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Background
Constant false alarm rate (CFAR) detectors are of considerable importance in radar sig-
nal processing, and as such, have been the focus of much research over the years (Gold-
stein 1973; Nitzberg 1979; Gandhi and Kassam 1988; Blake 1988; Shor and Levanon 
1991; Anastassopoulos and Lampropoulos 1995; Nagle and Saniie 1995; Cao 2008; Meng 
2009; Erfanian and Vakili 2009; Tablet and Soltani 2009; Pourmottaghi et al. 2012; Qin 
et al. 2013; Zhang et al. 2013; Weinberg 2013, 2014; Zhang 2015). In this paper, CFAR is 
understood to be in the context as outlined in Gandhi and Kassam (1988), and as illus-
trated in Fig.  1. It is assumed that a series of independent and identically distributed 
clutter amplitude or intensity measurements are available, known as the clutter range 
profile, from which a measure of the clutter level is taken. This is then normalised and 
compared to a cell under test (CUT). In the example illustrated in Fig. 1 the clutter sta-
tistics are denoted X1,X2, . . . ,X8, and the two processes denoted S1 and S2 are applied 
to the two subsets of the clutter range profile to allow for separate measurements of the 
clutter to be combined to produce a single measurement ST . A number of guard cells 
are used to separate the CUT from the clutter range profile as illustrated. The normal-
ised measure of clutter is τST . If the CUT exceeds this normalised measurement a tar-
get is declared present (Minkler and Minkler 1990). The normalisation is used so that 
the false alarm probability remains constant. Such detectors are desirable because varia-
tions in clutter power can have serious consequences on detection performance, such as 
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increased false alarms resulting in false detections, and missed detection of real targets 
due to thresholds set too high in practice (Minkler and Minkler 1990).

Although the theory of CFAR detectors is well developed for the Exponentially dis-
tributed clutter case, there has been a requirement to re-examine the theory of CFAR as 
radar resolution has improved with corresponding advances in radar hardware design 
and processing throughput, resulting in improvements in radar resolution. Finer radar 
resolution is at the expense of spikier clutter returns, and an inevitable deviation from 
the validity of the Exponentially distributed clutter assumption (Shor and Levanon 1991; 
Anastassopoulos and Lampropoulos 1995). Consequently there has been much work 
on designing CFAR processes for more appropriate clutter models (Pourmottaghi et al. 
2012; Weinberg 2013).

In the context of airborne X-band maritime surveillance radar, this is certainly the case, 
and recent work has established the Pareto clutter model assumption as valid (Farsh-
chian and Posner 2010; Weinberg 2011). Thus there has been much research devoted to 
the design of CFAR detectors under a Pareto clutter model assumption (Weinberg 2013, 
2014b).

Switching detectors were first examined in Cao (2008), which developed a switching 
CFAR based upon the cell-averaging (CA)-CFAR for target detection in Exponentially 
distributed clutter. It is shown in Cao (2008) that the performance of the CA-CFAR can 
be improved in the presence of interference through a switching process. This approach 
has thus generated much interest and stimulated ongoing research into the technique’s 
refinement and application to other clutter environments (Meng 2009; Erfanian and 
Vakili 2009; Tablet and Soltani 2009; Zhang et al. 2013).

The purpose of this paper is to show how the application of a switching CFAR to Pareto 
clutter introduced in Weinberg (2014b) can be used to formulate a general switching 
detector for application to any clutter model of interest. The key feature of a switching 
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Fig. 1  Structure of a CFAR Process. The clutter statistics X1, X2, . . . , X8 are combined to produce ST , which is 
then normalised by τ and compared to the CUT in the decision stage (D). Two guard cells are used on either 
side of the CUT
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detector is that it pre-processes the clutter range profile to censor anomalous measure-
ments of clutter. The approach in Weinberg (2014b) shows that the statistical structure 
of this censored clutter range profile, for the Pareto case, is equivalent to that as formu-
lated in Cao (2008), for the Exponentially distributed clutter case. It will be shown that 
this can be generalised further, so that the censored set can be specified so that the prop-
erties of it for the Pareto case can be applied to an arbitrary clutter model.

Based upon this, a generalised switching detector is formulated, and a general expres-
sion for its probability of false alarm is derived, which can then be used to set thresh-
old multipliers in practice. To illustrate this, a new switching detector is examined, 
based upon a Lomax distribution, which has become of much interest to researchers at 
Defence Science and Technology Group (DSTG) as a potential alternative to the stand-
ard Pareto model.

The paper is organised as follows “CFAR and transformed detectors” outlines CFAR 
from a mathematical perspective, and also overviews an appproach to the construction 
of CFARs based upon transformations. “Switching detector formulation” formulates the 
general switching CFAR, while “Example of switched detector” proposes a new switch-
ing CFAR based upon the Lomax clutter model assumption. “Ingara data and distribu-
tional fit” discusses the data set under consideration, including clutter model fitting. 
Finally “Application to X-band radar” provides some examples of detector’s perfor-
mance, under a Lomax clutter model assumption, relative to non-switched detectors.

CFAR and transformed detectors
To begin, standard noncoherent CFAR processing is discussed in a mathematical frame-
work. Useful references on this approach are Gandhi and Kassam (1988) and Minkler 
and Minkler (1990). Assume the independent and identically distributed clutter statis-
tics are X1,X2, . . . ,XN and the statistic of the CUT is X,   which is also assumed to be 
independent of each member of the clutter range profile. A general detection scheme 
can be specified by 

where the known function g computes a measure of the average level of clutter, and τ is a 
threshold factor, which is used to regulate the false alarm probability. The notation used 
in (1) means that the null hypothesis is rejected if and only if X > g(X1,X2, . . . ,XN ; τ ). 
The probability of false alarm (Pfa) of (1) is given by

and τ is obtained, for a given Pfa, by inversion of (2). In the case where τ does not vary 
with the clutter power, the detection process (1) is said to have the CFAR property (Min-
kler and Minkler 1990), and (1) is referred to as a CFAR detector. In the case of Expo-
nentially distributed clutter, there are many such processes that are CFAR. Two key ones 
are the CA-CFAR 

(1)X
H1

≷
H0

g(X1,X2, . . . ,XN ; τ ),

(2)Pfa = P(X > g(X1,X2, . . . ,XN ; τ )|H0),

(3)X
H1

≷
H0

σ

N∑

j=1

Xj
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and the order statistic (OS)-CFAR 

for some 1 ≤ k ≤ N , where it can be shown through (2) that σ = Pfa−1/N
− 1 and ν is 

set via numerical inversion of

where Ŵ(·) is the Gamma function (Gandhi and Kassam 1988).
These detectors can be transformed to operate in a clutter environment of interest 

using the transformation approach of Weinberg (2014), which generalised the Pareto 
case in Weinberg (2013). The elegant feature of this method is the detector is modi-
fied while the threshold multiplier (σ or ν) is still set via the original Pfa expression. This 
method will be used to modify (3) and (4) to operate in Lomax distributed clutter in 
“Example of switched detector”; here we outline the general transformation approach 
for completeness.

Suppose we are interested in a clutter environment modelled by a random variable Y,  
with distribution function FY (t) := I P(Y ≤ t). In order to adapt the detection process 
(1) to operate in clutter modelled by random variables Y1,Y2, . . . ,YN with distribution 
function FY , one introduces a transfer function

which can be shown to be monotonic and hence possesses a unique inverse. Then the 
decision rule 

is a transformed version of (1), where Ŷ  is the CUT and τ is set via (2). Thus the trans-
formation approach allows the generation of detectors from those designed to operate 
in Exponentially distributed clutter. As illustrated in the Pareto clutter case in Wein-
berg (2013), the transformation approach may result in loss of the CFAR property with 
respect to particular clutter parameters.

Switching detector formulation
Although this paper is focused on switching detectors, it is worth commenting on the 
fact that these are not the only solution to managing irregularities in clutter for CFAR 
processes. In particular, Smith and Varshney (1997) introduced a variability index (VI)-
CFAR algorithm. This detector, designed to operate in independent Exponentially dis-
tributed clutter returns, has the CFAR property and is shown to manage interfering 
targets well. Additionally it is shown that it regulates the Pfa reasonably well. This detec-
tor partitions the clutter range profile into two sets, and runs a test to see whether there 
is variability in the two. It then tests to see whether the means of the two differ. Based 
upon these tests, and appropriate variation of the CA-CFAR is selected. An investiga-
tion revealed that when applied to the Pareto case, this detector becomes dependent on 

(4)X
H1

≷
H0

νX(k),

(5)Pfa =
N !

(N − k)!

Ŵ(N − k + ν + 1)

Ŵ(N + ν + 1)
,

(6)H(t) := F−1
Y

(
1− e−t

)
,

(7)Ŷ
H1

≷
H0

H
(
τg

(
H−1(Y1),H

−1(Y2), . . . ,H
−1(YN )

))



Page 5 of 13Weinberg ﻿SpringerPlus  (2015) 4:574 

knowledge of the Pareto shape parameter, and hence is not a CFAR detector for the case 
of Pareto distributed clutter returns. Furthermore, even with the application of an maxi-
mum likelihood estimator for the Pareto shape parameter, the algorithm becomes com-
putationally expensive to run in comparison to a switching detector.

The idea behind a switching detector is to determine whether any of the statistics in 
the clutter range profile can be classified as being irregular. Such irregularities in meas-
urements could be due to clutter power level increases or spurious interfering targets. 
These irregularities, once identified, are censored from the detection process. Suppose 
S0 is a subset of the clutter range profile, consisting of clutter returns deemed not irregu-
lar. It will be shown how to select S0 so that the statistical properties of it in the Pareto 
case can be applied to arbitrary clutter models.

Let g|S0 be the restriction of the clutter measurement function g to the set S0. To 
illustrate this, suppose g is a sum, with clutter range profile {Y1,Y2, . . . ,YN } and that 
S0 = {Y1,Y3,Y5}. Then g|S0(Y1,Y2, . . . ,YN ) = Y1 + Y3 + Y5. If instead, g was an order 
statistic, then g|S0(Y1,Y2, . . . ,YN ) would be the corresponding order statistic on the set 
{Y1,Y3,Y5}.

The general form of a switching-based detector, based upon (1), can be formulated as 
follows. A target is declared present in the CUT (denoted Ỹ ) if one of the two conditions 
are met:

where κ > 0 is a threshold factor, n0 is the size of the set S0 and NT ∈ {1, 2, . . . ,N } is an 
integer threshold constant. As in Cao (2008) appropriate selection for NT can be based 
upon the need to manage up to NI expected interfering targets, so that NT = N − NI − 1 
as justified in Cao (2008) is utilised.

It is clear that it is vital to determine a useful way in which to specify the set S0. Once 
this is done, it is then possible to determine κ through an expression for the Pfa of (8).

In the case of Exponentially distributed returns, the set S0 is defined by 
S0 = {Zj : Zj < aZ} where Zj are the clutter statistics, Z is the CUT and a > 0 is a fixed 
constant Cao (2008). Selection of parameter a is described comprehensively in Cao 
(2008) and Weinberg (2014b). This set can be used as a basis for all switching detectors 
with a simple application of the inverse of (6). The key to this is to reformulate the set 
S0 so that it is in terms of clutter statistics for the desired clutter model. To see this, it 
is shown in Weinberg (2014) that if Z is an Exponentially distributed random variable 
with unity mean then H, defined in (6), has the property that H(Z)

d
=Y  and Z d

=H−1(Y ), 
where Y is the desired clutter model. Hence an application of these to the Exponentially 
distributed clutter range profile, and under the assumption of H0,

(8)

Ỹ > g|S0(Y1,Y2, . . . ,YN ; κ) when n0 > NT

Ỹ > g(Y1,Y2, . . . ,YN ; κ) when n0 ≤ NT ,

(9)
S0 = {Zj : Zj < aZ} ≡

{
Yj : H

−1(Yj) < aH−1(Y )

}

=

{
Yj : Yj < H

(
aH−1(Y )

)}
,
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where Zj = H−1(Yj) for all j. Thus, (9) suggests an appropriate way in which clutter sta-
tistics may be sorted for a switching detector, based upon the clutter model of interest. 
Observe that if the set S0 is determined through (9), then any properties of S0 under H0 
that have been established can be applied directly to the clutter environment of inter-
est. In particular, it is shown in Weinberg (2014b) that the distribution of n0 under H0 is 
given by

where k ∈ {0, 1, . . . ,N } and B(·, ·) is the Beta function.
Finally, it is necessary to specify the Pfa of (8), to produce the threshold factor κ . In 

the detection scheme (1), since it is assumed that the clutter statistics are independent 
and identically distributed, suppose that Pfa(n) denotes the false alarm probability when 
there are n clutter statistics. Then, since clutter is sorted via (9), it follows by conditional 
probability that

Consequently, one can determine κ via numerical inversion of (11). Hence (8), together 
with (9), (10) and (11), provide a generalised switching detector. Clearly if the detector 
on which it is based is CFAR with respect to a certain clutter parameter, then the switch-
ing detector will inherit this property. The switching detector parameter a,  used in the 
definition of S0, can also be selected based upon the guidelines established in Weinberg 
(2014b).

Example of switched detector
Many of the clutter intensity models of interest in X-band maritime surveillance radar 
can be represented in the form

where µ > 0 is the clutter shape parameter, and h(t) has the properties that h(0) = 0 and 
it is increasing, so that (12) is a well-defined distribution function. To illustrate this, the 
choice of h(t) = t produces the Exponential distribution, h(t) = tn (with n > 0) results 
in the Weibull family and h(t) = log(t/β) yields a Pareto model. By applying (12) to (6), 
it can be shown that H(t) = h−1(t/µ) and consequently H−1(t) = µh(t). Thus by apply-
ing these to (9), it follows for the model (12) that

(10)P(n0 = k|H0) =

(
N

k

)
a−1B

(
N − k + a−1, k + 1

)
,

(11)

Pfa =

NT∑

k=0

P

(
Ỹ > g|S0(Y1,Y2, . . . ,YN ; κ)|H0

)

× P(n0 = k|H0)

+

N∑

k=NT+1

P

(
Ỹ > g(Y1,Y2, . . . ,YN ; κ)|H0

)

× P(n0 = k|H0)

= Pfa(N )P(n0 ≤ NT |H0)

+

N∑

k=NT+1

Pfa(k)P(n0 = k|H0).

(12)FY (t) = 1− e−µh(t)
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providing a general form for the set S0 in terms of function h, which is applicable for any 
clutter model based upon (12).

To illustrate (9), consider the case where Y has a Pareto distribution with shape param-
eter α and scale parameter β . Then its distribution function is

provided t ≥ β . Hence H(t) = α log(t/β) and so H−1(t) = βet/α . Hence, applying these 
to (9), it can be shown that S0 = {Yj : Yj < β1−aY a}, which is exactly the same set as in 
Weinberg (2014b).

Although the Pareto distribution has been shown to fit real X-band clutter returns 
very well, there are issues arising from the Pareto scale parameter present in the detec-
tors examined in Weinberg (2013). It has been found that the presence of this parameter 
results in poorer detection performance. Examples of this are apparent in the numerical 
analysis in Weinberg (2014b), where the Pareto scale parameter is estimated adaptively. 
Hence an alternative to the two-parameter Pareto model has also been investigated 
at DSTG, where the clutter is assumed to follow the one-parameter Pareto or Lomax 
model with distribution function

where t ≥ 0. This distribution has h(t) = log(1+ t) in the formulation (12), and hence 
H(t) = et/µ − 1 based upon the above analysis. Consequently, one can apply this with 
the transformed detector (7) to produce new decision rules to operate in clutter mod-
elled by (15). Based upon the analysis in “CFAR and transformed detectors”, the detector 
(3) transforms to 

with σ set as for (3). Similarly, the detector (4) becomes 

with ν set via (5).
Both detectors (16) and (17) are CFAR with respect to the clutter shape param-

eter. Consequently, a switching detector based upon these will also preserve the 
CFAR property. Here we focus on a switched version of (16). It can be shown eas-
ily via (13) that a switching detector based upon this clutter model will necessitate 
S0 = {Yj : log(1+ Yj) < a log(1+ Ỹ )}. The form of the switched detector is to reject H0 
if

(13)S0 =
{
Yj : Yj < h−1

(
ah(Ỹ )

)}
,

(14)FY (t) = 1−

(
β

t

)α

,

(15)FY (t) = 1−

(
1

1+ t

)µ

(16)Ỹ
H1

≷
H0

N∏

j=1

(
Yj + 1

)σ
− 1,

(17)Ỹ
H1

≷
H0

(
Y(k) + 1

)ν
− 1,
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with κ determined via (11) with Pfa(k) = (1+ κ)−k .

Before examining the performance of the detector, a brief overview of the DSTG 
Ingara data is considered, together with an analysis of the Pareto and Lomax fits to this 
data.

Ingara data and distributional fit
DSTG’s Ingara radar has provided researchers with X-band high resolution medium to 
high grazing angle polarimetric clutter returns that have assisted in the analysis of radar 
detection schemes (Stacy et  al. 1996). This radar has been deployed in a series of tri-
als, and subsequent analysis of the resultant clutter and detection performance has been 
documented extensively (Stacy et al. 2005; Crisp et al. 2007; Rosenberg 2010).

The clutter set used for the following analysis consists of a series of pure clutter 
returns obtained through a trial conducted by DSTG in 2004, and is designated run 
34,683. The Ingara radar operated at X-Band, with a centre frequency of 10.1 GHz, and 
uncompressed pulse width of 20 μs, and range resolution of 0.75 m. The trial was run 
in the Southern Ocean, roughly 100 km south of Port Lincoln in South Australia. Fur-
ther details of the Ingara radar can be found in Stacy et al. (1996), while a summary of 
the trial, and analysis of the resultant radar clutter, can be found in Stacy et al. (2005), 
Rosenberg (2010). The data was obtained through a number of runs, where in each such 
run the full 360° of azimuth angles were scanned. Thus the radar operated in a circular 
spotlight mode.

Analysis of Ingara data, and in particular the Pareto model fit, can be found in Wein-
berg (2011). Run 34,683 consists of 840,704 clutter returns, from the data set in the 
approximate up wind direction. This data set is thus the most spiky, and hence is the 
worst case scenario from a detection perspective. Only horizontal transmit and receive, 
and vertical transmit and receive, polarisations are considered. This is due to the fact 
that the vertically polarised case corresponds to approximate Rayleigh clutter amplitude 
statistics, while the horizontal polarised case consists of spikier clutter returns that are 
non-Rayleigh distributed (Weinberg 2011). Cross polarisation clutter tends to be distrib-
uted between these two extremes, and so the two polarisations considered represent the 
two extreme cases of clutter.

Statistical modes were fitted to these data sets via maximum likelihood estimation 
algorithms. In the fitting of the Pareto distribution to the horizontally polarised data 
set yielded estimates of α = 4.7241 and β = 0.0446, while in the vertically polarised 
case, these were α = 11.3930 and β = 0.3440. The Lomax distribution resulted in a 
shape parameter of µ = 84.8173 for horizontal polarisation, and µ = 31.2739 in vertical 
polarisation.

To examine the validity of the model fits, Figs. 2 and 3 plot empirical distribution func-
tions of the Ingara data sets, together with that for the Pareto and Lomax models. In the 

(18)

Ỹ >
∏

Yj∈S0

(
Yj + 1

)κ
− 1 when n0 > NT

Ỹ >

N∏

j=1

(
Yj + 1

)κ
− 1 when n0 ≤ NT ,
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case of horizontal polarisation, Fig. 2 shows that the Pareto fit is very good, while that 
of the Lomax model has a slight error. This is attributable to a one-parameter model. 
Figure 3 shows that in the vertically polarised case, the Lomax fit improves considerably.

The next section examines the performance of (18) relative to (16) and (17).

Application to X‑band radar
It is of interest to investigate whether the switching detector (18) improves on the per-
formance of (16) when subjected to interference. Additionally, it is of interest to assess 
the performance of (18) relative to (17), since OS-based CFARs are robust to interfer-
ence (Gandhi and Kassam 1988). This is done by simulating clutter from the model (15), 
where µ is matched to estimates obtained from real radar clutter.

For the detector analysis, N = 32 with the Pfa set to 10−4. The SW-CFAR uses a = 1.5 
and NT = 29, while the OS-CFAR uses k = 30. The latter two choices are selected so 
that the respective detector can manage up to two interfering targets. Examining perfor-
mance in both these polarisations enables guidelines on detection strategies to be for-
mulated. Detection performance is estimated in all cases using 106 Monte Carlo samples 
for each signal to clutter ratio (SCR).

Fig. 2  Empirical distribution fit to Ingara data set under consideration, with horizontal polarisation. The plot 
shows the data distribution function, the corresponding Pareto and Lomax fits. The right subplot is a magnifi-
cation of the left subplot, and shows the slight discrepancy in the Lomax fit

Fig. 3  Plot similar to that in Fig. 2, except in the vertically polarised case. Here the discrepancy in fit is smaller 
than in the horizontally polarised case
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Figure 4 shows detection performance in the horizontally polarised clutter case. The 
plot shows detection performance with a Swerling 1 target model applied to the CUT. 
Additionally, the three detectors are subjected to up to two Swerling 1 interfering tar-
gets, whose SCR are 20 and 30 dB respectively. The figure also plots a limit, based upon 
(3). The detector (16) is referred to as CA-CFAR, while (17) is called OS-CFAR, to reflect 
the decision rules on which they are based. The detector (18) is referred to as SW as 
shown. The right subplot is a magnification of the left in a subset of SCR values. The 
figure shows that the switching based detector has the best performance in terms of 
managing the strong interference. Specifically, the switching detector is better than that 
based upon an order statistic by around 0.3 dB (for no interference), by 0.7 dB for the 
case of 1 interfering target and by approximately 2 dB for the case of two interfering 
targets. The CA-CFAR, on which the switching detector is based, has the worst perfor-
mance by contrast. Figure 5 illustrates the same scenario, except under vertical polarisa-
tion, showing a similar performance to that in Fig. 4.
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Fig. 4  Performance of the three detectors in homogeneous horizontally polarised clutter, and with up to 
two interfering targets. The right subplot is an enlargement of a component of the left subplot, to examine 
performance in closer detail. Detector (16) is referred to as CA-CFAR in this figure, while (17) is called OS-CFAR 
to reflect the fact that they are CFAR detectors. The switching detector (18) is denoted SW in the figure. If 
subjected to interference, the respective detector is marked appropriately as outlined in the legend
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Next, it is important to estimate the resultant Pfa from each of the new detection pro-
cesses, since they are designed in the case of uniform clutter to maintain the desired 
Pfa. To do this, clutter was simulated as for the detection performance curves, and the 
resultant Pfa was measured via Monte Carlo estimation with 106 runs. Additionally, the 
resultant Pfa was measured when the clutter range profile was subjected to an independ-
ent interfering Swerling 1 target model, with SCR of 5 dB. Table 1 plots the resultant Pfa. 
Recalling that the design Pfa has been set to 10−4, we see that in the case of no interfer-
ence, the switching detector tends to improve on the detector (16) in both polarisations. 
In the horizontally polarised case, the switching detector has the largest deviation from 
the design Pfa. However, in the vertically polarised case, the switching detector is best at 
maintaining the desired Pfa.

In the case of interference, the detector (17) performs the best in maintaining the 
desired Pfa. The switching detector only slightly improves on the performance on the 
detector (16). It is interesting to note that in the presence of interference, the resultant 
Pfa is smaller than the design Pfa. From a practical perspective, this is better than having 
an increase in the false alarm rate.

To explore further the performance of these detectors in managing the Pfa, their per-
formance is assessed during clutter transitions or false alarm regulation. False alarm reg-
ulation studies the effect on the resultant Pfa as the number of clutter cells in the clutter 
range profile are slowly increased with higher powered clutter returns (Gandhi and Kas-
sam 1988). Figure 6 plots the estimated Pfa as a function of the number of higher pow-
ered clutter cells, for the three detectors under consideration. The power level increase 
is known as the clutter to clutter ratio (CCR), and has been set to 0.5 dB. In addition to 
this, an interfering target has been inserted into the clutter range profile to examine the 
effect on the estimated Pfa. This is a Swerling 1 target model as before, and its SCR has 
been set to 5 dB. This is known as the interference to clutter ratio (ICR). Monte Carlo 
runs with 106 samples have been used to produce the plots in Fig. 6. The left subplot is 
for horizontal polarisation, while the right corresponds to the vertically polarised case. 
The figure shows that the detectors tend to manage the false alarm regulation in a simi-
lar way. What is notable is that the SW-CFAR tends to reduce the number of false alarms 
in the presence of interference, while the OS-CFAR tends to allow more false alarms. 
When the mid-point of the clutter range profile is completely saturated with higher 
powered returns, the CUT is then considered to be affected by this, which is why there is 
a characteristic jump in the plots after 16 cells are affected.

The results shown in Figs. 4, 5 and 6 demonstrate that the switching detector has a 
greater capacity to manage interfering targets than the non-switched detector on which 

Table 1  Pfa estimates in uniform clutter, including when detectors are subjected to inter‑
ference, through the insertion of a 5 dB Swerling 1 target into the clutter range profile

The design Pfa is 10−4 

HH VV

No inter Inter No inter Inter

CA-CFAR 0.94 × 10−4 5.5 × 10−5 1.07 × 10−4 5.5 × 10−5

OS-CFAR 1.06 × 10−4 4.2 × 10−5 1.15 × 10−4 4 × 10−5

SW 0.91 × 10−4 5.1 × 10−5 1.01 × 10−4 5.3 × 10−5
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it is based. It also has slightly better performance than an OS based detector. These 
results are common to the two polarisations. In terms of false alarm regulation, the 
switching detector tends to reduce the number of false alarms, especially in the presence 
of interference, as Fig. 6 shows.

Conclusions
A general formulation of a switching detector was presented, and it was shown how 
the set S0 could be selected so that it became equivalent to that used for the case of 
Exponentially distributed clutter. This meant that setting the threshold multiplier for a 
switching detector could be done in a uniform way regardless of the underlying clutter 
model. Consequently, this generalised the Pareto case in Weinberg (2014b).

Due to issues with the Pareto clutter model, a Lomax distribution was examined, and 
a switched version of a transformed CA-CFAR was analysed. It was shown to provide 
a robust solution to the management of interference. Furthermore, its performance 
exceeded that of the non-switched equivalent, as well as that of an OS-CFAR. Further 
work will examine the application of such a detection scheme directly to real data.
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