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Abstract 

Anthocyanidins were synthesized to study the effect of methoxy substitution on the B ring to their antioxidant prop-
erty. Comparative FRAP studies show 2′- and 4′-methoxy substituents have higher antioxidant activities, which may 
be attributed to both resonance and inductive effects.
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Background
Anthocyanidins are pigments that are associated with 
the bright coloration of flowers and fruits. These natu-
ral dyes belong to the flavonoid family, with their basic 
structure comprising of an aromatic ring (A) fused with 
an heterocyclic ring containing an oxygen (C), which 
is also bonded to a third aromatic ring (B). These com-
pounds are normally substituted with hydroxy groups, 
which help stabilize the charge on the flavylium cation. 
When one of the phenols is substituted with glycosides, 
the compound is called an anthocyanin.

The natural occurrence of anthocyanins and anthocya-
nidins warrants their study not only for the evolutionary 
advantage they confer to plants, but also for their poten-
tial applications (Castañeda-Ovando et al. 2009). Besides 
their utility as colorants for foods and cosmetics (Cam-
panella et  al. 2010), they are also explored in materials 
science (Pina et al. 2012) for example, as photosensitizers 
for photovoltaics (Calogero et al. 2013; Gokilamani et al. 
2013), and as molecular logic gates (Pina et al. 1998). Like 
many polyphenols, they exhibit biological activities that 
are beneficial to human health (Pojer et  al. 2013) such 
as in glucose metabolism (Alzaid et  al. 2013), protec-
tion against cardiovascular disease (Wallace 2011), and 
mediation of oxidative stress (Zafra-Stone et  al. 2007). 
Their putative roles in human pathologies are of inter-
est, particularly in cancer prevention (Wang and Stoner 

2008; Cooke et al. 2005). Despite their biological signifi-
cance, their pharmacokinetics in humans remains largely 
unexplored (Kay 2006). Thus, to further the utility of 
anthocyanins in therapeutics and gain an understanding 
of their activities as applied to drug design, we synthe-
sized anthocyanidins 1–3 and studied their antioxidant 
properties.

There are several methods for determining and 
expressing antioxidant activity, particularly for natu-
ral anthocyanins extracted from plants (Thaipong et  al. 
2006; Huang et al. 2005; Pulido et al. 2000; Sochor et al. 
2010). This paper reports the preparation and characteri-
zation of three new anthocyanidins with different substi-
tution patterns on the B ring. The antioxidant activities of 
the synthetic anthocyanidins were studied using a modi-
fied ferric reducing activity of plasma (FRAP) assay (Ben-
zie and Strain 1996, 1999).

Results and discussion
Synthesis of the flavylium cation occurs under harsh 
conditions (Balaban et  al. 1969) and preparations of 
anthocyanidins have been achieved by bubbling the 
reaction with hydrogen chloride gas (Moncada et  al. 
2004), treatment with perchloric acid (Sato et  al. 1999; 
Dorofeenko and Olekhnovich 1972), or employment of 
corrosive Lewis acids such as boron trifluoride etherate 
(Kuhnert et  al. 2001). Recently, milder synthesis using 
sulfuric acid was reported (Calogero et  al. 2013), and 
described herein is a convenient approach to obtain-
ing anthocyanidins, using less solvent and shorter reac-
tion times. A summary of synthetic methods is listed 
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in Table  1 and the synthesis of flavylium ring has been 
comprehensively reviewed elsewhere (Iacobucci and 
Sweeny 1983).

Scheme  1 shows the condensation of 2,4-dihydroxy-
benzaldehyde with different acetophenone derivatives 
using a minimum amount of acetic and sulfuric acid. 
Heating in a water bath for 30  min facilitated the reac-
tion, which resulted in a dark viscous liquid. The prod-
ucts were purified by trituration with diethyl ether. When 
performed with minimum exposure to air, fine, brightly 
colored powders are obtained, which were dried further 
in a vacuum desiccator. The hygroscopic anthocyanidins 
were assumed to be bisulfate salts, and the yields were 
92–95  %. While the use of concentrated sulfuric acid is 
still harsh, improvements such as shorter heating time, 
use of the renewable solvent acetic acid, minimum sol-
vents and adjuvants used during purification, and high 
yields makes our procedure greener. Characterization 
by 1H and 13C NMR and HRMS confirms the products, 
which have nearly similar UV–Vis and IR spectra in the 
functional group region.

Solutions of 1–3 were prepared by first dissolving 
in DMF, and subsequent dilution with acetate buffer 
(pH 3.6). Flavylium salts are in equilibrium with their 
hydrates in aqueous solutions, with low pH favoring the 

non-hydrated pyrilium cation (Moncada et  al. 2004). 
Once hydrated, they may undergo ring opening, then 
tautomerization to the enone, and further isomerization 
to give trans chalcones. Buffered solutions of 1–3 showed 
no variation in the UV spectra when kept in the dark, 
and when kept cold for at least 1 week, hinting on their 
stability.

A modified FRAP assay was used to study the antioxi-
dant properties of 1–3. Freshly prepared FRAP reagent 
was admixed with antioxidants at room temperature, 
which showed rapid development of color character-
istic of the formation of the Fe2+ complex. Spectropho-
tometric measurements were taken 2  min after mixing 
and all studies were performed in triplicate. The initial 
color change was fast, however the redox reaction con-
tinued for longer than 15 min, similar to what has been 
observed in polyphenol antioxidants (Pulido et al. 2000). 
Varying the location of the methoxy substituent on the 
C ring offers slight differences in the reducing power of 
the synthesized flavylium salt, with 1 showing the high-
est antioxidant activity (Fig.  1). This may be attributed 
to the added stability conferred by conjugation with the 
B ring substituents (Calogero et al. 2013). It can be rea-
soned that the higher activity of 1 compared to 3 is due 
to inductive effects of the proximal 2′ methoxy to the 

Table 1  Reported syntheses of anthocyanidins

Conditions Yield (%) References

Salicylaldehyde, acetophenone, HBF4, HOAc, acetic anhydride, 60 °C, 
12 h

40–58, 23–78 Katritzky et al. (1998), Gomes et al. (2009)

Salicylaldehyde, acetophenone, BF3 etherate, neat 81 Kuhnert et al. (2001)

Salicylaldehyde, acetophenone, H2SO4, HOAc, overnight 40–88 Calogero et al. (2013)

Salicylaldehyde, acetophenone, EtOAc, HCl gas, 0 °C, 3 days 56–75, 55–84 Mora-Soumille et al. (2013), Mas (2003)

Salicylaldehyde, acetophenone, HPF6, HOAc, 2 days 89 Kueny-Stotz et al. (2008)

Salicylaldehyde, acetophenone, HCl gas, formic acid, 5 h 56 Moncada et al. (2004), Michaelidis and Wizinger (1951)

Salicylaldehyde, benzaldehyde, ethyl chloroformate, HClO4, 1–12 h 49–95 Sato et al. (1999)

Salicylideneacetophenone, HBF4OEt2 or HOTf in Et2O 62–67 Fichtner et al. (2001)

Phenol, arylethynylketone, HPF6, HOAc, r.t. 82–99 Kueny-Stotz et al. (2007)

Scheme 1  Synthesis of anthocyanidins 1–3
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flavylium oxygen, which is absent in the 4′ methoxy (see 
Additional files 1, 2). The resonance effect is absent for 
the 3′ methoxy, resulting in least stable derivative (2).

The solution chemistry of anthocyanidins is complex 
(Pina et  al. 2012) and analogous anthocyanidins under 
similar pH exist in equilibrium between the flavylium 
ion, deporotonated quinoidal base, and as the hydrated 
hemiketal (Brouillard et  al. 1982; Sweeny and Iacobucci 
1983). The FRAP assay is non-specific for any antioxidant 
present under the reaction conditions that could reduce 
Fe3+, which takes into account the chemistry flavylium 
ions undergo in solution. Under similar assay conditions, 
ascorbic acid gives higher FRAP value (2.7) and shows 
a higher antioxidant activity than anthocyanidins 1–3. 
FRAP values are normally obtained after 4 min at 37 °C, 
or 6 min at room temperature. No significant variation of 
the FRAP value was observed between 4 and 6  min for 
our experiments, which are 2.2, 2.0, and 2.1  mM for 1, 
2, 3, respectively, based on equivalent FeSO4 standard. 
In comparison, purified anthocyanin extracts from fruit 
show reducing power one-third that of ascorbic acid, 
however these comparisons are not straightforward 
because the reducing power is dose-dependent even for 
ascorbic acid (Sun et al. 2014).

Conclusion
In conclusion, we demonstrate a greener synthesis of 
anthocyanidins, which allows facile purification by tritu-
ration. This facilitates the study of the effects of various 
substituents on the different rings to the properties of 

anthocyanidins. In this case, we show that altering the 
location of the methoxy substituent on the B ring results 
in slight variations in the resultant antioxidant activity, 
as measured by the FRAP assay. The methoxy substitu-
ent on the 2′ position of the B ring stabilizes the radi-
cal formed in the 7-OH position by conjugation, and by 
inductive effects due to the proximity of the the methoxy 
group to the pyrilium oxygen. These results demonstrate 
the feasibility of tailoring the redox properties of syn-
thetic anthocyanidins.

Experimental
All starting materials and solvents were purchased from 
commercial sources. NMR analyses were performed 
using a Bruker 400  MHz Avance, and IR analyses were 
performed using a Bruker Alpha ATR-IR. High-resolu-
tion mass spec were obtained from The City College of 
New York Mass Spectrometry Facility, and the coun-
ter anion was not included in the molecular ion peak 
calculations.

General procedure for FRAP
Freshly prepared FRAP solution was prepared by mix-
ing acetate buffer at pH 3.6 (10.0  cm3, 20  mM), TPTZ 
solution (1.0 cm3, 10 mM), and FeCl3 solution (1.0 cm3, 
10 mM) in a vial. Stock solutions of the anthocyanidins 
(35.0 mg) were prepared in DMSO (100 cm3, 1 mM). All 
solutions were sparged with N2 prior to each experiment. 
For each experiment, the stock was diluted to 0.5  mM 
with acetate buffer and equilibrated for 3  min. The 
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Fig. 1  FRAP assay of synthetic anthocyanidin 1 (open triangle), 2 (multiplication sign), and 3 (open circle). Vitamin C (filled diamond) shows higher 
antioxidant activity under similar conditions. The antioxidants are of the same final concentration (0.15 mM), and the final concentration of 
Fe3+(TPTZ)2 was 735 mM
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experiment was initiated in a new vial containing de-ion-
ized water (900 μL) and TPTZ solution (9.0 cm3). To this 
was added the diluted anthocyanidins (300 μL), mixed, 
and immediately transferred to a cuvette. Data capture 
was started exactly 2 min after the reaction was initiated. 
The blank was prepared similarly, but adding only buffer 
instead of the stock anthocyanidin solution. Each experi-
ment was repeated at least three times.

General procedure for anthocyanidins
To a 25-cm3 round bottomed flask was added 2,4-dihy-
droxybenzaldehyde (414  mg, 3.00  mmol) and the cor-
responding methoxyacetophenone isomer (0.413  cm3, 
3.00  mmol). The mixture was dissolved in acetic acid 
(1.00  cm3), and sulfuric acid (0.500  cm3) was added. 
The mixture was equipped with an air condenser and 
heated in a boiling water bath for 30  min. The solid 
product was obtained by triturating the oil with diethyl 
ether (2.0  cm3). Purification was achieved by dissolv-
ing the crude in acetic acid and triturating with ether at 
least three times. The product was vacuum filtered and 
washed with diethyl ether before drying in a vacuum 
desiccator.

7‑hydroxy‑2‑(2‑methoxyphenyl)chromenylium hydrogen 
sulfate (1, C16H14O7S)  Rust-colored powder, 0.994  g 
(95  %). M.p.: 100–107  °C (decomposed); 1H NMR 
(400 MHz, MeOH-d4) δ = 9.2 (d, 1H, J = 8.7 Hz), δ = 8.7 
(d, 2H, J =  8.7  Hz), δ =  8.4 (dd, 1H, J =  8.08, 1.6  Hz), 
δ = 8.2 (d, 1H, J = 9.0 Hz), δ = 7.8 (td, 1H, J = 7.9, 1.6 Hz), 
δ =  7.51 (d, 1H, J =  1.6 Hz), δ =  7.48 (dd, 1H, J =  9.0, 
2.2 Hz), δ = 7.38 (d, 1H, J = 8.6 Hz), δ = 7.3 (m, 1H), δ 4.1 
(s, 3H); 13C NMR (100  MHz, MeOH-d4) δ 170.3, 170.0. 
161.1, 160.3, 154.5, 137.8, 132.8, 131.0, 122.1, 121.7, 
119.9, 117.8, 117.0, 113.0, 102.1 55.6  ppm; HRMS (ESI) 
m/z 253.0897 (M+), calcd for C16H13O3 253.0865.

7‑hydroxy‑2‑(3‑methoxyphenyl)chromenylium hydrogen‑
sulfate (2, C16H14O7S)  Dark red powder, 0.966 g (92 %). 
M.p.: 122–155  °C (decomposed); 1H NMR (400  MHz, 
MeOH-d4) δ =  9.3 (d, 1H, J =  8.5  Hz), δ =  8.5 (d, 1H, 
J = 8.5 Hz), δ = 8.3 (d, 1H, J = 9.0 Hz), δ = 8.1 (d, 1H, 
J = 8.2 Hz), δ = 8.0 (s, 1H), δ = 7.64 (m, 1H), δ = 7.62 
(d, 1H, J =  1.8  Hz), δ =  7.5 (dd, 1H, J =  9.0, 2.1  Hz), 
δ =  7.4 (dd, 1H, J =  8.3, 1.9  Hz), δ =  4.0 (s, 3H); 13C 
NMR (100 MHz, MeOH-d4) δ 171.9, 170.6, 160.9, 160.2, 
155.1, 133.1, 131.0, 130.5, 122.5, 121.8, 121.4, 120.5, 
113.4, 113.1, 102.3, 55.0 ppm; HRMS (ESI) m/z 253.0890 
(M+)+), calcd for C16H13O3 253.0865.

7‑hydroxy‑2‑(4‑methoxyphenyl)chromenylium hydro‑
gensulfate (3, C16H14O7S)  Orange-red powder, 0.990  g 
(95  %). M.p.: 157–190  °C (decomposed); 1H NMR 

(400 MHz, MeOH-d4) δ = 9.1 (d, 1H, J = 8.7 Hz), δ = 8.5 
(d, 2H, J = 9.1 Hz), δ = 8.4 (d, 1H, J = 8.7 Hz), δ = 8.2 (d, 
1H, J = 9.0 Hz), δ = 7.5 (d, 1H, J = 2.0 Hz), δ = 7.4 (dd, 
1H, J = 8.9, 2.2 Hz), δ = 7.3 (d, 2H, J = 9.1 Hz), δ = 4.0 
(s, 3H); 13C NMR (100  MHz, MeOH-d4) δ 173.7, 170.8, 
168.7, 160.1 155.2, 143.2, 133.6, 122.83, 122.76, 120.6, 
117.2, 113.7, 103.8, 57.0 ppm; HRMS (ESI) m/z 253.0889 
(M+), calcd for C16H13O3 253.0865.

Abbreviation
FRAP: ferric reducing activity of plasma.
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