theorem expressing Kj,4(x | A) in terms of

the Stirling numbers of the first kind and of the second kind, Daehee numbers and Ber-
noulli numbers.

Theorem 4 Forn > 0, we have

Kya(x | A)

_z”: 2":%:’“2”’: 1 (k+1\(m+1\[j+1
- m+1 j+1 i
i=0 \ k=i =0 m=i j=i

x M8 (1, k) Sy (k — m, l)D,Bm_,-)xi.

From (2.8), we have

Kua(y]2) = Z (7) (y)l< log (1 + 1) xnl>
Xn: <7> (J’)1<§;Kn3(?~),

ti
’ xn—l>
12

=0

) () Ku-1,3(2). (2.20)

x |l

n

[
/
Thus, by (2.20), we get

0

K | 2) = ( " )Kn_z, () @),
,z:g ! S 221)

From (2.10), we have

Page 9 of 23
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log (1 + At)

K1) =Y () 00 2
—\ ! At+oi—1]

(7) (y),<21<i,4u)i,

i=0 '

< 7 ) (y> 11<n71,4 D).

)
)

[
NE

1=0

x|l

(2.22)

~
Il
=)

By (2.22), we get

Kpa(x | A) = <n>Kn—l, D@, (m=0).
; ! ' (2.23)

)

1+ t)yx”>

)

From (2.19), we have

log (1 + 4¢)
Kn,S(}’ | /1) = <(1+t)

log (1 + A¢)
At

1+

t
log (1+1¢)

) 2L

_ <7 by () Dyt (2.24)
Thus, by (2.24), we get

Kysx | A) = Z (7>Dn_1/1”_lbl(x), (n>0). (2.25)
=0

From (2.10), we can also derive the following equation:
log (1 + At)

Kpa(x | ) =
s <<1+ )* >
<1+t)

l
<1og(1+/1t) Sk ylﬂ) >

=0

ARG Ly
(e Sl

< )K, (y | A)Dy_yi" . (2.26)

(1 + ) |x"

I

0

I
M=

I
x
o

~ X

~
Il
o

Page 10 of 23
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Thus, by (2.26), we get

n
Kpa(x | 4) = < " )Dn_,)ﬁ—’K, (x| A).
Z(:) ! (2.27)

Therefore, by (2.21), (2.23), (2.25) and (2.27), we obtain the following theorem expressing
Ky 3(x | A)and Ky 4(x | 4) both in terms of falling factorial polynomials. Also, we express
Ky3(x | A) and Ky 4(x | 4) respectively by Bernoulli polynomials of the second kind and
Korobov polynomials of the first kind.

Theorem 5 Forn > 0, we have
" /n " /n
K| )= ( f )1@1,3(1)(@1 =y ( f )Dn;ﬂf“—lb;(x),
1=0 =0

and
Kpa(x | )= <7)Kn—1,4(7»)(x)1 =y (7)Dn—1/1”11(1(x | 4).
1=0 1=0

It is easy to see that

t
T~ (1,1), K N~ (1e —1).
VOO g s — ) e 1A (e ) (2.28)
For n > 1, we have
& K (x | /L) =X t nx_lx”
T e B R
Zngi)l(x)
n—1
:Z<HZI>B;{”)xn—k
k=0
n
= <Z:1)B‘”>kxk. (2.29)
k=1
Thus, by (2.29), we get
Ky3(x | 2)
_ n—1 B”, log 1+/1(e—1)) ‘
_Z k—1 x
y N k+1 m4+1
S (TS () (7 s mopis
k=1 1=0 m=0 j=0

m 1 n—1 k+1 m+1 , o
Zm(k—1><m+1>< j >Sz(k m,)'D;B"

k+1 1
(mi;l)(”’;’ )Sz(k ml)AlDlB(”)>

(2.30)

Page 11 of 23
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From (2.3), we note that

et —1

log (14 A(ef — 1))

For n > 1, by (2.31), we get

2"~ (1,t), Kua(x | 2) ~ (1€ —1). (2.31)

et —1 Kpa(x | ) =« t nx_lx" = xB"™_ (x)
log (1+ A(ef — 1)) ™17 7 et -1 B
n
_ (Z B })ij‘) . (2.32)
k=1

Thus, by (2.32), we have

Kpa(x | A)

log (14 A(ef — 1))
Bitn)k et —1 xk

lOmO;OtO

1)
S ﬁ%iiii H4>
)

(k,l;i,_m<n-l><z><7>c>

i j=i

Ay (k — m, 1Dy B,y _,B(”_)k)x"

”k’klzm: n—l k+1\/m+1
k+1 m+1)\ j+1
k=i I=

1

0 m=i j=i
x >ﬂ+’”—1’52(k — m,1)DyB,,_B" k) . (2.33)
Therefore, by (2.30) and (2.33), we obtain the following theorem.

Theorem 6 Forn > 0, we have

Kyz(x | A)

n n k—j k—I
. 1 n—1 k+1 m+1 I (Vl) j
(55 (1) () (7 s, )

and
Kyalx | A)

S EESE A (A ()

i=0 \ k=i [=0 m=i j=i

1\, » .
x (/J: >//+’" /Sg(k—m,l)Dle_jB;n_)k)x’
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For s, (x) ~ (g(t), f (t)), we note that Sheffer identity is given by

Sn (x + y) = Z (7 )Sj(x)[)nj (y), where p;, (x) = g(£)s,(x). (2.34)

j=0

By (2.2) and (2.34), we get
K3 (x +y| )L) = Z (7)1{13(96 | A) (y)n_j, (2.35)
j=0

where py(¥) = (G Kns( | D) = @), (12 0)
From (2.3) and (2.34), we have

Kpa(x+yl 1) = Z < ;q >1<,-,4(x [ 4) (y)n_j, (2.36)
j=0
where p,(x) = 6;17_11(;1,4(96 | 2) = ®),

log (1+4(ef—1))
By (1.10), we see that

(e —=1)Kyz(x | ) = nKy_13(x | A), (2.37)

and

(¢ = 1)Kz | ) = e'Ky3(x | ) — Kua(x | 2)
=Ky3(x+11]7) —Ky3x | 2). (2.38)

From (2.37) and (2.38), we have

nKy—13x | 4) = Kyz(x + 1| 4) — Ky3(x | 4). (2.39)
By (1.10) and (2.3), we get

(e =1)Kya(x | 1) = nKy_14(x | A). (2.40)
Thus, by (2.40), we have

Kpa(x+114) — Kpalx | 4) = nKy—14(x | 4). (241)

Therefore, by (2.35), (2.36), (2.39) and (2.41), we obtain the following theorem.

Theorem 7 Forn > 0, we have

Kus(x+y12) =) ( ;’ )1(,,3(x 1 D),
j=0

Kna(x+y12) =3 ( ’]" )1<,-,4(x 1 D),
j=0

nKy—13(x | ) = Kyz(x+ 1| A) — Kyz(x | 4),

and
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nKy—14(x | ) = Kpa(x + 1| 7) — Kyalx | 7).

For s, (x) ~ (g(t),f(t)), we note that

d n—1 " B
s =" ( l ><f<t)

x”*l>sl (x).

For Ky 3(x | 2) ~ ( 1), by (2.42), we get

xn—l>

it ot _
log (1+/(et-1))’

<f (®)

x”_l> = <Iog 1+ t)|x”_l>

= < > =D m - 1)!%

m=1

=)l m—1-1
Thus, by (2.42) and (2.43), we have

n—1

2 Kyst | 1) = > (’;)(—1)”“(;4 — 1= 1)K 30 | 2)

dx
1=0
n

-1 (_1)}’1—[—1

N(n—1)

=n! Kis(x | 2).
=0

By the same method as (2.44), we get

n—1 (_1)}47171

d
LK |y =m S 2
dx a1 A =m ) e

Kjax | 2).
=0

Therefore, by (2.44) and (2.45), we obtain the following theorem.

Theorem 8 Forn > 1, we have

n—1 n—Il-1
d (-1
—K A) =n! ——K A),
K3 (x| ) "; o=y K@ 1

and

d n—1 (_l)n—l—l
- =n! - K A).
—Kna(x | 1) =n ; o= a1 D

Letn > 1. Then, by (1.6), (2.1) and (2.3), we get
Kus(y | 2)
< log (1 + /t)

n
Jlog (1 +0) * >

log (1 + Af) y
<at(ﬂ»log(1+t)(1+t) )

log (1 + Af)
Jlog (1+ 1)

1+t

xn1>

(1 +1¢)

n—1 w) y
¥ >+<<8t og+p )4 TY

x”l>.
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(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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We observe that
log (1 + /t) _1 log (1 + At) Y
P T A4t ) =y 2 (L4 e
<).log(1+t) AR Nogarpt T ¥
=yKnp_13(y —114), (2.47)
and

<1og(1+zt)> B ﬁ -Alog(1+1¢) —log(1 +/1t)li;rt
\llog (1+1) (Alog (1+ 1))
B £ 1f 1 log (1 + /t)
T log( 4ot 14+t Alog(1+¢)
By (2.48), we get

log (1 + A¢) 5| -1

((ss ) Jaro)
_< t 1{ 1 _log(1+it)
T \log(Q+6)t 1+ Alog(1+1¢)

1 1 _log(1+/lt)
Con\ 14+t  Zlog(1+1)

1 1 _log(1+2t) 1 y
_n<{1+zt uog(1+t)(1+t) }(IH)

1N/ n 1
an(z>bl <1+m(1+”y
E (—it)mx”_l> —Ky13(y— 1] ,1)}

m=0

{
(7]

_ % zn: (’;);;1{ nz_f (=201 = Dy 4 )~ Ky =1 A)}
()]

1+ t)_l}, (2.48)

xn1>
b
log (1+¢)
0 tl
E l’)[fxn
1
1=0

w1\ _ [ log +i6) y—1
x > <Mog(1+t)(1+t)

1+ t)l}(l +ty

1+ t)l}(l + 1)

)

m=0

n—I
f )bz S 0= D (3), o~ Ktz =11 2) } (2.49)

m=0

For n > 1, from (2.46), (2.47) and (2.49), we have

Kp3x | A) —xKy—13(x— 1 A)

n n—l
1
=-> ( 'Z>bz{ > D0 Dy Wt — Knga e — 1| z)}. (2.50)
=0 m=0

Therefore, by (2.50), we obtain the following theorem.
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Theorem 9 Forn > 1, we have

Kya(x | ) = xKy 136 — 1] )
n n—l
1
=n;:(7)@{E%ewwm—wmmn4ﬂn—ﬁhmm—l|m}
=0 m=!

Remark We note that

by(x) —xb,_1(x — 1) = hm (Kn,g(x | A) —xKy—13(x—1| ),))
*Z ( )bz (i = bpa(x = 1)).

From (1.6) and (2.2), we have

og (1 + At)

< + )% — ¢ >

log (1 + /¢) y)
< (a+w—1(+”
_l’_

Kua(y|2) A+t |x

")

x”1>, (2.51)

3:(1+ 1) |x

log (1 + Z¢) " 1>
aA+0—1

log (1 + At)
0t 1 Y
< <u+tﬂ—1>)(+¢)

wheren > 1.
We note that

< log (1 + At) (8,:(1 4 t)y) =

1+0" -1
_ log (1 + At)
B <(1+t)’1—1
= yKn1a(y— 11 4). (2.52)

)

(1 +t)j/—1 xn—l

Now, we observe that

(log (1+28) )
8[ Y .7 .
aA+p*—1
T ((1 +o)' - 1) —log (14 26)2(1 + )"~
2
(a+er- 1)

it 1{ 1 log(l+2t
_ M { _ log @14 )(Ht)z_l} (2.53)
A+ -1t 1+ 1+’ -1

Thus, by (2.53), we get
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log (1 + Af) n1>
9 —2 = T N1 4y
<(t<1+t)’~—1>( O

~ i 1( 1 log(l+ i)
_<(1+t)i—1t{1+it_ A+t —-1
1 it 1 log(1+40)
<(1+t)i—1{1+ﬂ~t_ A+t —1

1 1 log (1 + /t) M}
= - 1 141ty
<{1Ht (1+t>’-—1( +t) 1+1)

1 1 log (1 + At) 1}
== = 1 v
n<{1+m R i (U
xnl>

=1zn:(’l’>1<,(z)< 11
" 1+ 4t
Ixn—l>

_<10g(1+/1t)
fz Km) <(1+t>y}2< )"« ’>—Kn 14(y+x—1|ﬂ)}

(1+t)i—1
fZ Kzu {Z( M (n—l)m<(1+t)y|x” - M>

a1+ t)i—l}(l +tyY

xn—l>
x”>

A n>
—_—x
(1 +H4 -1

ZK;(A) >

a+ t)*—l}(l + 1)

1+t

(1+ )P

—Kn 14(J/+)

fZ Km) Z( "0 =D (9) iy = Knray + 42— 11 A)}
= Z ( )K;(@{Z =" =D (9) sy — Kncta(y+4—117) } (2.54)
m=0

From (2.51), (2.52) and (2.54), we have

Kya(x | 4) —xKyp—14(x — 1] 4)

n n—I
1 n m ,
=- ; ( / )K;w{%(—z) (1= Dy @)t = Knpale+ 4= 1] w}‘ 255

Therefore, by (2.55), we obtain the following theorem.
Theorem 10 Forn > 1, we have
Kya(x | 2) —xKp—1,4(x — 1 2)

n n—I
1 ,
== 1220: ( f >1<,(,1) {m§zo (=" = D))ty — Kra+ A — 1] 2) }

Let us consider the following two Sheffer sequences:

N it .
Kna@ 1 2) (log (1+2(et = 1)) ¢ 1>’
@™ =x@+ D @+ n-D)~ (L1-e).

(2.56)
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From (1.14) and (1.15), we have

n
Kusx | )= Cum(x)™,
ngo (2.57)

where

Cum
_ 1

log (1 4 A¢) 1 1 \"
'\ Alog (1 +1¢) 14+¢

< log (1 + At)

Jlog (1+¢)

)

o gl
‘ > (Dim+1- 1)1Tx”
=0 ’

m
1
m!

(—Dlm+1-1),

(1) g1 log (1 + At)
I At

¢ xnfmfl
log (1+£)

n—m—
> bk a*
k=0

l
o (—D)'(m+1-1), 0

At
— -1 n m+1
prs ’ m+1 m
n—m—I \

n—m—1 log(1+A)| ,_ i
> ("R )m (B )
n—mn—m—I
_ infm+Ii-1 n m+1
-3 (")) ()

X <n B Zq Bl l>kanmzk/1"_m_l_k

S () ) ()

0
. <n - f — l>bn_m_1_k DIk (2.58)

() s < log (1 + 2t)

I
N
T
Ao
=

3
_*

Therefore, by (2.57) and (2.58), we obtain the following theorem.

Theorem 11 Forn > 0, we have

Kuz(x | 2)

En: {%n_ffl(—l)l“(m . 1) (mil)

m=0 \ [=0 k=0

l —m—1 -
X (m;:l_ )(n Zl >hn_m_l_ka)»k}(x)( ).

For Ky 4(x | ) ~ (bg(le_&%,et — 1), (%)™ ~ (1,1 —e™*), we have

n
Kua@® | 2) = Com@®™, (2.59)
m=0
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where

Cum

1 <log(1+)~t) (1 1 >m
Coml\ A+t -1 1+¢

1 log (1 + At)
m! (1+t)‘—1

x">
m+l
Z( 1)<m+l—1>; >
1 Z ( 1) (ml— (n)m+1 log (1 + At)‘ xn—m—l>
a+ t)ﬂ

> i
= (n)mH < 1 ( )) 1>

(= 1) (m+1—-1),

S\H

=0

n—

—m—1
1
= Z( Dim+1-1), (”)m+1 Z ( )Kk(/D
1=0 k=0
> <10g (1ﬂ+/“t) xnmlk>
AL
_ L Z( W om 41— 1), ot
m! I
=0
n—m—I
x> < ! >1<k<z>Dn_m_l_kA"—’"—’—k
k=0
n—mn—m—I|
m+ 11— n m+ 1
EE ()
X < B > n—m—I— k(’l)Dk/1 (2.60)

Therefore, by (2.59) and (2.60), we obtain the following theorem.

Theorem 12 Forn > 0, we have

Kya(x | 4)
n n—mn—m—I
S SS ()

(") (" koD

Let us consider the following two Sheffer sequences:

~ At - ) (o <et—1)s
Kys3(x | ) (log(1+/l(e‘—1))’e 1>, B, (x) ( . .

Note that

ad t
(s) _
L e
n=0

S
> e, (see Kim et al. 2015; Sen et al. 2013; Ustinov et al. 2002 ),
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where B () are called the higher-order Bernoulli polynomials.
From (1.14) and (1.15), we have

n
Ku3@ | 4) = CumBS) (%), (2.61)
m=0
where
Cn,m

1 t *log (1 + 4¢) "
m< < > (log 1 +1))

x}‘l
log(1+1¢t)) Alog(1+¢)

t flog(1+ 0| 1 -
log(1+t)> Mlog (1+ 1) —(log (1 +1)"x >

¢ Slog (14 At) | o ¢
Syl m) "
log(l—}—t)) Jlog (1+ 1) Zy:n T

n t s
R m)< (1 g<1+t>>

I/~ N T

lOg (1 + /lt) xn_l
Alog(1+1¢)

)
Js )
>z<><<>
)
(

=m
S
:Z ’17 xn—l—k>
I=m
n n—lI I
= 'l’ Sl(l,m)z<nk )I(k,g(ﬂ)b;)l .

k=0

— 1 s
’;) <” P )sl (4, mKiz(DbS .. (2.62)

Here, the Bernoulli numbers of the second kind of order s are defined by the generating

function

t ey
<> = bj —, (see Kim et al. 2015; Roman 1984).
log (1 +¢) 5 j!

Therefore, by (2.61) and (2.62), we obtain the following theorem.

Theorem 13 Forn > 0, we have

n n—I
Kus(x | 7) = Z (Z > < ) < >51 (L, m) K3 ()b lk) BY) (x).
I=m k=0

Remark In a similar manner, one shows that, for n > 0,

n n—lI

Kya(x | 7) = Z <Z > ( ) (” % ! >51<l, m)1<k,4(z)b$1,_k>B£Z’ @),

I=m k=0
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For u € Cwith u # 1, s € N, the Frobenius-Euler polynomials of order s are defined by
the generating function

I—n * Xt - (s) t"
. &t — ZH,, (x| ”)E’ (see [1,16]).

—H n=0

, t\S
For Ky 3(x | ) ~ (m,et _ 1), H,ES)(x | ) ~ ((el—llf) ,t), we have

n
K3 | 2) =Y ComH x| 1), (2.63)

m=0

1 <1—u+t>slog(1+/lt) (log(1+t))m

1—pn Jlog (1 +¢)

x">

1—p+t\log(1+26)| 1 m
—(log (1 +¢ "
1—pn ) Alog(1+1t)|m '(og( + )) x>

<<1—i¢+t> log (1 + 4t) ZSl(l - x>

1—pu Alog(1+1¢)

(oumd (5525
I=m I_M
({522 ot
( )Sl(l m)Z( >1<k3(,b)< <I_M+t>
I= 1—pun
:(_M)SZ( >Sl(l M)Z< )I<k3())
I=m
~ (s s—j /[ | a—I—k
S (F)amtde )
j=0
1 n
=(1_M)s2( )51(1 M)Z< >1<n 1~k3(4)
I=m
s s )l
<32 ()i {e])
j=0
- (1—1 Z( )Sl(l WOZ( )I(n I— kg(i)k‘( >(1—M)S k
I=m

log (14 2t) ,
x
Alog (1 +¢)

[
M:

T
3

xn—l—k>

w)?

n n—I
1 k!
SO o

I=m k=0

Therefore, by (2.63) and (2.64), we obtain the following theorem.
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Theorem 14 Forn > 0, we have

Ku3(x | 4)

n n n—I
— k!
AP ('Z) (”k l) (,i)ksla, MK, 1-3() |HE (x| w).

m=0 \l=m k=0 1=
Remark Proceeding similarly to the above, one can show that, for n > 0,

Kia(x | 4)

n n n—I
- k!
=> (XX (’Z)(”k l)(;)Wsl(l,m)Kn_z_M(z) HY (x| ).

m=0 \l=m k=0

Conclusion

The first degenerate version of the Bernoulli polynomials of the second kind appeared in
the paper by Korobov (1996, 2001). Here, we study two degenerate versions of the Ber-
noulli polynomials of the second kind which will be called Korobov polynomials of third
kind and of the fourth kind. Some properties, identities, recurrence relations and con-
nections with other polynomials are investigated by using umbral calculus.
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