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Background
If the development of an ecosystem is driven by competition, why doesn’t a single spe-
cies outcompetes all others and becomes the dominant, if not the only surviving one? 
Why don’t we always have food chains and food towers instead of food webs and food 
pyramids? Ecological models that describe the resource competition between different 
species help to understand biodiversity (Levin 2012). Models that show how and why in 
some situations several species can coexist, while in slightly different situations one may 
prevail over others, can explain observations of invasion and succession processes in 
real life environments. Even very simple models can exhibit such complicated behaviour, 
but unfortunately also the mathematics behind such simple models can become com-
plicated (Edelstein-Keshet 2005). Graphical analysis tools and numerical simulations do 
enhance accessibility of these models, but cannot replace the in depth insight obtained 
from mathematical analysis. In fact, for a full understanding of the dynamics of the tran-
sition of a system from one situation to another, mathematical analysis is indispensable. 
Here, we summarize the elementary mathematics underlying a suite of simple models of 
resource competition (Tilman 1982), in which the dynamics of consumers and resources 
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are explicitly represented. The original papers presenting the mathematical roots of the 
model require mathematical skills that most ecologists do not possess. Our aim is to 
make the presentation as accessible as possible. Thus, we keep mathematical sophistica-
tion to the minimum needed to explain how the ecology of the model derives from the 
mathematics.

In the model as introduced by Tilman there are consumers, plants or animals that are 
part of a given ecosystem, and resources, other plants or animals, but also water, min-
erals or light that the consumers need for their maintenance and growth. Initially the 
model was applied to competition between several species of algae (Tilman 1977), which 
may explain some specific choices made in the model, also when applied more gener-
ally. The state variables are the overall densities of consumers and resources within an 
ecosystem. The model describes the development of these densities in time. There is no 
direct interaction between the consumers, nor between the resources. Only in the inter-
action between the consumer and the various resources can there be a combined effect 
of the different resource densities. The dynamics of the densities is described mathemat-
ically by a system of coupled ordinary differential equations.

In “The Tilman model” we discuss the general form of the equations for multiple spe-
cies competing for several resources, and critically discuss assumptions made in the 
model. In “Stability analysis of the Tilman model” the model is simplified, c.f. specified, 
to make it amenable for mathematical analysis, and we discuss what further biologi-
cal implications are associated with the restricted model. It will turn out that to a large 
extent the model can be solved quite generically, without full specification of the interac-
tion. We develop a stability analysis for a system of up to two different species competing 
for two resources, and recapitulate the earlier derived conditions for a stable coexist-
ence. The conditions are mathematical relations between model parameters. Moreover, 
the analysis yields the relevant time scales at which the model operates, not only for the 
stable asymptotic state, but also for the unstable, possibly transient states.

To investigate the full dynamic behaviour of the models, which we do in “Numerical model 
calculations”, we will need to specify the interactions within the model further, and with 
those the stability results. For all models we investigate how a relatively unpopulated system 
develops towards the final state with one or two consumers coexisting with the resources. It 
turns out that indeed all stationary states are important for the overall dynamics, and also 
the rates, or inversely the time scales, at which the system moves away from the unstable 
states. Finally we review the biological assumptions made, and explain how we can under-
stand the observed model behaviour in terms of its biological background, or, vice versa, how 
the model helps to better understand the ecological behaviour of the biological system.

The Tilman model
The general form given by Tilman (1982), using his notation, for a system with an arbi-
trary number of consumer population densities Ni(t) and resource abundances Rj(t), the 
state variables of the system, is

(1)











dNi(t)
dt

= fi(R1,R2, . . .)Ni(t)−miNi(t)

dRj(t)

dt
= gj(Rj)−

�

i

qji(R1,R2, . . .)fi(R1,R2, . . .)Ni(t)
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Here mi is the inherent net mortality rate of the consumer i, the average probability per 
time unit that a single consumer of this species is removed from the population. The 
ensuing net expectation for the decline rate of the population density is the product of 
the mortality rate and the density itself. The mortality rate is a constant parameter, not 
depending on any other model system variable or parameter. Similarly the function fi is 
the relative growth rate of consumer i. This rate only depends on the resource densities. 
In our general analysis we will make just a few assumptions for this growth function, but 
leave it further unspecified. In “Numerical model calculations” we use the common Hol-
ling type II response function. Symbols and their physical dimension are summarized in 
“List of symbols”.

The dynamical equation for the resources in (1), like that for the consumers, contains 
a growth and a decline term. The growth rate gj of any given resource depends only on 
the resource density itself. Within this paper we will describe the net inflow of nutrients 
with the familiar chemostat model gj

(

Rj

)

= aj
(

sj − Rj

)

. In the absence of consumers 
it describes restricted exponential growth of the resource density towards sj, the stable 
resource density, at a rate aj. The aj and sj are constants. In fact a is the dilution rate 
of the chemostat, and 1/a is the average residence time of the nutrient inside the sys-
tem, defining a time scale of the process. A chemostat model may be appropriate in an 
experimental setup, and applies for instance to a lake with abiotic nutrients delivered 
and removed through inflowing and outflowing streams. Some aspects of the model, 
however, may be somewhat counter-intuitive. We will mention these later briefly, and 
discuss them more extensively in a separate paper.

Consumers use the resources for growth. This leads to the decline term in the equa-
tion for the resources. The total rate at which a given resource is consumed is the sum of 
the consumption rates of all consumers using that particular resource. The consumption 
rate of a resource by a consumer is proportional to the growth rate of that consumer, 
with a proportionality factor accounting for the conversion from resource to consumer. 
In the original model as proposed by Tilman the conversion factor qji can be a function 
of all resource densities, but not of the consumer densities. We will use constant positive 
conversion factors qji for resource Rj used by consumer Ni. This implies that in order to 
produce a single consumer unit, a fixed amount of each resource is removed.

Further attributes of the ecological system can enter the model through the growth 
functions fi(R1,R2, . . .). In our general stability analysis we assume the growth rate of a 
consumer to increase with increasing resource density. A larger availability of a resource 
will make life easier for the consumer, and a smaller investment in finding the resource 
is expressed in an increased number of siblings or a decreased probability of starva-
tion. For the model the net effect is the same. Secondly we assume that there can be no 
growth in the absence of resources; a population cannot grow without a resource being 
present, but instead will die from want. Within the chemostat model for nutrient supply 
one must be cautious though, because a low nutrient concentration is associated with a 
high net nutrient inflow. If consumption is very effective, a low abundance can be com-
bined with a large flow. In reality often consumers need to get hold of the resource in 
order to benefit from it. If that includes foraging for the resource, it needs to be pre-
sent in some finite abundance, otherwise the investment in foraging behaviour does not 
exceed the gain in acquiring the resource. The holy grail is to find the perfect balance 
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between simplicity and applicability of the model (Hilborn and Mangel 1997). We will 
take the growth rate of the consumers to be zero at zero resource abundance.

For the terminology and a short overview of the mathematical analysis method the 
reader is referred to “Appendix A: Dynamical systems”. In a stability analysis we first find 
the stationary or equilibrium states of the system of equations by solving the dynamical 
equations (1) for the case of zero net growth; all derivatives are identically zero. Note that 
we use the terms equilibrium and stationary state interchangeably. Instead of state we will 
also use the term point, as explained in “Appendix A”. Exactly at the equilibrium state all 
derivatives are zero, nothing changes and the systems is fully stationary. The question is 
what happens if the system is slightly perturbed, does it move back to its equilibrium, or 
do the perturbations grow, rendering the stationary state unstable? Linearization of the 
non-linear system of equations about the stationary state next yields the Jacobi matrix, 
the eigenvalues and eigenvectors of which matrix exactly tell us how the model system 
reacts to small perturbations near the stationary state. We present these calculations in 
much detail in “Appendix B: Mathematical details of the stability analysis”, so the reader 
may check the steps along the way, and reproduce those steps in case of a slightly modi-
fied model system. “Stability analysis of the Tilman model” will focus on the results of 
these calculations. Next to the stable equilibria or stationary states, we also investigate the 
unstable stationary states of the system, as these will turn out to play an important role 
in the transient dynamics of the system, how it develops towards the stable state. Finally 
we investigate this full dynamics of the examples treated in the next section for a specific 
class of growth functions. As the differential equations are non-linear, we use an approxi-
mating numerical solution procedure in “Numerical model calculations”.

Stability analysis of the Tilman model
A single species consuming a single resource

The simplest case of the Tilman model we investigate is that of a single consumer and a 
single resource. We adopt a simplified notation; instead of N1 we use B (a second con-
sumer A is introduced later), instead of R1 we write R (and a second resource is named 
P). The model equations for a single species B depending on a single resource R are

Here fB(R(t)) is the resource dependent relative growth rate of B, and mB is its mortal-
ity. We perform the stability analysis with a general function f, because we want to show 
that for the chosen characteristics of this function the stability of the steady state is the 
same, irrespective of the exact form of f. In the absence of B the resource R is depleted 
at a rate aR, while it is replenished to a stable level sR. When B is present, the resource is 
additionally depleted at the same rate at which B grows, times a conversion factor qRB. 
For this simple system we will do the mathematical derivation in full here, derivations 
for all systems we consider are given in “Appendix B”. We first determine the stationary 
states (or points) of the system and their stability properties.

(2a)
dB(t)

dt
= fB(R(t))B(t)−mBB(t),

(2b)
dR(t)

dt
= aR(sR − R(t))− qRBfB(R(t))B(t).
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From Eq. (2a) it follows directly that if there are no B’s to begin with, there will never 
be any. Moreover, in the absence of B, the resource will asymptotically reach a level sR, 
regardless of the initial level R(0). This implies

is one of the stationary points of the system of equations (2a, 2b). We will call this the 
trivial equilibrium, because a key element of the model, i.e. the consumer, is absent. The 
parameter sR we call the stable resource level.

To investigate the stability of the trivial equilibrium in the full non-linear system, we 
determine the eigenvalues of the Jacobi matrix at the equilibrium point. An explanation 
of the derivation is given in “Appendix A”. The Jacobi matrix for system (2a, 2b) is given 
by

For the trivial equilibrium (3) we find

with eigenvalues �1 = fB(sR)−mB and �2 = −aR. Note that the eigenvalues have the 
dimension of a rate, a negative value gives the rate at which the system moves towards 
the stationary state, a positive one the rate at which it moves away. For any biologically 
relevant situation the parameter aR is positive, so one of the eigenvalues is always nega-
tive. If the mortality is larger than fB(sR), the growth function at stable resource density, 
also the second eigenvalue is negative, and the stationary point (0, sR) is a stable node. 
If the mortality is smaller than fB(sR), the first eigenvalue is positive, so the stationary 
point is a saddle point, which is unstable (also see “Appendix A” for a characterisation of 
stationary states). If there is enough of the nutrient for the consumer to compensate its 
net mortality, any existing small consumer density will increase, otherwise the consumer 
disappears.

A second stationary point is found by solving (2a) for dB/dt = 0. Apart from B = 0, 
that upon substitution in (2b) gives the trivial stationary point, there is also a possible 
solution

In this case the resource concentration is such that growth exactly compensates for 
the loss term of the consumer, the net growth is zero. Whether there is such a solu-
tion depends on the details of fB(R). The growth function we have chosen is maximal for 
infinite resource density. If this maximum growth rate lies below the mortality rate of 
the consumer, then fB(R) < mB for all values of R, and there is no solution of (6). In that 
case the trivial equilibrium (0, sR) is a stable node. In fact for any positive value of the 
resource and consumer density the system will develop towards the trivial equilibrium.

If the maximum of the growth function exceeds the mortality, there is exactly one solu-
tion fB(R∗) = mB of Eq.  (6), because the growth function is monotonously increasing 

(3)B0 = 0, R0 = sR,

(4)J (B,R) =

(

fB(R)−mB B
dfB(R)
dR

−qRBfB(R) −aR − qRBB
dfB(R)
dR

)

.

(5)J (0, sR) =

(

fB(sR)−mB 0

−qRBfB(sR) −aR

)

,

(6)fB(R) = mB.
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with increasing resource density. The corresponding equilibrium density B∗ then is 
found by setting dR/dt = 0 in (2b). This leads to

This implies there is a second stationary point of the full system

describing coexistence of the consumer and the resource. We call this the coexistence 
point. Now there are two possibilities: if R∗ > sR the equilibrium density for the con-
sumer in the coexistence point is negative, which is biologically impossible. In this case 
the trivial stationary point is a stable node; the consumer will always die out, and the 
resource will reach its stable level. The second possibility is that R∗ < sR, in which case 
the coexistence point is biologically relevant, and the trivial equilibrium is a saddle point.

The Jacobi matrix for the coexistence point (8) is

The eigenvalues are

If the coexistence point is biologically relevant, both eigenvalues have a negative real 
part, and the equilibrium is a stable node or a stable vortex. Only if the stable resource 
level is more than sufficient for the consumer to overcome its inherent mortality, there 
is a stable finite size population. In “One consumer and one resource” we investigate the 
full dynamics for a Holling type II growth function. Further discussion of the ecological 
implications of these results is deferred to the “Conclusions and discussion”.

Two species competing for a single resource

When two different species A and B are competing for the same resource R, the set of 
equations is extended with an equation for A analogous to that for B, while the con-
sumption of the resource by both species now is included in the equation for R. We have

(7)B∗

=

aR(sR − R∗)

qRBfB(R∗)
=

aR(sR − R∗)

qRBmB
.

(8)B∗

=

aR(sR − R∗)

qRBmB
, R = R∗

,

(9)J (B∗

,R∗) =





0 B∗ dfB(R)
dR

�

�

�

R=R ∗

−qRBmB −aR − qRBB
∗ dfB(R)

dR

�

�

�

R=R ∗



.

(10)�
±
= −

1
2
aR −

1
2
qRBB

∗ f ′B(R
∗)± 1

2

√

(aR + qRBB∗ f ′B(R∗))
2
− 4mBqRBB∗ f ′B(R∗).

(11a)
dA(t)

dt
= fA(R)A(t)−mAA(t),

(11b)
dB(t)

dt
= fB(R)B(t)−mBB(t),

(11c)
dR(t)

dt
= aR(sR − R(t))− qRAfA(R(t))A(t)− qRBfB(R(t))B(t).
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Again the resource reaches a stable level sR in the absence of A and B, establishing the 
trivial equilibrium

A second stationary point is found by solving (11a) for zero growth, to find

while (11b) is satisfied because B = 0; one consumer is absent. The analysis is fully in 
line with that for a single species. Again the details of the growth function determine 
whether a solution to (13) exists. There is at most one solution R∗

A. The associated equi-
librium density A*  is derived from (11c) by setting dR/dt = 0. The second equilibrium, 
the A-point, is

A similar third stationary point is found when

and A = 0. The third equilibrium, the B-point, is

Stationary points (14) and (16) are only biologically relevant if sR > R∗

A or sR > R∗

B 
respectively, that is, when the stable resource level exceeds the required level for net 
population growth of the consumer species.

The next question is about the stability of the three equilibria as a function of the 
stable resource level sR. We assume that R∗

A < R∗

B. After all, the names are just conven-
tional. If sR > R∗

A (and hence also sR > R∗

B), there is not enough resource to sustain any 
consumer. Both (14) and (16) then are unphysical, if they exist at all, because a density 
cannot be negative. The only real equilibrium is the trivial one, which is a stable node 
(see “Appendix B: Two species competing for a single resource”). The next case is when 
R∗

A < sR < R∗

B, so there is enough resource for A to grow to its stable level A*, which now 
is a positive number. Equilibrium (16) still is unphysical. The trivial equilibrium (12) is 
a saddle point, and equilibrium (14) is a stable node or a stable vortex. Finally we can 
have R∗

A < R∗

B < sR, in which case all three equilibria are biologically relevant. The trivial 
equilibrium then is a saddle. Equilibrium (14) still is a stable node or a stable vortex, and 
(16) is a saddle point.

There seem to be only two possibilities. If the steady nutrient supply is insufficient 
to sustain either consumers, both species become extinct and the resource reaches its 
stable level; the system goes to the trivial equilibrium. The alternative is that the spe-
cies with the lower food requirement reaches a stable level, the other becomes extinct 
and one of the border equilibria is reached. Close to the equilibrium point this is true, 
but we cannot draw global conclusions from this analysis. We do not have any informa-
tion about the actual dynamics of the system away from the stationary points. Numeri-
cal investigation for specific parameter values and growth functions, as we will do in 

(12)A = 0, B = 0, R = sR.

(13)fA(R) = mA,

(14)A∗

=

aR(sR − R∗

A)

qRAmA
, B = 0, R = R∗

A.

(15)fB(R) = mB.

(16)A = 0, B∗

=

aR(sR − R∗

B)

qRBmB
, R = R∗

B.
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“Numerical model calculations: two consumers and one resource”, will show this global 
behaviour in detail, and will show that in fact unstable points can be extremely relevant 
for what happens in real systems. The conclusion for now is that there can be coexist-
ence between one consumer and one resource, but a single resource in the long run is 
insufficient, within the model we study, to sustain two different consumers in stable 
coexistence.

A single species consuming two resources

For a single species depending on two different resources, the dynamical equations become

Note that the conversion factors qPB and qRB can be different for the two resources. Also 
the rates aP and aR can be different for the two resources, in case of a chemostat with a 
single supply reservoir the dilution rates usually will be the same. The growth rate of the 
species depends on both abundances, allowing for a trade-off, at least that seems the case. 
If both resources are needed, fB(P,R) will be zero in the absence of either resource.

The coupling between the two resources is strictly through the consumption by B. 
Both have a stable replenishing level, different for different resources, and independent 
of the other resource. In the absence of B, there will never be any, and both resources are 
replenished independently to their stable levels, regardless of their initial abundance, so 
there is a stationary point

As before, we will call this the trivial equilibrium. The point with both resources at 
their stable levels is called the supply point.

Zero net growth for B is also the case if the growth rate matches its mortality rate

Whether (19) has solutions depends on the growth function. We must be a bit more 
specific now we have two resources. We expect a higher abundance of either resource to 
give a higher growth potential. Hence we assume a monotonically non-decreasing func-
tion fB(P,R), so ∂f /∂P ≥ 0 and ∂f /∂R ≥ 0 regardless of the abundances of the resources. 
Those assumptions still leave open all kinds of interactions, like substitutability or syn-
ergy between the resources in the consumption pattern, but rules out inhibition, where a 
high abundance of one or both resources reduces the growth.

The solution of (19) is a contour line of fB(P,R) in the PR-plane at the value mB, called 
the zero growth isocline of B. If fB(P,R) < mB for all abundances, there is no solution. 
Otherwise, in general, the zero growth isocline gives infinitely many combinations of 

(17a)
dB(t)

dt
= fB(P(t),R(t))B(t)−mBB(t),

(17b)
dP(t)

dt
= aP(sP − P(t))− qPBfB(P(t),R(t))B(t),

(17c)
dR(t)

dt
= aR(sR − R(t))− qRBfB(P(t),R(t))B(t).

(18)B = 0, P = sP , R = sR.

(19)fB(P,R) = mB.
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resource abundances for which (17a) yields a stationary B population size. In the case 
there are no solutions to (19), the trivial equilibrium is the only stationary point. If there 
are infinitely many solutions to (19) a second criterion comes from the fact that the same 
stable B-density should satisfy both (17b) and (17c).

Suppose (P, R) is a solution of (19), any point along the contour line. In order for this 
specific combination of resource densities to establish a stationary point, both (17b) and 
(17c) need to give zero growth. That leads to the set of linear equations

Since the same population density B occurs in both equations, it can be eliminated to 
give

This identifies a line in the PR-plane through P = sP, R = sR, the supply point, with the 
slope given by the q’s and the a’s. The stationary point is the intersection (P*, R*) of this 
line with the mB-contour of fB(P, R). If both P* and R* are above the corresponding stable 
level for the given resource, the population size B* is unphysical, so only for both values 
below the stable level do we find a biologically relevant second stationary point.

As before, we will call this the coexistence point.
In “Appendix B: A single species consuming two different resources” we show that if 

there is a biologically relevant coexistence point the trivial equilibrium is a saddle point, 
otherwise it is a stable node. If the amount of resources made available is insufficient to 
compensate for the mortality, the species will become extinct. It looks like the introduc-
tion of a second resource does not add to the complexity of the biological system, it only 
complicates the mathematics. Having a second resource available does not provide the 
consumer with an option to exchange between the two, its behaviour is fixed by how the 
growth function depends on the two resource densities and the fixed values of the other 
parameters.

Two species competing for two resources

So far we have seen that within the model there can be sustainable coexistence between 
the food and the consumer and between two foods and one consumer, but not between 
two consumers and one food. Can we have coexistence between two consumers and 
if so, under what circumstances? We look at a system with two consumers and two 
resources

(20)

{

aP(sP − P)− qPBmBB = 0

aR(sR − R)− qRBmBB = 0
.

(21)
aP(sP − P)

qPBmB
=

aR(sR − R)

qRBmB
⇒

sP − P

sR − R
=

aRqPB

aPqRB
.

(22)B∗

=

aR(sR − R∗)

qRBmB
=

aP(sP − P∗)

qPBmB
, P = P ∗

, R = R∗

.

(23a)
dA(t)

dt
= fA(P(t),R(t))A(t)−mAA(t),

(23b)
dB(t)

dt
= fB(P(t),R(t))B(t)−mBB(t),
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There are four stationary points. First we have the trivial equilibrium, where both A 
and B are absent

Next we have the situation where B is absent and A is stable because

that is the growth matches the mortality, a point on the mA-contour line or null isocline 
for A. As for a single species with two foods, we have similar to Eq. (18)

The stationary point is

Whether this stationary point is biologically relevant depends on the growth function 
and the stable resource levels. We will call this the A-point. Reversely we may have that 
A is absent while for B

with

to give the stationary B-point

Again the specifics of the growth function and the resources determine the biological 
relevance. A fourth stationary point indeed sees the coexistence of all four state vari-
ables. When the null isoclines (25) and (28) intersect, there is a combination of resource 
abundances

Because also (23c) and (23d) need to show zero change we have

(23c)
dP(t)

dt
= aP(sP − P(t))− qPAfA(P(t),R(t))A(t)− qPBfB(P(t),R(t))B(t),

(23d)
dR(t)

dt
= aR(sR − R(t))− qRAfA(P(t),R(t))A(t)− qRBfB(P(t),R(t))B(t).

(24)A = 0, B = 0, P = sP , R = sR.

(25)fA(P
∗

A,R
∗

A) = mA,

(26)
sP − P∗

A

sR − R∗

A

=

aRqPA

aPqRA
.

(27)A′

=

aR(sR − R∗

A)

qRAmA
=

aP(sP − P∗

A)

qPAmA
, B = 0, P = P∗

A, R = R∗

A.

(28)fB(P
∗

B,R
∗

B) = mB,

(29)
sP − P∗

B

sR − R∗

B

=

aRqPB

aPqRB
,

(30)A = 0, B′

=

aR(sR − R∗

B)

qRBmB
=

aP(sP − P∗

B)

qPBmB
, P = P∗

B, R = R∗

B.

(31)

{

fA(P
∗,R∗) = mA

fB(P
∗,R∗) = mB

.

(32)

{

aP(sP − P ∗)− qPAmAA− qPBmBB = 0

aR(sR − R∗)− qRAmAA− qRBmBB = 0
.
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This linear system can be written in matrix–vector form as:

If this matrix Q has an inverse, this system can be solved for the population sizes to 
give

In order for the equilibrium to be biologically relevant, both population sizes must be 
positive. It is not enough for the stable resource levels to exceed the stationary levels 
here, depending on the determinant of the Q-matrix the parameters must satisfy

for det (Q) > 0, or

for det (Q) < 0. If either is the case, Eqs. (31) and (34) establish a fourth equilibrium, with 
coexistence of all consumers and resources

If there are more intersection points satisfying (31) there can be additional equilibria 
of the same type. The inequalities (35) and (36) are related to the usual graphical analysis 
of the Tilman model in the PR-plane (Tilman 1980; also see Ballyk and Wolkowicz 2011, 
for a detailed description of a slightly different approach). For the case that the a’s are 
the same, a common choice for a chemostat, both inequalities state that the supply point 
lies in the wedge between the lines through (P*, R*), with slopes given by the ratios of 
the conversion factors. The direction vectors of these lines are called the consumption 
vectors.

Stability analysis (see “Appendix B: Two species and two resources”) shows that if the 
stable level of the resources is sufficient to overcome the mortality of at least one of the 
consumers, the trivial equilibrium is a saddle point, otherwise it is a stable node. The 
A-point and B-point behave as for a single consumer with two resources. The stability of 
the coexistence point is related to

The Q-matrix is already familiar. It plays a role in determining the biological relevance 
of the coexistence point. The derivatives in the second matrix are evaluated at the inter-
section point of the null isoclines. The columns are the gradients of the growth func-
tions, which vectors are perpendicular to the contour lines. The determinant indicates 

(33)Q

(

mAA
mBB

)

=

(

aP(sP − P ∗)

aR(sR − R∗)

)

, with Q =

(

qPA qPB
qRA qRB

)

.

(34)

A∗

=

qRBaP(sP − P ∗)− qPBaR(sR − R∗)

(qPAqRB − qRAqPB) mA
, B∗

=

qPAaR(sR − R∗)− qRAaP(sP − P ∗)

(qPAqRB − qRAqPB) mB

(35)
qPB

qRB
<

aP(sP − P ∗)

aR(sR − R∗)
<

qPA

qRA
,

(36)
qPB

qRB
>

aP(sP − P ∗)

aR(sR − R∗)
>

qPA

qRA
,

(37)A = A∗

, B = B∗

, P = P ∗

, R = R∗

.

(38)det

�

qPA qPB
qRA qRB

�

det





∂fA
∂P

∂fA
∂R

∂fB
∂P

∂fB
∂R



.
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how these contour lines cross. If the determinants have opposite sign, we have a saddle 
point, otherwise it is a stable node or stable vortex.

In Fig. 1 this is elucidated in the PR-plane. Note that the full dynamics, as given in the 
analysis above, is in a four dimensional phase space, but because of the structure of the 
equations and with some additional notions one may investigate the behaviour in the pro-
jection plane only. The drawn lines marked A and B are the zero isoclines for each con-
sumer, the dashed arrows have a slope corresponding to the uptake ratio of the resources 
of the consumer as indicated. These consumption vectors indicate how the resource con-
centrations change if the consumer density changes. The determinant of Q tells us how 
the uptake vectors cross, whether you rotate clockwise moving from A to B or anticlock-
wise. In the left plot the uptake vectors cross in the same way as the zero isoclines, both 
clockwise, the determinants of the two matrices have the same sign, and we have a stable 
equilibrium. In the right plot the crossing is reversed, the uptake vectors cross anticlock-
wise, and we have a saddle point. This can further be understood by looking at a point in 
the shaded wedge between the two isoclines, close to the stationary coexistence point. 
In both cases it lies to the left of the B-isocline, which means there are not enough nutri-
ents to compensate for its mortality, so B will decrease. Consequently, according to the 
dynamical equations, P and R will increase in proportions given by the B’s conversion fac-
tors, opposite to the uptake vector for B. The shaded area is to the right of the A-isocline, 
so A will increase and the resources will decrease in the same direction as the uptake vec-
tor for A. The dotted arrows indicate both changes. In the left case the combined arrow, 
the sum of the two effects, points towards the intersection point, in the right case it 
points away from it. One may repeat the procedure in the other wedges to ascertain that 
indeed the left case is a stable equilibrium and the right case a saddle, as indicated by the 
mathematical analysis. A more popular statement is that for stable coexistence of the con-
sumers not only the supply of the resource must suffice, but also each consumer should 
consume mostly that resource that in the intersection point is mostly limiting its growth.

Numerical model calculations
For a specific model we can readily calculate the full solution of the dynamic equa-
tions numerically. A standard forward Euler approximation (Press et  al. 1986) with a 

Fig. 1  Stable or unstable coexistence of two species A and B in the PR-plane. The drawn lines are the zero 
isoclines. At the intersection point both consumer densities are stationary. The dashed arrows are consump-
tion vectors, indicating in what proportion the two resource densities decrease when a single consumer 
density increases. The dotted arrows in the shaded area give the combined resource density change; a motion 
towards the intersection, and hence a stable equilibrium point (left), or away from it, and hence a saddle 
point (right)
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sufficiently small time integration step will usually perform well. We have used a rather 
straightforward implementation of the model in Excel. We again consider the four dif-
ferent situations, single consumer with single resource, two consumers and a single 
resource, single consumer and two resources and two consumers with two resources. 
For each of the systems we calculate the stationary points and their stability properties 
as a function of the stable level of the resource(s). Next we investigate the global behav-
iour by following the trajectory of the system in an appropriate part of phase space by 
numerically integrating the full non-linear system of differential equations for an appro-
priately chosen initial situation.

One consumer and one resource

For the growth function of the consumer we now take the Holling type II functional 
response

The solution of (6) for this simple case can be calculated analytically

The solution only exists if the maximum fmB of the growth function exceeds the mor-
tality rate mB. Moreover for the coexistence point (10) to form a stable attractor in the 
positive quadrant, R∗ < sR, so

The half saturation constant kRB mainly sets the scale for sR, and hence the resource 
density R. Similarly qRB sets the relative scale of the consumer density B in Eq. (2b). The 
mortality rate mB sets a time scale for the consumer dynamics, while aR does the same 
for the resource. We take kRB = 1. If the coexistence point is biologically relevant, the 
trivial equilibrium at zero consumer density is a saddle point, otherwise it is a stable 
node.

Figure 2a, b shows the results for the case mB = 1, aR = 1, sR = 1, qRB = 1. According 
to (41) the maximum of the growth function must be fmB > 2 to have a stable coexist-
ence point. We take fmB = 2.5. The starting point of the numerical solution of the system 
of equations we take at R(0) = 0, B(0) = 0.01, no resource and just a small consumer 
density. The time plot (Fig. 2a) shows that the resource density quickly grows to its sta-
ble level, while the consumer density remains small. Once the consumer density starts 
increasing, the resource density drops until stable coexistence of the consumer and its 
resource is reached at R* = 0.67, B* = 0.33. In the phase plot (Fig. 2b) the consecutive 
time steps are marked, showing that the consumer density initially drops rapidly, as can 
be expected in the absence of food, until the dynamics slows down near the trivial equi-
librium at R = 1, B = 0. Since this is a saddle point, with eigenvalues λ1 = 0.250 and 
λ2 = −1, the trajectory eventually accelerates along the unstable direction, straight to 
the stable coexistence point, a stable node with eigenvalues λ1 = −0.300 and λ2 = −1. 

(39)fB(R) =
fmBR

R+ kRB
,

(40)fB(R
∗) =

fmBR

R+ kRB
= mB ⇒ R∗

=

kRBmB

fmB −mB
.

(41)
kRBmB

fmB −mB
< sR ⇒ fmB > mB

(

1+
kRB

sR

)

.
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The eigenvalues at the saddle point are λ1 =  fB(sR) − mB and λ2 = −aR. The first one 
is always positive if the nutrient supply is sufficient, but the rate at which the system 
moves away from the saddle point can be very small. If we take 2 < fmB < 2.5; smaller, but 
large enough to feed B, the system initially moves very rapidly towards the saddle point, 
because of the second eigenvalue λ2 = −1, but moves away at an arbitrarily small rate.

If the timescale for the resource replenishment is chosen substantially larger than that 
of the consumer mortality, i.e. slow replenishment, the coexistence point is a stable vor-
tex. For mB = 1, aR = 0.1, sR = 1, and qRB = 0.1, the two stationary points have exactly 
the same density values as above, but the dynamics is different. The initial values are 
also the same: R(0) = 0, B(0) = 0.01. Again in the phase plot (Fig. 2d) the system moves 
towards the trivial equilibrium, lingers there until it speeds up in the unstable direction, 
but then spirals into the coexistence point. Note the difference in time scale with the 
previous situation in the time series (Fig. 2c). Once the consumer density starts growing, 
the resource density drops, but both overshoot their stable value. The relaxation towards 
the coexistence point shows oscillatory behaviour, and is also slower than in the previ-
ous case, but the reduction factor is not as high as that for the aR. The eigenvalues form 
a complex pair with negative real part Re(λ) = −0.065. The difference with the λ1 of the 
previous case is less than a factor of 5.
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Fig. 2  Numerical solution of a system of a single consumer B and a single resource R (parameter values, 
specified in the text, are such that there is stable coexistence of consumer and resource). Initially the resource 
is absent and the consumer density is small. The time plot a shows that the resource rapidly grows to its 
stable level, while the consumer density remains small. When the latter increases, the resource density 
drops, and both densities relax to the coexistence equilibrium level. The phase plot b shows the trajectory 
as produced by the consecutive states of the numerical iteration procedure with fixed time step, the marker 
points. The system moves rapidly from the initial state, indicated by the red dot, to the trivial equilibrium, a 
saddle point, and next moves directly to the stable coexistence point. Next the parameters are modified to 
create a substantial difference in time scales between the growth rates of the resource and the consumer. 
The time plot c shows that in the final relaxation both densities show oscillating behaviour. Again the phase 
plot d shows that the system first moves to the unstable trivial equilibrium, but now spirals into the stable 
coexistence point
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Two consumers and one resource

With two consumers, there are two (different) growth functions

This leads to the two critical resource levels

The two cases of interest are RA
* < sR < RB

*, and RA
* < RB

* < sR. For the resource we take aR = 1, 
and we look what the dynamics of the system is as a function of the stable level sR. The scale 
factors in both growth functions we take unity, the only difference between the consumers 
is in the maximal value of the growth function. For A we take mA = 1, qRA = 1,  kRA = 1, 
and fmA = 3, so RA

* = 0.5, while for B we take mB = 1, qRB = 1,  kRB = 1, and fmB = 2, so 
RB

* = 1. A has the advantage, as will be confirmed shortly. For initial state we take R(0) = 0,  
A(0) = 0.001,  and B(0) = 1, so we investigate whether indeed A takes over from B.

For sR  <  0.5 the only biologically relevant stationary point is the trivial equilibrium, 
which is a stable node. Any initial state will evolve towards it, like for a single consumer. 
Both A and B die out, and finally R grows to its stable level. For sR = 0.8 (Fig. 3a), B dies 
out, be it rather slowly, R grows to its stable level, after which A picks up and grows to 
its stationary level, while the resource density drops. The trivial equilibrium is a saddle 
point, the coexistence of A and R is a stable node. For sR = 1.2 (Fig. 3b), R grows to a 
value slightly below unity, while B decreases to about the stationary level B * = 0.2, but 
eventually A takes over. The coexistence of B and R is a saddle point, the coexistence of A 
and R is a stable node. The size of the stable population of A is higher for the higher sta-
ble resource level, while the stationary resource level in the latter two plots is exactly the 
same. The reason is that although in the stationary point the abundance of the resource 
is the same, because of the higher stable level, the production rate of the resource is 
higher. Hence a higher consumer population level can be maintained.

Again the devil is in the details. In any case consumer A eventually takes over from 
B, but it depends on the specific parameter values at which rate the system moves away 

(42)fA(R) =
fmAR

R+ kRA
, fB(R) =

fmBR

R+ kRB
.

(43)R∗

A =

kRAmA

fmA −mA
, R∗

B =

kRBmB

fmB −mB
.
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Fig. 3  Two consumers and a single resource. Parameters, given in the text, are the same for both plots, the 
only difference is the supply level of the resource. Also the starting point is the same, no food, much of B and 
a little bit of A. In both cases A successfully takes over from B. If the stable resource level is below the critical 
level for maintenance of B (a), this consumer simply disappears, and at some later time A grows to its station-
ary level. If the supply of resource is sufficient to support B (b), there is an interval where a finite population 
B survives on the available resource. The decline of the species B is in fact brought about by its competitor A 
eating away the required food. Eventually a higher population of A is reached because of a higher supply



Page 16 of 31van Opheusden et al. SpringerPlus  (2015) 4:474 

from the trivial saddle or the unstable equilibrium for B. For instance if the advantage of 
A over B is substantially less than in the example in Fig. 3b above, for all practical pur-
poses the saddle may appear to be stable, simply because the (numerical or real) experi-
ment does not last long enough. Moreover, if the difference between the two consumers 
is relatively small, also the takeover away from the stationary points is very slow.

One consumer and two resources

The growth function for a single species consuming two different resources is

implying that for a given growth rate both resources need to have a certain minimal 
level; both P and R are essential resources. The zero growth isocline for B is given by two 
semi lines, parallel to the P-axis and R-axis, and starting in (PB, RB)

In order that the consumer population at equilibrium is positive, we must have sP > PB 
and sR > RB. The intersection point is on one of the semi lines, hence either

or

depending on which semi line contains the intersection point. The stationary point is 
a stable node or stable vortex. We choose parameter values such that the intersection 
point is along the PB-semi line (P = PB, R > RB).

There are only two stationary points, the trivial one where the consumer is absent, and 
the coexistence point where there is a finite consumer population and both resources 
are present. If the stable level of either resource falls below the minimal required level, 
the system moves towards the trivial equilibrium, otherwise it moves towards the coex-
istence point. For the consumer we set mB = 1, qPB = 1, qRB = 1, and fmB = 3, for the 
resources we set aP = 1, aR = 1, kPB = 1, kPR = 1, sR = 1, and we investigate the behav-
iour of the system as a function of sP. The minimal required resource levels according 
to the above parameter values are P0 = 0.5 and R0 = 0.5, so the stable level for R is suf-
ficient. We start at P(0) = 0,  R(0) = 0.

For sP = 0.9, where we take as initial consumer density B(0) = 0.01,  the system first 
moves towards the trivial equilibrium (Fig. 4a). Since this forms a saddle point here, once 
the consumer density starts building up, the resource abundances drop and we reach 
coexistence. For sP =  0.7 the behaviour is very similar, be it that both equilibria have 
shifted (Fig. 4b). P reaches a lower maximum, in agreement with the lower stable level, 
but eventually drops to the same minimal level of 0.5. R, on the other hand, reaches the 
same maximum, but eventually reaches a higher abundance than in the previous case. 

(44)fB(P,R) = fmBmin

(

P

P + kPB
,

R

R+ kRB

)

,

(45)fB(P,R) = mB ⇒

(

P = PB =

kPBmB

fmB −mB
,R > RB

)

,

(

P > PB,R = RB =

kRBmB

fmB −mB

)

.

(46a)P ∗

=

kPBmB

fmB −mB
, R∗

= sR −

aPqRB

aRqPB
(sP − P ∗),

(46b)R∗

=

kRBmB

fmB −mB
, P ∗

= sP −

aRqPB

aPqRB
(sR − R∗),
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The stable consumer density is lower. This is a rather complicated trade-off. Since the 
stable level for P is lowered, the production of that resource is lowered as well, so in 
order to have a stationary level, the consumer density is lowered. A lower number of 
consumers eats less R, so the stationary level of that resource increases. When sP < 0.5, 
regardless of the initial consumer density, the production levels of the resources are 
insufficient to maintain any consumer population, and the system moves to the trivial 
equilibrium point.

If we take all a’s and q’s one tenth of the value in the first calculation, all stationary 
points have the same values, only the eigenvalues become complex, which implies oscil-
lating graphs in the time plot (Fig. 4c) and in the phase plot (Fig. 4d) a trajectory initially 
heading for the trivial equilibrium and eventually spiralling into the stable coexistence 
point. Note that only the BR-plane is plotted, in the time plot it is clear the P and R are 
fully in phase.

Two consumers and two resources

For two consumers A and B the two growth functions are just as for a single one

so again both resources need to have a certain minimal level. The zero growth isoclines 
for both consumers are the semi lines at

(47)

fA(P,R) = fmAmin

(

P

P + kPA
,

R

R+ kRA

)

, fB(P,R) = fmBmin

(

P

P + kPB
,

R
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)

,
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Fig. 4  A single consumer and two essential resources. In all cases the system first develops towards the 
trivial equilibrium, which is unstable. Once the consumer density starts increasing, both resource densities 
are lowered. The difference between the simulations a, b is the stable resource level of P, which is the limiting 
resource. A lower supply level in b reduces the supply rate of this resource, and hence the stationary level 
of the consumer. The stationary level of P is exactly the same. Since less of R is consumed, but the supply 
remains the same, it reaches a higher stationary level. In c, d the coexistence point is exactly the same as in 
(a), but the consumer death rate and resource growth rates are quite different. Now the coexistence point is 
a stable vortex, with the trajectory spiralling towards it. The time plot shows oscillating behaviour
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provided we take fmA > mA and fmB > mB. We choose parameters such that the isoclines 
do indeed intersect and that the intersection of two of the semi lines occurs at P* = PA 
and R* = RB. Possible stationary points are the trivial one where the consumers are 
absent, one where only A is present, one with only B, and the coexistence point with 
both consumers. In all these points both resources are present.

Parameter values for the resources are aP = 1, aR = 1, kPA = 0.9, kPB = 0.7, kRA = 0.8, 
and kRB = 1, so PA = 0.45, PB = 0.35, RA = 0.4, and RB = 0.5. For the consumers the 
parameters are mA = 1, qPA = 1, qRA = 0.8, fmA = 3, and mB = 1, qPB = 0.8, qRB = 1, 
fmB = 3. In a second series we interchange the q’s. We study the behaviour of the system 
as a function of the stable resource levels sP and sR.

For sP = 1, sR = 1 (Fig. 5) the coexistence point of both consumers is a stable node, 
the other three equilibria are saddle points. All stationary densities are positive, so all 
stationary points are biologically relevant. For initial values P(0) = 0, R(0) = 0.5, A(0) = 
0.001, B(0) = 0.01 the system first moves to the trivial equilibrium. Since that is a saddle 
point, by the time B is building up, the system moves into the direction of the B-point. 
Because A is present, that point too is unstable, and finally we end in the stable coexist-
ence point with densities as specified by the theory: A* ≅  0.41, B* ≅  0.17, P* =  0.45, 
R* =  0.5. The time plot (Fig. 5a) shows the curves, the phase plot (Fig. 5b) shows the 
trajectory in the PR-plane, starting at the red dot. The blue dot is the position of the 
trivial equilibrium, the bold lines are the isoclines for A (magenta) and B (blue). The thin 
dashed lines represent the consumption vectors delimiting the region given by Eq. (35), 
with the colour referring to the consumer.

The same analysis but with A(0) = 0 (Fig. 5c, d) shows that the system now eventu-
ally moves to the saddle point of consumer B, which in the subspace in which we now 
move does establish a stable node at BB

* = 0.5, PB
* = 0.6 and RB

* = RB = 0.5. Indeed three 
of the eigenvalues of this point are negative, all corresponding eigenvectors have zero for 
the A-component. Note that the latter part of the trajectory in the phase plot (Fig. 5d) 
moves parallel to the consumption vector of B, as for the case of one consumer and two 
resources.

If instead we set B(0) = 0 (Fig. 5e, f ) the system moves even closer to the trivial equi-
librium, because we start with just a tiny amount of A. Once this consumer density starts 
growing exponentially, the system rapidly moves towards the saddle point of A, with 
AA

* = 0.55, PA
* = PA = 0.45 and RA

* = 0.56. Note that now the latter part of the trajectory 
(Fig. 5f ) is parallel to the consumption vector of A.

When the supply point for the resources lies outside the wedge as defined by the con-
sumption vectors, there cannot be coexistence of both consumers. For sP = 1, sR = 0.8 
(Fig. 6a, b) the coexistence point is not biologically relevant (at least one of the consumer 
densities is negative), the A-point is a stable node, the other two equilibria are saddle 
points. If we start in P(0) = 0.8, R(0) = 1, A(0) = 0.0001, B(0) = 0.01, the system moves 
to the trivial point, then to the B-point, and finally the A-point at with AA

* = 0.5, PA
* = 0.5 

and RA
* = RA = 0.4. For sP = 0.8, sR = 1 (Fig. 6c, d) the situation is reversed and we end 

up in BB
* = 0.5, PB

* = 0.395 and RB
* = RB = 0.5. Note that the two time plots are almost 

(48)PA =

kPAmA

fmA −mA
, RA =

kRAmA

fmA −mA
, PB =

kPBmB

fmB −mB
, RB =

kRBmB

fmB −mB
,
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identical, apart from the switch between the consumers and the resources. This is due to 
the similarity in the other parameter values and the specific choice of the initial points.

A quite different situation is found when we take qPA =  0.8, qRA =  1, qPB =  1, and 
qRB = 0.8 (Fig. 7). For sP = 1, sR = 1 the coexistence point and the trivial equilibrium 
are saddle points, the other two equilibria are stable nodes. All stationary densities are 
positive, so all stationary points are biologically relevant. For initial values P(0) =  0,   
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Fig. 5  Stable coexistence of two consumers and two resources. The system first moves to the trivial 
equilibrium, the supply point, with only the resources, indicated by the blue dot in the phase plot (b). Next it 
develops to the point where only B is present, which (also) is a saddle point. Finally in a, b a stable coexist-
ence of the consumers is reached at the intersection of the zero growth isoclines of A (magenta) and B (blue). 
The thin dashed lines indicate the consumption vectors of the two consumers. In c, d the initial density of 
species A is zero. Now the system behaves effectively as that of a single consumer and two resources. The 
resources quickly obtain their stable level, almost that is, since there still is a minute amount of consumer. 
Once consumption starts in earnest, both resources disappear in the ratio of the consumption vector of B, 
and an unstable state is reached, grace to the strict absence of A. In e, f the initial density of species B is set 
to zero. The system moves again to the trivial state, but next develops parallel to the consumption vector of 
A to the saddle point with only this species present. Since the initial density of A is quite low, the trivial state 
is approached very closely and in fact seems to be stable for a short time interval, until the density of A is suf-
ficient to show it is a saddle point indeed
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R(0) = 0.5,  A(0) = 0.01,  B(0) = 0.05 the systems travels via the trivial and coexistence 
point to the stable B-point (Fig. 7a, b). If we start in P(0) = 0.8, R(0) = 0, A(0) = 0.01, 
B(0) =  0.03, a similar detour brings us to the stable A-point (Fig. 7c, d). The two sta-
ble points each have their own basin of attraction, the choice of the starting point 
completely determines where the system will end up. Note that it looks as if the two tra-
jectories in Fig. 7b, d intersect. In fact they are fully separated, any apparent intersection 
occurs because the projection of the orbit upon the PR-plane is plotted.

The same system as the first in this series, but now with all the a’s and q’s divided by 
ten, again shows the oscillating behaviour around exactly the same stationary points 
(Fig. 8). If the time scales in the system are sufficiently different, the eigenvalues of the 
Jacobi matrices in the stationary points can be complex. In the phase plot (Fig. 8b) the 
projection of the trajectory on the PR plane does not show the spiralling behaviour, as 
corroborated by the observation that in the time plot (Fig. 8a) the resource densities are 
only slightly out of phase.

Once again the importance of the saddle points is exemplified by the majority of the 
above results. In all cases the system first moves along the stable direction of a sad-
dle point towards it, only to move away after it has switched to the unstable direction. 
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Fig. 6  When the supply point (blue dot) for the resources lies outside the wedge as defined by the consump-
tion vectors, there cannot be coexistence of both consumers. In both cases the system first develops to the 
trivial point. In a, b next the system moves towards the point with only B. Both are saddles and eventually the 
stable point with only A is reached. Note that between the two saddles the trajectory in (b) is parallel to the 
consumption vector of B. When the supply point is above the wedge (d), the roles of the two consumers are 
interchanged. After heading for the trivial state the trajectory moves parallel to the consumption vector of 
A to the saddle point with only A, before ending in the stable point with only the B present. Note that time 
plots a, c are almost identical, up to the role switch between both consumers and resources
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Depending on the detailed values of the parameters this may take arbitrarily long. For 
each dynamical system there are trajectories that travel about its phase space on a detour 
around the saddle points before finally ending up in a stable equilibrium.
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Fig. 7  For stable coexistence of the consumers not only the supply of the resource must suffice, but also 
each consumer should consume resources in a ratio that favours the competitor. If such is not the case, 
the coexistence point is a saddle. With the supply point inside the wedge there are two stable states, each 
with only one consumer present. Which consumer survives depends entirely on the initial state. In a, b after 
moving to the trivial state and the coexistence point only the B survives. For a different initial state the system 
develops to a situation in which A eventually prevails. The trajectories as shown seem to coincide partially. 
This occurs because only the phase plot projected onto the PR-plane is given. In the full phase space, includ-
ing the state variables A and B, the basins of the two stable equilibria do not overlap
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Fig. 8  Time (a) and phase plot (b) for a system in which the coexistence point of the two consumers is a sta-
ble vortex. First the resources build up, and the trivial state is approached. When B builds up the resources are 
consumed in a fixed proportion, and the state with only B is approached. When finally A builds up the system 
oscillates into the coexistence point at the intersection of the isoclines
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Conclusions and discussion
The conclusions from these mathematical analyses and simulations are quite generic. For 
all systems investigated the stationary points are either saddle points or stable nodes or 
vortices. Moreover there always is at least one stable equilibrium. For the resource that 
is not surprising, that feature is introduced explicitly in the model. For the consumers it 
is the result of the interaction. If the available amount of food is sufficient to overcome 
the inherent mortality of the consumer, it will increase in numbers. That is quite trivial 
and introduced manually into the model too. What is not so trivial is that an increase in 
consumer density does not necessarily lead to such a decrease of the food supply that 
it falls below the required abundance, setting off a chain of events that eventually leads 
to extinction of the consumer or an infinite repetition of events. A scenario like this is 
feasible, but in the current model it does not happen. Instead the system converges to 
a stable coexistence point, like in Fig. 2d or Fig. 4d where the trajectory spirals into the 
stable vortex.

Another generic feature of the models is that if there are biologically relevant station-
ary points (either internal or boundary equilibria for the consumers) at least one of these 
is a stable point. Again this may not be very surprising, but there are also physically rel-
evant stationary points that are unstable. In such cases we always have saddle points, 
there are no unstable nodes or vortices. That the saddle points are important is shown 
in the numerical section. In all cases where we start with an almost empty system it first 
develops towards a saddle point, and lingers there for a considerable time before eventu-
ally moving away from it, heading for a stable equilibrium, or yet another saddle point. 
Of course the actual dynamics depend on the initial condition, but the main message is 
that whenever the system comes near a saddle point, it may stay there for any length of 
time, depending on actually how unstable the local equilibrium is. Non-linear systems 
are known to possess also other type of equilibria, such as (quasi)periodic, homoclinic 
or heteroclinic orbits or strange attractors in chaotic systems. The systems as discussed 
here have none of these, though the orbit along the saddle points may be seen as a sort of 
precursor of a heteroclinic orbit, with the difference that it ends in a stable equilibrium 
instead of closing upon itself. Saddle points are abundant in complex systems, and they 
have a significant impact on the dynamics of such systems. The present ones are not very 
complex but they are no exception. There is nothing exotic about saddle points, they 
exist for any choice of parameters, the only issue is whether or not the system comes 
near them. If the instability of a stationary point is the result of a change in one or more 
of the model parameters, reflecting a change in system properties, such a system may be 
arbitrary close to a saddle point. The systems we study also are fully deterministic, there 
is no stochasticity involved, and all parameters are fully constant. In practice it may not 
be possible to distinguish whether an observed ecosystem is close to a stable equilib-
rium, or to a saddle point. In fact, with ever changing external factors and the many 
degrees of freedom in real systems, the concept of a stable equilibrium may not be very 
relevant, and a spectrum of eigenvalues that indicates how rapidly a given situation may 
destabilise, is much more useful. It is surprising that such simple equations as the ones 
discussed here already show the onset of complicated system behaviour, like in Fig. 3b 
where the unstable coexistence between consumer B and the resource pertains for quite 
a while before the more successful invader A takes over. Coexistence of two consumers 
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depending on just a single resource is possible within the Tilman model, as is survival 
of a population which is being invaded by a more efficient consumer, be it for a finite 
period. Eventually the model system does develop towards a stable equilibrium, the rel-
evant question is about the rate at which the crossover occurs.

The generic conclusions, by definition, are rather qualitative. Mathematics, however, is 
largely geared to produce quantitative results, provided of course we give specific input 
to the model. If we combine the generic result of Eq. (8) with the one (40) for the specific 
growth function as studied, we obtain the coexistence point of a single consumer and a 
single resource as a function of the model parameters

In fact we know much more, from the eigenvalues and eigenvectors of the Jacobi 
matrix we know exactly how and how fast this stable equilibrium is approached if the 
parameters are such that 0 < R* < sR. Depending on the available experimental data we 
can use this to estimate these parameters and decide upon the goodness of fit whether 
the model provides a satisfactory description, or whether it should be modified. Alterna-
tively we can accept the model and investigate for instance how the equilibrium behaves 
as a function of the half saturation constant kRB, keeping all other parameters constant. 
The maximal value of the consumer density mathematically is reached for a zero value of 
this parameter, and the resource density is zero too. Ecologically this seems a pathology, 
but as explained in the introduction of the model we could have expected this. By virtue 
of the autonomous dynamics of the resource within the model the resource production 
is maximized at zero resource density. That it really is a pathology is clear when we real-
ise that for kRB = 0 the growth function (42) of the consumer is constant, independent 
of the resource density. This violates the condition that the growth function should be 
zero for zero resource density. For any finite but (very) small value of kRB the situation 
in fact is normal. The equilibrium resource density increases linearly with kRB, and the 
consumer density decreases linearly, until it becomes zero when R* = sR. The ecological 
rationale is that if the consumer really needs only a small amount of resource to be pre-
sent to overcome its inherent mortality, it can take maximal profit from it. The growth 
function and the conversion factor reflect the details of the foraging for and digestion 
of the resource, but the theory does not give us the exact relation. Additional modelling 
would be needed.

Slightly more complicated is the case of one consumer and two food sources. As 
stated, it seems like this case allows the consumer to opt for a trade-off between the two 
resources, and choose whichever can be obtained most easily. The model says differently. 
Combining (22) and (46b) we find the coexistence point

If 0 < R* < sR, and the same for the other resource, this is a stable equilibrium. Since 
the stable resource densities are fixed, so are the resource production rates, and the two 
consumption rates that compensate these. The consumer has no choice, the ratio of 
consumption of the two different resources is determined by that of the two conversion 

(49)B∗

=

aR(sR − R∗)

qRBmB
, R∗

=

kRBmB

fmB −mB
.

(50)B∗

=

aR(sR − R∗)

qRBmB
, P ∗

= sP −

aRqPB

aPqRB
(sR − R∗), R∗

=

kRBmB

fmB −mB
.
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factors q. These conversion factors were introduced into the model to allow for a differ-
ence in increase in consumer density, in terms of individuals per unit surface or volume, 
and corresponding decrease in resource density, in similar units. In the setting we have 
used the q’s are inverse yield factors. If the densities are expressed as biomass instead 
of individual densities, the q’s might be understood as determining the efficiency of the 
process, but again we must be careful. If the resource is for instance salt, and a second 
resource such as water because of its ample availability is left out of the model, a small 
intake of salt could lead to a huge increase in biomass. It helps in such a case to use 
the dry weight for defining biomass, but that only reduces the discrepancy. For essential 
resources, as we have used in the numerical calculations, some authors (Dybzinski and 
Tilman 2012; Alstad 2007) assume the ratio of the resource uptakes to be the same as 
that of the minimally required resource densities to compensate for the mortality

It helps of course to reduce the number of model parameters, but in fact we are deal-
ing with two quite different things. As we have seen before, a very low resource density 
leads to a very large resource production, allowing for a very large resource uptake. Even 
if we ignore the aspects of the conversion factor as we have just mentioned, it is wrong to 
assume a proportionality between the resource uptake and density. Of course it is pos-
sible to modify the model to allow for a choice on the part of the consumer, by introduc-
ing just one of the two and having the ratio determined by an optimisation procedure of 
a separate model for the trade-off between the resources, yet to be specified. Instead of 
reducing the number of parameters, this will likely lead to an increase of the number of 
parameters in an extended model with optimal foraging.

The case of two consumers and two resources proves to be a very complex system, 
given the simplicity of the equations. This should be no surprise. Indeed, systems with 
as little as three coupled non-linear ordinary differential equations can show chaotic 
behaviour with strange attractors. So four such equations could have given even more 
fireworks, but apparently these don’t. Actually it has been shown (Huisman and Weiss-
ing 1999) that three consumers with three resources can show chaotic behaviour, which 
might suggest that the equations for the resources don’t add to the complexity. In fact 
chaotic 3D systems can be of the Lotka-Volterra direct competition type, and the whole 
purpose of the Tilman model is to provide a more indirect specification of the con-
sumer interactions, through the resources. A Lotka-Volterra-like 2D consumer system 
can show similar behaviour as the 4D Tilman system. Whether the Tilman models really 
have the advantage of connecting more directly to ecological systems than equivalent 
Lotka-Volterra system cannot be answered on the base of this investigation. We did 
argue that the additional parameters introduced by the extra equations for the resource 
still take on effective values when compared to experiments.

Although the equilibria and their stability are explained in the majority of ecological 
text books, the transient dynamics and how different time scales are involved in these 
are not. With this paper we contribute to the understanding of the dynamics of compet-
ing organisms in a non-equilibrium context. Due to changing environments more often 

(51)PB =

kPBmB
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kRBmB
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than not systems are not in equilibrium, and the transitional dynamics is more relevant 
than the equilibrium one.

List of symbols
For each symbol used in the text also its physical dimension is given in brackets. Here 
[L] is the dimension of a length, and [T] the dimension of time. Numbers are taken to be 
dimensionless, indicated as [0].

A	� Consumer density [L−3]
aj	� Growth factor for resource j (either P or R) [T−1]
B	� Consumer density [L−3]
cn	� Coefficient of the characteristic polynomial (of the n × n Jacobi matrix) [T−n]
F	� Flow [L3T−1]
fi()	� Growth function for consumer i (either A or B) [T−1]
fmi	� Maximum of the growth function for consumer i [T−1]
J()	� Jacobi matrix [T−1]
kji	� Half saturation constant of resource j in growth function of consumer i [L−3]
λ	� Eigenvalue (of the Jacobi matrix) [T−1]
mi	� Mortality rate of consumer i [T−1]
Ni	� Density of consumer i [L−3]
P	� Resource density [L−3]
qji	� Conversion factor from resource j to consumer i [0]
r	� Resource density [L−3]
R	� Resource density [L−3]
Rj	� Density of resource j [L−3]
sj	� Stable level for resource j [L−3]
t	� Time [T]
V	� Volume [L3]
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Appendix A: Dynamical systems
Here we recapitulate some basic mathematics of dynamical systems. This appendix may 
also serve as a glossary for the mathematical terminology we use in this paper. For a full 
overview of the mathematics involved we refer the reader to the general literature on the 
subject, such as (Edelstein-Keshet 2005).

A dynamical system in the context as we use it here is a set of differential equations 
describing the time development of a number of variables. In this case the variables are the 
consumer and resource densities. Because of the interaction between the consumers and 
the resources the time development of their densities depends on in principle all density 
values. For two such variables, one consumer and one resource, the dynamical system is

(52)







dB(t)
dt

= f (B(t),R(t))

dR(t)
dt

= g(B(t),R(t))
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The functions on the right hand side specify exactly how the rate of change of the vari-
ables depends on the values of the variables. Given the values of those variables, their 
time derivative is fully specified. The values of the variables define what is called the state 
of the system and the variables are called state variables. In most applications the state 
variables must have a positive value to be biologically relevant. If a variable in the math-
ematical model has a negative value, it is called unphysical, or not biologically relevant. 
The functions on the right hand side also contain several constants, such as the mortality 
of the consumer and the supply of the resource. These constants are called parameters. 
For different parameter values the same dynamical system may show different behaviour. 
We call this the dynamics of the system.

The behaviour of the system can be visualized graphically by making a time plot of the 
graphs of the variables as a function of time. The state of a system with n variables can be 
represented by a point in an n-dimensional real space, the phase space. The consecutive 
states establish a continuous curve in phase space, called a trajectory. For a system with 
just two state variables an xy-plot, with one variable along the horizontal and the other 
along the vertical axis, depicts the full phase space. For systems with more variables gen-
erally only a projection of the phase space is given in a phase plot.

An important dynamical feature are the stationary states of a dynamical system. For a 
stationary state all variables are constant with time, all time derivatives are zero. Alter-
native terms are stationary point or equilibrium. Stationary states are found by math-
ematically solving a system of algebraical equations

with one equation for each (constant) state variable. In general this system, like the 
dynamical system, is non-linear. That implies it may have several solutions, which need 
not all be biologically relevant. For each of these equilibria the stability can be assessed 
by making a linear approximation to the non-linear dynamical system, about the station-
ary point. If

are small perturbations about the stationary state B = B0, R = R0, these approximately 
satisfy

This is a linear system of differential equations, which can be written in matrix–vector 
format

(53)

{

f (B,R) = 0

g(B,R) = 0

(54)

{

δ(t) = B(t)− B0

ε(t) = R(t)− R0

(55)















dδ

dt
=

∂f (B,R)

∂B
δ(t)+

∂f (B,R)

∂R
ε(t)

dε

dt
=

∂g(B,R)

∂B
δ(t)+

∂g(B,R)

∂R
ε(t)

.

(56)

�

δ′(t)
ε′(t)

�

=





∂f (B,R)
∂B

∂f (B,R)
∂R

∂g(B,R)
∂B

∂g(B,R)
∂R





�

δ(t)
ε(t)

�

≡ J (B,R)

�

δ(t)
ε(t)

�

.
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The partial derivatives in the Jacobi matrix J(B, R) are evaluated at the individual sta-
tionary point investigated. Each point may have a different matrix. The equilibrium is 
stable if for any initial perturbation in the limit of large t it approaches the equilibrium, 
and unstable otherwise. To establish stability properties it normally suffices to calculate 
the eigenvalues of the Jacobi matrix. The eigenvalues λ have the dimension of 1/t, the 
inverse of an eigenvalue defines a time scale. A system with any number of state variables 
is stable if the real parts of all eigenvalues of the Jacobi matrix are negative, and unstable 
otherwise. More specifically if all eigenvalues are real and negative, the equilibrium is a 
stable node. In the time plot all graphs relax exponentially to that state, with a relaxation 
rate corresponding to the largest eigenvalue (less negative one). If eigenvalues are com-
plex with all negative real parts, the equilibrium is a stable vortex. The time plot shows 
oscillatory relaxation, in a phase plot the trajectory spirals into the equilibrium point. 
If all eigenvalues are positive, or have a positive real part, we speak of an unstable node 
or unstable vortex. The graphical behaviour is as for stable points, backwards in time. If 
some eigenvalues are positive and some negative we speak of a saddle point. Near a sad-
dle point the system is stable in some directions, but unstable in others. Eventually it will 
move in the unstable directions, and hence is unstable, but in practice this may take a 
long time, depending on the time scales involved.

Appendix B: Mathematical details of the stability analysis
Single species consuming a single resource

The Jacobi matrix for system (2a, 2b) is given by

For the trivial equilibrium (3) we find

with eigenvalues λ1 = fB(sR) − mB and λ2 = −aR. For any biologically relevant situation 
the parameter aR is positive, so one of the eigenvalues is always negative. If the mortality 
is larger than fB(sR), also the second eigenvalue is negative, and the stationary point (0, sR) 
is a stable node. If the mortality is smaller than fB(sR), the first eigenvalue is positive, the 
stationary point is a saddle point, which is unstable. The Jacobi matrix for the coexist-
ence point (8) is

The sum of the eigenvalues (the trace of the matrix) is negative and their product (the 
determinant of the matrix) is positive, so both eigenvalues have a negative real part, and 
the equilibrium is stable.

(57)J (B,R) =

(

fB(R)−mB B
dfB
dR

−qRBfB(R) −aR − qRBB
dfB
dR

)

.

(58)J (0, sR) =

(

f (sR)−mB 0

−qRBfB(sR) −aR

)

,

(59)J (B∗

,R∗) =







0 B∗ dfB
dR

�

�

�

R=R ∗

−qRBmB −aR − qRBB
∗ dfB

dR

�

�

�

R=R ∗







.



Page 28 of 31van Opheusden et al. SpringerPlus  (2015) 4:474 

If  fB(∞) < mB, the only stationary point is the stable trivial equilibrium. Because the 
growth rate of B is smaller than its mortality for any value of R, the net relative growth rate 
of B will always be negative, more negative than fB(∞) − mB, so B will die out. Once it does, 
R will go to its stable level sR, the trivial equilibrium is a global attractor. If fB(∞) > mB, and 
R* > sR the equilibrium density for the consumer in the coexistence point is negative, which 
is unphysical. Moreover this point can never be reached from any biologically relevant ini-
tial situation, since according to (2a) dB/dt = 0 for B = 0, regardless of R, while according 
to (2b) dR/dt > 0 for R = 0, regardless of B. The fact that fB(R) is an increasing function of 
R implies that in this case fB(sR) < mB, so the trivial stationary point is stable. The global 
behaviour can be understood by looking at R first. If R(0) ≥ R∗ the amount of available 
resource is initially sufficient to have the population B grow. However, since the replenish-
ing level is below R(0), dR/dt < 0, so R will drop until it is no longer sufficient to sustain 
growth and also B will drop, and will continue to do so. Eventually B will drop to zero and 
R will reach its stable level sR. Again the trivial equilibrium is globally stable.

Two species competing for a single resource

The Jacobi matrix for the system (11a, 11b, 11c) is

We take RA
* < RB

*. If sR < RA
* both (14) and (16) are unphysical. For the trivial equilibrium

The three eigenvalues are the three diagonal elements of the Jacobi matrix. All three are 
negative so the trivial equilibrium is a stable node. For any positive initial value for A and/
or B, and a R(0) > sR, the resource will see a net depletion, as all terms in (11c) are negative. 
A and B may grow, depending on the actual value of R(0), but eventually R will drop to 
the stable level sR. If at that time A and B happen to be zero, we have reached the equilib-
rium point, if not, they will both decrease because their mortality exceeds the level of their 
growth function. Also R will drop, because both consumers are still eating it away. Eventu-
ally both species will become extinct in the sample area, after which the resource is replen-
ished to its stable level. The local stable node is a global attractor in the physical domain.

When RA
* < sR < RB

*, the Jacobi matrix for the trivial equilibrium (61) has two negative 
eigenvalues and one positive one, so it is a saddle point. The Jacobi matrix for equilib-
rium (14) is

(60)J (A,B,R) =











fA(R)−mA 0 A
dfA
dR

0 fB(R)−mB B
dfB
dR

−qRAfA(R) −qRBfB(R) −aR − qRAA
dfA
dR

− qRBB
dfB
dR











.

(61)J (0, 0, S) =







fA(sR)−mA 0 0

0 fB(sR)−mB 0

−qRAfA(sR) −qRBfB(sR) −aR







.

(62)J (A∗

, 0,R∗

A) =











0 0 A∗ dfA
dR

�

�

�

R=R∗A
0 fB(R

∗

A)−mB 0

−qRAmA −qRBfB(R
∗

A) −aR − qRAA
∗ dfA

dR

�

�

�

R=R∗A











.
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One of the eigenvalues is fB(RA
*  ) −  mB, which is a negative number. The sum of the 

other two eigenvalues (J3,3) is negative, their product (−J3,1J1,3) is positive, so they both 
have a negative real part. The equilibrium is a stable node or a stable vortex.

When sR < RA
* < RB

*, the trivial equilibrium has two positive and one negative eigen-
value, so it is saddle. Equilibrium (14) still has the Jacobi matrix of type (62), so it still is a 
stable node or a stable vortex. The Jacobi matrix for (16) is

One of the eigenvalues is fA(RB
*   ) − mA, which is a positive number. The sum of the other 

two eigenvalues (J3,3)is negative, their product (−J2,1J1,2) is positive, so they both have a 
negative real part. The equilibrium is a saddle point.

A single species consuming two different resources

For the system of a single species depending on two different resources (17a, 17b, 17c), 
the Jacobi matrix is

The Jacobi matrix in the trivial equilibrium is

The diagonal elements are the eigenvalues. The last two are negative, the first is nega-
tive if the coexistence point is unphysical and positive otherwise. If there is a biologically 
relevant coexistence point the trivial equilibrium is a saddle point, otherwise it is a stable 
node.

The Jacobi matrix in the coexistence point is

with the gradients of the growth function evaluated at the intersection point. All param-
eters and variables have positive values, so the trace of the matrix is negative, and also the 
determinant is negative. Moreover, the characteristic polynomial λ3 + c1λ

2 + c2λ + c3 

(63)J (0,B∗

,R∗

B) =













fA(R
∗

B)−mA 0 0

0 0 B∗ dfB
dR

�

�

�

R=R∗B

−qRAfA(R
∗

B) −qRBmB −aR − qRBB
∗ dfB

dR

�

�

�

R=R∗B













.

(64)J (B,P,R) =













fB(P,R)−mB B
∂fB
∂P B

∂fB
∂R

−qPBfB(P,R) −aP − qPBB
∂fB
∂P −qPBB

∂fB
∂R

−qRBfB(P,R) −qRBB
∂fB
∂P −aR − qRBB

∂fB
∂R













.

(65)J (0, sP , sR) =









fB(sP , sR)−mB 0 0

−qPBfB(sP , sR) −aP 0

−qRBfB(sP , sR) 0 −aR









.

(66)J (B∗

,P ∗

,R∗) =













0 B∗ ∂fB
∂P B∗ ∂fB

∂R

−qPBmB −aP − qPBB
∗ ∂fB
∂P −qPBB

∗ ∂fB
∂R

−qRBmB −qRBB
∗ ∂fB
∂P −aR − qRBB

∗ ∂fB
∂R













,
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has all positive coefficients, with c1 minus the trace and c3 minus the determinant, and 
also satisfies the Routh-Hurwitz criterion c1c2  >  c3 (see Edelstein-Keshet 2005). This 
implies all eigenvalues have a negative real part, the stationary point is stable if it is 
physical.

Two species and two resources

The general Jacobi matrix of the system of equations (23a, 23b, 23c, 23d) is

The Jacobi matrix at the trivial equilibrium point is

Again the eigenvalues are the diagonal elements. If the stable level of the resources is 
sufficient to overcome the mortality of at least one of the consumers, it is a saddle point, 
otherwise it is a stable node. The Jacobi matrix for the A-point is

with derivatives at P = PA
*, R = RA

*. One eigenvalue is λ = fB(PA
*, RA

*) − mB, the others are the 
same as for one consumer and two resources, not very surprising. If the growth function 
for consumer B in the A-point exceed the mortality mB, the A-point is a saddle, if not it is 
a stable node or vortex. Similar arguments apply for the B-point. Finally the coexistence 
point has Jacobi matrix

with J ∗ = J (A∗, B∗, P ∗, R∗) and derivatives taken at P = P ∗, R = R∗. The determinant 
is

(67)

J =

















fA −mA 0 A
∂fA
∂P A

∂fA
∂R

0 fB −mB B
∂fB
∂P B

∂fB
∂R

−qPAfA −qPBfB −aP − qPAA
∂fA
∂P − qPBB

∂fB
∂P −qPAA

∂fA
∂R − qPBB

∂fB
∂R

−qRAfA −qRBfB −qRAA
∂fA
∂P − qRBB

∂fB
∂P −aR − qRAA

∂fA
∂R − qRBB

∂fB
∂R

















.

(68)J (0, 0, sP , sR) =













fA(sP , sR)−mA 0 0 0

0 fB(sP , sR)−mB 0 0

−qPAfA(sP , sR) −qPBfB(sP , sR) −aP 0

−qRAfA(sP , sR) −qRBfB(sP , sR) 0 −aR













.

(69)

J (A′

, 0,P∗

A,R
∗

A) =















0 0 A′ ∂fA
∂P A′ ∂fA

∂R

0 fB(P
∗

A,R
∗

A)−mB 0 0

−qPAmA −qPBfB(P
∗

A,R
∗

A) −aP − qPAA
′ ∂fA
∂P −qPAA

′ ∂fA
∂R

−qRAmA −qRBfB(P
∗

A,R
∗

A) −qRAA
′ ∂fA
∂P −aR − qRAA

′ ∂fA
∂R















(70)J ∗ =

















0 0 A∗ ∂fA
∂P A∗ ∂fA

∂R

0 0 B ∗ ∂fB
∂P B ∗ ∂fB

∂R

−qPAmA −qPBmB −aP − qPAA
∗ ∂fA
∂P − qPBB

∗ ∂fB
∂P −qPAA

∗ ∂fA
∂R − qPBB

∗ ∂fB
∂R

−qRAmA −qRBmB −qRAA
∗ ∂fA
∂P − qRBB

∗ ∂fB
∂P −aR − qRAA

∗ ∂fA
∂R − qRBB

∗ ∂fB
∂R

















,
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If the two determinants on the right hand side have opposite sign, the determinant 
of the Jacobi matrix is negative. In that case at least one of the eigenvalues is positive, 
and we have a saddle point. If the determinant is positive we can show that again the 
characteristic polynomial λ4 + c1λ

3 + c2λ
2 + c3λ + c4, with c1 minus the trace and c4 the 

determinant has all coefficients positive. That implies that if all eigenvalues are real, they 
must be negative. To rule out a complex pair with a positive real part, the Routh-Hur-
witz criterion c1c2c3 > c3

2 + c1
2c4 must be satisfied. We have tested the criterion for a wide 

range of possible parameter values, and found it satisfied, but unfortunately we haven’t 
been able to show that to be the case generically. Note that the graphical representation 
in Fig. 1 does explain the stability. For slightly different cases there are proofs or other 
claims that indeed the coexistence point is stable (Léon and Tumpson 1975; Taylor and 
Williams 1975; Hsu et al. 1981; Butler and Wolkowicz 1987; Li and Smith 2001; Wu and 
Wolkowicz 2001). The only generic statement we can make is that if there is more than 
one coexistence point, these cannot all be stable. Since the q’s are fixed and consecutive 
coexistence points along the contour lines must have opposite signs for the determinant 
of the gradient matrix, no two consecutive points can be stable.
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(71)det(J ∗) = mAA
∗mBB

∗

det

(

qPA qPB
qRA qRB

)

det

(

∂fA
∂P

∂fA
∂R

∂fB
∂P

∂fB
∂R

)
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