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Background
This paper is devoted to the numerical computation of the three dimensional elliptic and 
hyperbolic PDEs. The general three dimensional problem (without cross derivatives) is 
given as

defined in the domian � = {(x, y, z)/(x, y, z) ∈ (L1, L2, L3)× (L4, L5, L6)} with boundary 
∂�. Associated with (1) are the initial conditions

or the boundary conditions

and the Dirichlet boundary conditions

(1)

a
∂2u

∂x2
+ b

∂2u

∂y2
+ c

∂2u

∂z2
+ d

∂u

∂x
+ e

∂u

∂y
+ f

∂u

∂z
= G(x, y, z,u), (x, y, z) ∈ � ⊂ R

3

u(L1, y, z) = g1(y, z), ux(L1, y, z) = g2(y, z) (y, z) ∈ (L2, L3)× (L5, L6)

u(L1, y, z) = g1(y, z), u(L4, y, z) = g3(y, z) (y, z) ∈ (L2, L3)× (L5, L6)

u(x, L2, z) = h1(x, z), u(x, L5, z) = h2(x, z)

u(x, y, L3) = h3(x, y), u(x, y, L6) = h4(x, y)

Abstract 

In this article, the boundary value method is applied to solve three dimensional elliptic 
and hyperbolic partial differential equations. The partial derivatives with respect to two 
of the spatial variables (y, z) are discretized using finite difference approximations to 
obtain a large system of ordinary differential equations (ODEs) in the third spatial vari-
able (x). Using interpolation and collocation techniques, a continuous scheme is devel-
oped and used to obtain discrete methods which are applied via the Block unification 
approach to obtain approximations to the resulting large system of ODEs. Several test 
problems are investigated to elucidate the solution process.
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The unknown function u, the variable coefficients a, b, c, d, e, f and the forcing term G are 
assumed to be continuously differentiable and have the required partial derivatives on �.

The numerical approximation of (1) has received great attention from researchers in the past 
few decades. This is because most modeled physical and engineering processes results in PDEs 
of the form (1). The standard convection diffusion equation is obtained if a = b = c �= 0 and 
G ≡ G(x, y, z) for all x, y, z ∈ � (see Ge and Zhang 2002). Many transport processes including 
fluid flows and heat transfer can be modeled by a convective diffusive equation which describes 
the convection and diffusion of various physical quantities such as heat and momentum (see 
Roache 1976). Several numerical schemes have been developed for (1) which include the 
compact difference scheme (Ge and Zhang 2002; Spotz 1995; Spotz and Carey 1996; Zhang 
1998a, b, c, d; Zhang et al. 2000), compact alternating direct implicit scheme (Cui 2010; Liao 
and Sun 2010), finite difference methods (Jain et al. 1992; Mohanty and Singh 2006), method 
of lines (Brastos 2007; Dehghan and Shokri 2008) , Jacobi elliptic function method (Bhrawy and 
Abdelkawy 2013), the use of collocation and radial basis functions (Shakeri and Dehghan 2008), 
Riccati–Bernoulli sub ODE method (Yang et al. 2015), the use of the expansion methods (He 
1998; Roshid and Rahman 2014; Alam et al. 2014; Roshid et al. 2013, 2014a, b, c) among others.

 The method of lines approach is commonly used for solving PDEs whereby the PDEs is 
converted into a system of ODEs by replacing the appropriate derivatives by finite difference 
approximations. Our objective is to convert the 3D PDEs into a system of ODEs by replacing 
two of the spatial derivatives by central difference approximations. The resulting system is 
then solved using the BVM. Specifically, we discretize the y and z variable with mesh spacings

We then define the vectors

and

where um,n(x) ≈ u(x, ym, zn) and Gm,n(x) =≈ G(x, ym, zn,um,n).

Also, we replace the partial derivatives 
∂2u(x, y, z)

∂y2
, 
∂2u(x, y, z)

∂z2
, 
∂u(x, y, z)

∂y
 and 

∂u(x, y, z)

∂z
 occuring in (1) by central difference approximations

�y =
L5 − L2

M
ym = L2 +m�y, m = 0(1)M

�z =
L6 − L3

N
zn = L3 + n�z, n = 0(1)N

u = [u1,1(x),u1,2(x),u2,1(x), . . . ,um−1,n−1(x)]
T

G = [G1,1(x),G1,2(x),G2,1(x), . . . ,Gm−1,n−1(x)]
T

∂2u(x, y, z)

∂y2
=

u(x, ym+1, zn)− 2u(x, ym, zn)+ u(x, ym−1, zn)

(�y)2

∂2u(x, y, z)

∂z2
=

u(x, ym, zn+1)− 2u(x, ym, zn)+ u(x, ym, zn−1)

(�z)2

∂u(x, y, z)

∂y
=

u(x, ym+1, zn)− u(x, ym−1, zn)

2(�y)

∂u(x, y, z)

∂z
=

u(x, ym, zn+1)− u(x, ym, zn−1)

2(�z)
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Problem (1) leads to the semidiscretized system

which can be written in the form

subject to the initial conditions

or the boundary conditions

where f(x,u,u′) = Au +G and A is a k × k matrix (k = (M − 1)(N − 1)) arising from 
the semidiscretized system (2) which is expressed in the form (3) and whose solution is 
sought using the BVMs. We note that G is a vector of constants. The BVMs are a class of 
linear multistep methods (LMM) with step number k and whose k additional conditions 
are not only imposed at the beginning of the integration process but also at the end so 
that they form a discrete analog of the continuous boundary value problems. Thus, they 
are used for the numerical approximation of both initial and boundary value problems. 
They have been used for the solution of first order 1D initial and boundary value prob-
lems and their convergence and linear stability properties have been fully discussed in 
Brugnano and Trigiante (1998). Recently, Biala and Jator (2015) developed BVMs for the 
direct solution of systems of the general second order ODEs. One main feature of the 
BVMs is that they can be used in the same way for solving both initial and boundary 
value problems. Therefore, such methods are the best candidate for solving the semi-
didscretized PDEs in (3). The BVMs simultaneously generates approximate solutions 
(u1,m,n,u2,m,n, . . . ,ul,m,n)

T to the exact solution (um,n(x1),um,n(x2), . . . ,um,n(xl))
T on 

the entire interval of integration. This approach has the advantage of producing smaller 
global errors than those produced by the step-by-step methods due to the presence of 
accumulated errors at each step in the step-by-step method.

The paper is organized as follows: in "Description of the BVM", we derive a continu-
ous scheme which is used to formulate the BVM as well as investigate the properties of 
the BVM. The computational complexities associated with the method is addressed in 
"Computational procedures". Several numerical test examples are given in "Numerical 
examples" to show the accuracy of the method. We give some concluding remarks in 
"Conclusion".

Description of the BVM
We propose a BVM for (1) in which on the partition πL, h > 0, xl = x0 + lh, l = 0, 1, . . . , L, 
the four step [xl ,ul,m,n,u

′
l,m,n] �→ [xl+4,ul+4,m,n,u

′
l+4,m,n] is given by the equations

(2)

d2um,n

dx2
=

1

am,n

{

−bm,n

[

um+1,n − 2um,n + um−1,n

(�y)2

]

− cm,n

[

um,n+1 − 2um,n + um,n−1

(�z)2

]

+ dm,n
dum,n

dx
+ em,n

um+1,n − um−1,n

(2�y)
+ fm,n

um,n+1 − um,n−1

(2�z)
+ Gm,n

}

(3)u
′′ = f(x,u,u′)

(4)u(L1) = u0 and u
′(L1) = u

′
0

(5)u(L1) = u0 and u(L4) = um,n
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where πL : L1 = x0 < x1 < x2 < · · · < xL = L4 and αi,j ,α′
i,j, βi,j, i = 1(1)8 and j = 0(1)4 

are coefficients to be uniquely determined. We note that ul+i,m,n denote the numerical 
approximation to the analytical solution u(xl+i, ym, zn) and fl+i,m,n ≡ f (xl+i, ym, zn).

Development of the continuous BVM

In this section, we discuss the construction of the continuous scheme, via the interpola-
tion and collocation approach (Jator and Li 2012), from which (6) is derived.

Theorem 1 Let the continuous representation

satisfy the following conditions

then the continuous representation (7) is equivalent to

where we define the matrix V as

(6)

α1,0ul,m,n + α1,1ul+1,m,n + α1,2ul+2,m,n = h2(β1,0fl,m,n + β1,1fl+1,m,n

+ β1,2fl+2,m,n + β1,3fl+3,m,n + β1,4fl+4,m,n),

α2,0ul,m,n + α2,2ul+2,m,n + α2,3ul+3,m,n = h2(β2,0fl,m,n + β2,1fl+1,m,n + β2,2fl+2,m,n

+ β2,3fl+3,m,n + β2,4fl+4,m,n),

α3,0ul,m,n + α3,2ul+2,m,n + α3,3ul+4,m,n = h2(β3,0fl,m,n + β3,1fl+1,m,n + β3,2fl+2,m,n

+ β3,3fl+3,m,n + β3,4fl+4,m,n),

α4,0ul,m,n + α4,2ul+2,m,n + hα′
4,0u

′
l,m,n = h2(β4,0fl,m,n + β4,1fl+1,m,n + β4,2fl+2,m,n

+ β4,3fl+3,m,n + β4,4fl+4,m,n),

α5,0ul,m,n + α5,2ul+2,m,n + hα′
5,1u

′
l+1,m,n = h2(β5,0fl,m,n + β5,1fl+1,m,n + β5,2fl+2,m,n

+ β5,3fl+3,m,n + β5,4fl+4,m,n),

α6,0ul,m,n + α6,2ul+2,m,n + hα′
6,2u

′
l+2,m,n = h2(β6,0fl,m,n + β6,1fl+1,m,n + β6,2fl+2,m,n

+ β6,3fl+3,m,n + β6,4fl+4,m,n),

α7,0ul,m,n + α7,2ul+2,m,n + hα′
7,3u

′
l+3,m,n = h2(β7,0fl,m,n + β7,1fl+1,m,n + β7,2fl+2,m,n

+ β7,3fl+3,m,n + β7,4fl+4,m,n),

α8,0ul,m,n + α8,2ul+2,m,n + hα′
8,4u

′
l+4,m,n = h2(β8,0fl,m,n + β8,1fl+1,m,n + β8,2fl+2,m,n

+ β8,3fl+3,m,n + β8,4fl+4,m,n).

(7)�(x) = α2(x)ul+2,m,n + α0(x)ul,m,n + h2
4

∑

j=0

βj(x)fl+j,m,n

(8)
�(xl+i) = ul+i,m,n, i = 0, 2

�′′(xl+j) = fl+j,m,n, j = 0(1)4

(9)�(x) =

6
∑

j=0

det(Vj)

det(V )
Pj(x)
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Vj is obtained by replacing the jth column of V by W where T denotes the transpose, 
Pj(x) = xj , j = 0(1)6 are basis functions and W is a vector given by

Proof We define the polynomial basis functions

where αi+1,j and h2βi+1,j are coefficients to be uniquely determined.
Substituting (10) into (7), we have

which may be written as

and expressed in the form

where

Imposing conditions (8) on (11), we obtain a system of seven equations, which can be 
expressed as V = LW  where L = (ℓ0, ℓ1, . . . , ℓ6)

T is a vector of seven undetermined 
coefficients. Using the Crammer’s rule, the elements of L can be obtained and are given 
as

V =























P0(xl) · · · P6(xl)
P0(xl+2) · · · P6(xl+2)

P′′
0
(xl) · · · P′′

6
(xl)

P′′
0
(xl+1) · · · P′′

6
(xl+1)

.

.

.
.
.
.

.

.

.

P′′
0
(xl+4) · · · P′′

6
(xl+4)























,

W = (ul,m,n,ul+2,m,n, fl,m,n, fl+1,m,n, . . . , fl+4,m,n)
T .

(10)

αj(x) =

6
∑

i=0

αi+1,jPi(x), j = 0, 1

h2βj(x) =

6
∑

i=0

βi+1,jPi(x), j = 0(1)4

�(x) =

6
∑

i=0

1
∑

j=0

αi+1,jPi(x)ul+j,m,n +

6
∑

i=0

4
∑

j=0

h2βi+1,jPi(x)fl+j,m,n

�(x) =

6
�

i=0





1
�

j=0

αi+1,jul+j,m,n +

4
�

j=0

h2βi+1,j fl+j,m,n



Pi(x)

(11)�(x) =

6
∑

i=0

ℓiPi(x)

ℓi =

1
∑

j=0

αi+1,jul+j,m,n +

4
∑

j=0

h2βi+1,j fl+j,m,n

ℓi =
det(Vj)

det(V )
, j = 0(1)4
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where Vj is obtained by replacing the jth column of V by W. We rewrite (11) as (9) using 
the newly found elements of L. �

BVM and its block extension

The coefficients given in (6) are specified by evaluating (9) at x = {xl+1, xl+3, xl+4} and 
evaluating �′(x) at x = {xl , xl+1, xl+2, xl+3, xl+4} to obtain

Remark 1 We note that the method (12) is locally obtained on [xl , xl+4] and is applied to 
simultaneously obtain approximations to the semidiscretized system (3) over the whole 
3D space [L1, L2, L3] × [L4, L5, L6]; in which case l = 0(4)(L− 4), m = 0(1)(M − 1) and 
n = 0(1)(N − 1). Also, we note that the first three formulas in (12) are of O(h8) while the 
derivative formulas are of O(h7).

Convergence analysis

We discuss the convergence of the BVMs in the following theorem

Theorem 2 Let U be an approximation of the solution vector U for the system obtained 
on a partition πL := {L1 = x0 < x1 < . . . < xL = L4, xm = xm−1 + h} from the method 
(12). If el = |um,n(xl)− ul,m,n|, he′l = |hu′m,n(xl)− hu′l,m,n|, where the exact solution 
um,n(x) is several times differentiable on [L1, L4] and if �E� = �U −U�, then, the BVM is 
convergent of order 6, which implies that �E� = O(h6).

Proof We begin the proof by compactly writing (12) in matrix form with the introduc-
tion of the following matrix notations. Let A be a 2L× 2L matrix defined by

(12)

ul+1,m,n −
1

2
ul+2,m,n −

1

2
ul,m,n =

h2

480

(

−19fl,m,n − 204fl+1,m,n − 14fl+2,m,n − 4fl+3,m,n + fl+4,m,n

)

ul+3,m,n −
3

2
ul+2,m,n +

1

2
ul,m,n =

h2

480

(

17fl,m,n + 252fl+1,m,n + 402fl+2,m,n + 52fl+3,m,n − 3fl+4,m,n

)

ul+4,m,n − 2ul+2,m,n − ul,m,n =
h2

15

(

fl,m,n + 16fl+1,m,n + 26fl+2,m,n + 16fl+3,m,n + 257fl+4,m,n

)

hu′l,m,n −
1

2
ul+2,m,n +

1

2
ul,m,n =

h2

180

(

−53fl,m,n − 144fl+1,m,n + 30fl+2,m,n − 16fl+3,m,n + 3fl+4,m,n

)

hu′l+1,m,n −
1

2
ul+2,m,n +

1

2
ul,m,n =

h2

720

(

39fl,m,n + 70fl+1,m,n − 144fl+2,m,n + 42fl+3,m,n − 7fl+4,m,n

)

hu′l+2,m,n −
1

2
ul+2,m,n +

1

2
ul,m,n =

h2

180

(

5fl,m,n + 104fl+1,m,n + 78fl+2,m,n − 8fl+3,m,n + fl+4,m,n

)

hu′l+3,m,n −
1

2
ul+2,m,n +

1

2
ul,m,n =

h2

720

(

31fl,m,n + 342fl+1,m,n + 768fl+2,m,n + 314fl+3,m,n − 15fl+4,m,n

)

hu′l+4,m,n −
1

2
ul+2,m,n +

1

2
ul,m,n =

h2

180

(

3fl,m,n + 112fl+1,m,n + 56fl+2,m,n + 240fl+3,m,n + 59fl+4,m,n

)

A =

[

A11 A12

A21 A22

]

,
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A12 and A22 are null and identity matrices respectively.
Similarly, let B be a 2L× 2L matrix defined by

where Bij are given as

B12 and B22 are null matrices. 

A11 =





























0 − 1

2
0 0 · · · 0

1 − 1
2

0 0 · · · 0

0 − 3

2
1 0 · · · 0

0 − 2 0 1 · · · 0

.

.

.
. . .

.

.

.

0 0 · · · − 3
2

1 0

0 0 · · · − 2 0 1





























,

A21 =

























0 − 1

2
0 · · · 0

0 − 1
2

0 · · · 0

0 − 1

2
0 · · · 0

0 − 1
2

0 · · · 0

.

.

.
. . .

.

.

.

0 0 · · · − 1

2
0

























,

B =

[

B11 B12

B21 B22

]

,

B11 = h2































− 144

180
− 30

180
− 16

180

3

180
0 · · · 0

− 204
480

− 14
480

− 4
480

4
480

0 · · · 0

252

480

402

480

52

480
− 3

480
0 · · · 0

− 16
15

− 26

15

16

15

257

15
0 · · · 0

. . .
. . .

0 · · · 0 252

480

402

480

52

480
− 3

480

0 · · · 0 − 16
15

− 26
15

16
15

257
15































,

B21 = h2

































70

720
− 144

720

42

720
− 7

720
0 · · · 0

− 104
180

78
180

− 8
180

1
180

0 · · · 0

342

720

768

720

314

720
− 15

720
0 · · · 0

112
180

− 56

180

240

180

59

180
0 · · · 0

. . .
. . .

0 · · · 0 342

720

768

720

314

720
− 15

720

0 · · · 0 112
180

− 56
180

240
180

59
180

































,
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We also define the vectors

where L(h) is the local truncation error vector of the formulas in (12).
The exact form of the system formed by (12) is given by

and the approximate form of the system is given by

where U = (u1,m,n, . . . ,uL,m,n, hu
′
1,m,n, . . . , hu

′
L,m,n)

T is the approximate solution of U. 
Subtracting (13) from (14) and letting E = U −U = (e1, . . . , eL, he

′
1, . . . , he

′
L)

T and using 
the Mean value theorem, we have the error system

where J is the Jacobian matrix and its entries J11, J12, J21 and J22 are defined as

Let M = −BJ  be a matrix of dimension 2L so that (15) becomes

U = (um,n(x1), . . . ,um,n(xL), hu
′
m,n(x1), . . . , hu

′
m,n(xL))

T

F = (f1,m,n, . . . , fL,m,n, hf
′
1,m,n, . . . , hf

′
L,m,n)

T

C =

(

hu′0,m,n +
1

2
u0,m,n +

53

180
h2f0,m,n,−

1

2
u0,m,n +

19

480
h2f0,m,n,

1

2
u0,m,n −

17

480
h2f0,m,n,−u0,m,n −

1

15
h2f0,m,n, 0, . . . , 0,

1

2
u0,m,n −

39

720
h2f0,m,n,

1

2
u0,m,n −

5

180
h2f0,m,n,

1

2
u0,m,n −

31

720
h2f0,m,n,

1

2
u0,m,n −

3

180
f0,m,n, 0, . . . , 0

)T

L(h) = (e1, . . . , eL, he
′
1, . . . , he

′
L)

T

(13)AU − BF(U)+ C+ L(h) = 0,

(14)AU − BF(U)+ C = 0,

(15)(A− BJ )E = L(h),

J11 =









∂f1
∂y1

. . .
∂f1
∂yL

...
...

...
∂fL
∂y1

. . .
∂fL
∂yL









,

J12 =











∂f1
∂y′1

. . .
∂f1
∂y′L

...
...

...
∂fL
∂y′1

. . .
∂fL
∂y′L











,

J21 = h









∂f ′1
∂y1

. . .
∂f ′1
∂yL

...
...

...
∂f ′L
∂y1

. . .
∂f ′L
∂yL









,

J22 = h











∂f ′1
∂y′1

. . .
∂f ′1
∂y′L

...
...

...
∂f ′L
∂y′1

. . .
∂f ′L
∂y′L











.
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and for sufficiently small h, A+M is a monotone matrix and thus nonsingular. Therefore

and

which shows that the methods are convergent and the global error is of order O(h6). �

Computational procedures
The method (12) can also be expressed in block form as

where the positive integer Ŵ = N/4 is the number of blocks,

and A0, A1, B0, and B1 are matrices each of dimension 8 whose entries are given by the 
coefficients of (12).

Equation (1) is converted to (3) by discretizing the partition πM and πN , given by

where

are constant stepsizes of the partition πM and πN respectively, m = 1(1)M, n = 1(1)N , 
M and N are positive integers and m,  n are the grid index in the y and z direction 
respectively.

The resulting system of ODEs (3) is then solved on the partition πL. The block unifica-
tion of (17) lead to a large system of finite difference equations which is then solved to 
provide all solutions of (3) on �.

(16)(A+M)E = L(h),

(A+M)−1 = D = (dij) ≥ 0 and

2L
∑

j=1

dij = O(h−2),

E = DL(h),

||E|| = ||DL(h)||,

= O(h−2)O(h8),

= O(h6).

(17)A0Vµ = A1Vµ−1 + h2B1Fµ−1 + h2B0Fµ, µ = 1, . . . Ŵ,

Vµ = (ul+1,m,n,ul+2,m,n,ul+3,m,n,ul+4,m,n, hu
′
l+1,m,n, hu

′
l+2,m,n, hu

′
l+3,m,n, hu

′
l+4,m,n)

T
,

Fµ = (fl+1,m,n, fl+2,m,n, fl+3,m,n, fl+4,m,n, hf
′
l+1,m,n, hf

′
l+2,m,n, hf

′
l+3,m,n, hf

′
l+4,m,n)

T
,

Vµ − 1 = (ul−3,m,n,ul−2,m,n,ul−1,m,n,ul,m,n, hu
′
l−3,m,n, hu

′
l−2,m,n, hu

′
l−1,m,n, hu

′
l,m,n)

T
,

Fµ−1 = (fl−3,m,n, fl−2,m,n, fl−1,m,n, fl,m,n, hf
′
l−3,m,n, hf

′
l−2,m,n, hf

′
l−1,m,n, hf

′
l,m,n)

T
,

πM := {L2 = y0 < y1 < · · · < yM = L5, ym = ym−1 +�y},

πN := {L3 = z0 < z1 < · · · < zN = L6, zn = zn−1 +�z},

�y =
L5 − L2

M
, �x =

L6 − L3

N
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The following algorithm summarizes the numerical integration of (3) for some set of 
points x on πL.

Step 1 Use the block unification of (17) for µ = 1, n = 0 to obtain V1 on the 
domian [x0, L2, L3] × [x4, L5, L6] and for µ = 2, n = 4, V2 is obtained on the 
domain [x4, L2, L3] × [x8, L5, L6], and on the domains [x8, L2, L3] × [x12, L5, L6], . . . ,

[xL−4, L2, L3] × [xL, L5, L6], for µ = 3, . . . ,Ŵ, n = 8, 12 . . . ,N − 4, we obtain V3 . . . ,VŴ.
Step 2 The unified block given by the system V1

⋃

V2

⋃

. . .
⋃

VŴ−1

⋃

VŴ obtained in 
Step 1 is a large system with dimensions 2L(M − 1)(N − 1) with um,n(xl) ≈ u(xl , ym, zn), 
l = 1, . . . , L, m = 1, . . . ,M, n = 1, . . . ,N .

Step 3 The system obtained in Step 2 is solved using the feature NSolve in Mathemat-
ica 10.0 for linear problems and FindRoot (which incorporates the Newton’s method) for 
nonlinear problems.

Step 4 The solution of (1) is approximated by the solution in Step 3 as 
U(xl) = [u(xl , ym, zn), . . . ,u(xL, ym, zn)]

T , m = 1, . . . ,M n = 1, . . . ,N .

Numerical examples
In this section, some examples are investigated to show the reliability and efficiency of 
the proposed scheme in this paper.

Test 1

We consider the Laplace equation with non zero forcing term G(x, y, z) and with zero 
boundary values on the entire ∂� given in Zhang (1998c) and whose solution is given as

where � = [0, 1]2 × [0, L4]. Table 1 shows the errors in the l∞ norm with different mesh 
sizes. Figure 1 shows the plot of the exact, approximate and error function when x = 0.5.

Test 2

Next, we consider the following Sine-Gordon equation given in Cui (2010)

u(x, y, z) = sin(πx) sin(πy) sin(πz)

G(x, y, z) = −3π2 sin(πx) sin(πy) sin(πz)

Table 1 Errors in the l∞ norm for test problem 1

L4 �y = �z = 0.25 �y = �z = 0.125 �y = �z = 0.0625 �y = �z = 0.03125

0.1 1.903e−04 4.905e−05 1.242e−05 3.109e−06

0.2 1.413e−03 3.641e−04 9.208e−05 2.305e−05

0.3 4.238e−03 1.091e−03 2.754e−04 6.896e−05

0.4 8.610e−03 2.213e−03 5.576e−04 1.396e−04

0.5 1.401e−02 3.586e−03 9.028e−04 2.260e−04

0.6 1.972e−02 5.010e−03 1.263e−03 3.158e−04

0.7 2.506e−02 6.291e−03 1.592e−03 3.980e−04

0.8 2.953e−02 7.340e−03 1.855e−03 4.636e−04

0.9 3.280e−02 8.142e−03 2.029e−03 5.092e−04

1.0 3.472e−02 8.616e−03 2.144e−03 5.356e−04
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where � = [0, 2]2 × [0, L4] and whose theoretical solution is u(x, y, z) = e−αx

(1− cos(πy))(1− cos(πz)). In our computations, we have chosen α = ρ = 1 and the l∞ 
norms are given in Table 2 with different meshsizes. Figure 2 also shows the plot of the 
exact, approximate and error function when x = 1.

Test 3

We also consider the following equation given in Cui (2010)

∂2u

∂x2
+ ρ

∂u

∂x
=

∂2u

∂y2
+

∂2u

∂z2
− 2 sin(u)+ 2 sin(e−αx(1− cos(πy))(1− cos(πz)))

− e−αx
[α(ρ − α)(1− cos(πy))(1− cos(πz))]

+ π2(cos(πy)+ cos(πz)− 2 cos(πy) cos(πz)), 0 < y, z < 2, t > 0

u(0, y, z) = (1− cos(πy))(1− cos(πz)), 0 < y, z < 2,

∂u

∂x
(x, y, z)|x=0 = −α(1− cos(πy))(1− cos(πz)), 0 < y, z < 2,

u(x, 0, z) = u(x, 2, z) = u(x, y, 0) = u(x, y, 2) = 0, t > 0.

∂2u

∂x2
=

∂2u

∂y2
+

∂2u

∂z2
− sin(u)

u(0, y, z) = 4 arctan(ey+z), −1 < y, z < 1,

∂u

∂x
(x, y, z)|x=0 =

4ey+z

1+ e2y+2z
, −1 < y, z < 1,

Fig. 1 Graphical evidence when x = 0.5 and L4 = 1.0 for test problem 1



Page 12 of 16Biala and Jator  SpringerPlus  (2015) 4:588 

where � = [−1, 1]2 × [−1, L4] and whose theoretical solution is u(x, y, z) =

4 arctan(ey+z−x) with corresponding Dirichlet boundary conditions. The l∞ norms 
are given in Table 3 with different meshsizes. Figure 3 also shows the plot of the exact, 
approximate and error function when x = 1.0.

Test 4

We also consider the singularly perturbed convection diffusion equation given in 
Mohanty and Singh (2006)

ǫ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

=
∂u

∂x

Table 2 Errors in the l∞ norm for test problem 2

L4 �y = �z = 0.5 �y = �z = 0.25 �y = �z = 0.125 �y = �z = 0.0625

0.2 1.266e−01 3.343e−02 8.471e−03 2.125e−03

0.4 4.016e−01 1.035e−02 2.609e−02 26.535e−03

0.6 6.692e−01 1.637e−02 4.067e−02 1.015e−02

0.8 8.183e−01 1.811e−01 4.406e−02 1.112e−02

1.0 8.115e−01 1.815e−01 4.406e−02 1.013e−02

1.2 8.344e−01 1.814e−01 4.406e−02 1.015e−02

1.4 7.892e−01 1.788e−01 4.380e−02 1.187e−02

1.6 8.224e−01 1.810e−01 4.380e−02 1.055e−02

1.8 8.429e−01 1.764e−01 4.371e−02 1.034e−02

2.0 8.308e−01 1.815e−01 4.408e−02 1.154e−02

Fig. 2 Graphical evidence when x = 1.0 and L4 = 2.0 for test problem 2
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defined in the domain � = [0, 1]3 with boundary ∂� and subject to the Dirichlet bound-
ary conditions and whose theoretical solution is

where σ 2 = 2π2 +
1

4ǫ2
. We have solved the problem using ǫ = 0.1 to 1.0. The l∞ norms 

are given in Table 4 with different meshsizes. Figure 4 also shows the plot of the exact, 
approximate and error function when x = 0.5.

u(x, y, z) = e
x
2ǫ
sin(πy) sin(πz)

sinh(σ )

[

2e−
1
2ǫ sinh(σx)+ sinh(σ (1− x))

]

.

Table 3 Errors in the l∞ norm for test problem 3

L4 �y = �z = 0.5 �y = �z = 0.25 �y = �z = 0.125 �y = �z = 0.0625

−0.8 5.340e−04 1.493e−04 3.896e−05 9.775e−06

−0.6 2.042e−03 5.911e−04 1.493e−03 3.763e−05

−0.4 4.878e−03 1.257e−03 3.167e−04 7.991e−05

−0.2 7.896e−03 2.007e−03 5.273e−04 1.320e−05

0.0 1.017e−02 3.005e−03 7.539e−04 1.895e−04

0.2 1.502e−02 3.966e−03 9.964e−04 2.494e−04

0.4 1.739e−02 4.742e−03 1.231e−03 3.097e−04

0.6 2.005e−02 5.389e−03 1.436e−03 3.648e−04

0.8 2.324e−02 5.975e−03 1.514e−03 3.793e−04

1.0 1.995e−02 5.048e−03 1.349e−03 3.449e−04

Fig. 3 Graphical evidence when x = 1.0 and L4 = 1.0 for test problem 3
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Test 5

The singularly perturbed elliptic boundary value problem given in Mohanty and Singh (2006)

defined in the domain � = [0, 1]3 with boundary ∂� and subject to the Dirichlet bound-
ary conditions and where the forcing term G is set to satisfy the exact solution given 
as u(x, y, z) = x2 cosh(y) sinh(z). We have solved the problem using ǫ = 0.001. The l∞ 
norms are given in Table 5 with different meshsizes and for different values of α. Figure 5 
also shows the plot of the exact, approximate and error function when x = 0.5.

ǫ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+

α

x

∂u

∂x

)

= G(x, y, z)

Table 4 Errors in the l∞ norm for test problem 4

ǫ �y = �z = 0.25 �y = �z = 0.125 �y = �z = 0.0625 �y = �z = 0.03125

0.1 1.492e−01 2.086e−02 1.801e−03 2.767e−04

0.2 2.830e−02 5.918e−03 1.108e−03 2.626e−04

0.34 1.890e−2 4.807e−03 1.113e−03 2.742e−04

0.4 1.655e−02 4.744e−03 1.146e−03 2.843e−04

0.5 1.680e−02 4.805e−03 1.174e−03 2.916e−04

0.6 1.737e−02 4.867e−03 1.195e−03 2.916e−04

0.7 1.780e−02 4.919e−03 1.211e−03 3.970e−04

0.8 1.813e−02 4.962e−03 1.224e−03 3.048e−04

0.9 1.839e−02 4.998e−03 1.235e−03 3.075e−04

1.0 1.860e−02 5.028e−03 1.243e−03 3.097e−04

Fig. 4 Graphical evidence when x = 0.5 for test problem 4
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Conclusion
In this paper, we have developed a highly accurate 3D problem solver. This has been 
achieved by the discretization of two of the spatial variables and the construction of a 
continuous BVM via the interpolation and collocation approach for solving the result-
ing semidiscretized system. The results given in "Numerical examples" show that the 
approach is highly efficient and highly accurate.
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Table 5 Errors in the l∞ norm for different values of α for test problem 5

α �y = �z = 0.25 �y = �z = 0.125 �y = �z = 0.0625 �y = �z = 0.03125

0 1.359e−04 3.664e−05 9.521e−06 2.395e−06

1 1.383e−04 3.725e−05 9.768e−05 3.226e−06

2 1.380e−04 3.951e−05 9.858e−05 1.892e−06

3 1.370e−04 4.582e−05 1.649e−05 8.940e−05

4 1.361e−04 5.382e−05 2.623e−05 1.892e−05

5 1.359e−04 6.466e−05 3.936e−05 3.226e−05

Fig. 5 Graphical evidence when x = 0.5 for α = 1 for test problem 5
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