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Background
For many years Global Positioning System (GPS) observations and leveling data have 
been adopted to evaluate gravimetric geoid, and many studies have been carried out by 
comparing the interpolated values of the gravimetric geoid at the GPS benchmarks with 
the corresponding GPS-leveling heights (Nahavandchi et al. 2004; Guo and Xu 2011a). 
The fundamental relationship between the ellipsoidal heights obtained from GPS meas-
urements and the orthometric heights obtained from leveling survey and gravimetric 
geoid data can be written as (Heiskanen and Moritz 1967),

(1)h−H − N = 0
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where h is ellipsoidal height obtained from GPS measurements, H is orthometric height 
obtained from leveling survey, N is gravimetric geoid data calculated from global geo-
potential models or regional gravimetric geoid. Based on this inherent appeal of the rela-
tionship between ellipsoidal, orthometric heights and gravimetric geoid data, if any two 
of the heights are given, the third can be derived with Eq. (1).

In practical terms, the performance of Eq. (1) is more complex due to the adaptation of 
the parametric models for the systematic errors (e.g. long-wavelength systematic errors 
in N, distortions in the orthometric height due to an over constrained adjustment of lev-
eling network, etc.) and the correctness for the stochastic model of the observable noises 
due to the covariance (CV) matrices for the height types obtained from separate adjust-
ments of the individual height types.

Up until today, the former problem has been a topic of interest and well studied by dif-
ferent kinds of parametric functions to absorb the systematic errors of ellipsoidal, ortho-
metric heights and gravimetric geoidal undulations. Many models have been performed 
ranging from a simple linear regression to more complicated models, such as polynomial 
fit, multiquadric function fit, Spline fit method and so on (Sansò and Sideris 2013). Since 
it is evident that the suitability of the parameter model depends on the density, distribu-
tion and quality of height network data, there is no universal model applicable to any 
situation. Here the method of multi-surface function is used after evaluation and assess-
ment of parametric models in this paper.

As for the latter issue, the problem of stochastic modeling for observables in the com-
bined adjustment of heterogeneous height types has not yet to be satisfactorily solved 
by this traditional formulation. This problem will be the main focal point of this paper. 
In order to reach the best unbiased estimators of the unknown parameters, a proper CV 
matrix of the observables is required. Here the well-known method of variance compo-
nent estimation (VCE) is employed to the combined least-squares (LS) adjustment in 
Eq. (1) (Teunissen and Amiri-Simkooei 2008; Amiri-Simkooei 2013; Wensch et al. 2013). 
There are many reasons for performing VCE. For example, VCE is an effective statistical 
tool to test the noise level. This method is very flexible and easily understood. It can be 
conducted to estimate variance and CV components for linear and nonlinear stochas-
tic model. The main idea of this paper is to give a detailed analysis of the combination 
adjustment and to estimate all errors of the heterogeneous heights data and to develop 
a method for calibrating the geoid error models using the method of VCE. In practice, 
the iterative minimum norm quadratic unbiased estimation scheme is implemented via 
a combined adjustment using existing ellipsoidal, orthometric heights and gravimetric 
geoid data.

Implement of MINQUE to the combined LS adjustment
Combined LS adjustment of GPS‑leveling heights and gravimetric geoid data

To establish the LS variance component estimation, a combined adjustment is carried 
though using the following functional model with orthometric, ellipsoidal heights and 
gravimetric geoid data. Considering the Gauss–Markov model, the system of observa-
tion equation and the solution can be expressed as,

(2-a)l = Ax + ṽ
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where A is the m × t matrix of known coefficients depends on the parametric model (m 
is the number of observational equations, t is the number of unknown parameters), x is 
t × 1 vector of the unknown parameters depending on the parametric model, E{•} is the 
mathematical expectation operator, Qv is the m × m CV symmetric cofactor matrix of 
the observables, σ is the variance or CV components, and the observations vector l con-
sists of the height ‘misclosure’ at the GPS-leveling benchmark as follows,

Here, for the design matrix A corresponding to the parametric model the model of 
Multi-surface function fit is being used,

where K (ϕ, �;ϕi, �i) =

√

(ϕ − ϕi)
2 + (�− �i)

2 + δ, ϕ and λ are latitude, longitude 
respectively, and ai are the coefficients.
ṽ is a (m × 1) vector of unobservable random error with zero mean, for each of hetero-

geneous height data types are given by,

where B is the block-structured matrix B = [I−I−I], such that I is an m × m unit matrix.
The corresponding CV matrix is described in Eq. (2-c), which can be written as,

where C is a positive-definite symmetric matrix. Here we assume that there are no corre-
lations between the heterogeneous height types. Q(⋅) are known positive cofactor matri-
ces for ellipsoidal, orthometric heights and gravimetric geoid data, and σ 2

h , σ 2
H, σ 2

N are the 
corresponding variance components.

The vector of unknown parameters is computed by using LS minimization principle,

where the corresponding weight matrix P associated with the observations take the 
forms,
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where P(⋅) is assumed diagonal with elements which is the reciprocal of the error vari-
ances. According to LS adjustment, the unknown parameters and adjusted residuals of 
observations can be easily solved. The unknown parameters is given as follows,

The adjusted residuals of the GPS, leveling and gravimetric geoid height observations 
can be obtained by

and

with

And the mean square error and the accuracy of parameters estimations are given as 
follow,

According to this combined LS adjustment approach, the solution can be achieved 
depending on two issues, one is the appropriateness of the parametric models, which 
refers to the correction for the data inconsistencies and the systematic errors, and 
another is the residuals of the height data types which allow for the calibration of data 
covariance matrices. Since the former problem has been well studied, the main work of 
next section focus on a description of the implement of VCE schemes to the combined 
LS height adjustment.

Application of MINQUE to the Combined LS Adjustment

There are many methods available to implement VCE within the LS adjustment (Helm-
ert 1924; Rao 1970). The first solution was proposed by Helmert. And an independent 
solution was proposed by Rao (1970) who put forward a method known as minimum 
norm quadratic unbiased estimation (MINQUE). Assuming the observations are nor-
mally distributed the approach of Helmert’s and Rao’s are equivalent. In this paper the 
MINQUE procedure is employed since this procedure does not require distributional 
assumptions.

(9)x̂ = [AT (Ch + CH + CN )
−1A]−1AT (Ch + CH + CN )

−1w.
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(
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)

(
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)

(11)
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Here the general MINQUE algorithm is modified to estimate the variance components 
in the combined LS adjustment with heterogeneous observation types,

where θ̂ is a vector composed of the unknown variance components σ 2
h , σ 2

H and σ 2
N . The 

matrix S is denoted by

where Sij in the matrix is derived by

where tr(·) is the trace operator, i, j = h,H ,N , and Q(·) is the cofactor matrix for observ-
ables. Considering the matrix S may not be of full rank, the algorithm of pseudo-inverse 
should be used to solve Eq. (15). R is a matrix denoted by

where A is an appropriate matrix corresponding to the parametric model as in Eq. (4) 
and C1 is the CV matrix of the observables. A CV matrix model for the heterogeneous 
observation types can be written as the following linear model,

The vector q can be expressed as

where v̂i = QiRw, which is a vector composed of the residuals for heterogeneous obser-
vations. Substituting the formulations above into Eq.  (15), we can obtain the explicit 
expression by

It is evident from the expression in Eq.  (18) that an iterative process should be used 
because the unknown variance components σ 2

h , σ 2
H and σ 2

N are embedded in C1. So, the 
estimation for the variance components must be conducted with a convergence crite-
rion. Here the iterative performance of MINQUE is employed to determine the variance 
components. In practice, a convergence criterion should be specified to terminate the 
computation. In this paper, the computation should not be stopped until all the values 
are equal.
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Numerical results and discussions
Description of data

Here a rugged area bounded by 39°N and 41°N, and 82°W and 85°W, is chosen for testing 
the theory. Several numerical studies are implemented with the two datasets composed 
of GPS-leveling heights, gravimetric geoid data obtained from gravimetrical data and 
the initial cofactor matrices for ellipsoidal, orthometric heights and gravimetric geoid.

A data set of Free Air (FA) gravity anomalies used for geoid computation are con-
sisted of 4,574 ground data irregularly distributed in the test area and are referred to 
GRS80, and the data set of FA gravity anomalies is referred to the NAD83. All data have 
been removed the duplicate points and validated Least squares collocation (LSC). The 
error ratio used in this method is about 8 % and the remaining points are used for test 
(Tscherning 1991; Gil et al. 1993). Figure 1 gives the isoline map of FA gravity anomalous 
gridded by Kriging interpolation.

This gravity anomaly is used to estimate the geoid by application of Stokes’s formu-
lae. Before implementing Stokes’s formula, the gravimetric geoid computations require 
that the topography effect should be reduced by removing step of the remove-com-
pute-restore (RCR) technique for the purpose of making the gravity anomalous small 
and easy to be gridded (Guo and Xu 2011b). Here a method of Residual Terrain Model 
(RTM) is employed. With this technology only the topographic irregularities relative to 
a smooth reference surface (Omang and Forsberg 2000) are taken into account. Table 1 
shows the statistical results of the FA gravity data and the residual gravity anomaly, 
where Δgfa is the FA anomaly, Δgref is the effect of the reference field of EGM2008 on the 
gravity anomalies (Pavlis et al. 2008), Δgrtm is the terrain effect of RTM reduction with 
the smooth reference surface, e.g. of resolution 120 km, and Δgres is the residual gravity 
anomalous obtained by subtracting the effect of a global Earth gravity field model Δgref 
and the RTM effect of the topography Δgrtm from Δgfa, �gres = �gfa −�gref −�grtm. 

Fig. 1  The FA gravity anomalous of tested area (unit: mGal).
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From Table 1, it is obvious that the reduced gravity anomaly is significantly smoother 
than the FA gravity anomalous.

Then, the residual gravity anomalous are gridded on a 2.5′ × 2.5′ grid using Kriging 
interpolation in order to meet the requirements of geoid determination employing the 
technique of Fast Fourier transform (FFT) (Haagmans et al. 1993). By modifying Stokes 
formula as convolution integrals, the FFT techniques are used to estimate the residual 
geoidal undulation with the reduced gravity anomalous here. Finally, the gravimetric 
geoid can be obtained after applying the restoring step. The gravimetric geoid with a 
resolution of 2.5′ × 2.5′ is shown in Fig. 2.

The GPS-leveling heights are employed to estimate the absolute and relative accura-
cies of gravimetric geoid. A total number of 170 GPS-leveling benchmarks distributed 
throughout the test area were used. Figure 3 gives the distribution of GPS-leveling sta-
tions. The GPS observations were processed with the Bernese GPS software version 4.2 
with observation periods between 4 and 16 h. All the GPS heights used in a LS adjust-
ment are given with respect to the GRS80 reference ellipsoid, the reference frame is 
ITRF2005. Geodetic leveling observations are given with respect to the North American 
Vertical Datum of 1988 (NAVD88).

Table 1  Statistics of the gravity anomalous (unit: mGal)

Δgfa FA anomalies, Δgref effect of the reference field of EGM2008 on the gravity anomalies, Δgrtm terrain effect of RTM 
reduction, Δgres residual gravity anomalies.

Min Max Mean STD

Δgfa −52.5 56.4 0.2 22.9

Δgref −47.5 17.4 −1.8 15.6

Δgrtm −12.4 13.5 −0.6 3.7

Δgres −37.1 39.1 2.5 15.0

Fig. 2  Gravimetric geoid determined with RTM model.
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Fully populated initial CV matrices are computed for ellipsoidal, orthometric heights 
and gravimetric geoid data. The CV matrix for the ellipsoidal heights is obtained from 
the results of the GPS post-processing software package being used. These are the direct 
results without considering the spatial, temporal and physical correlations between GPS 
phase observables. Similarly, the CV matrix for the orthometric height are obtained 
from the rigorous adjustment of leveling measurements and the CV matrix for the gravi-
metric geoid heights at the GPS benchmarks are derived in a straightforward manner 
by applying the law of error propagation to the geoid solution. Table 2 summarizes the 
characteristics of the ‘a-priori’ CV matrices of all the previous data types for comparison 
purposes.

Iterative MINQUE scheme

When estimating variance components, convergence depends on the given initial values 
of weight of the measurements. Here we will study an algorithm to improve the conver-
gence speed and behavior of estimating variance components.

Considering the availability of fully populated CV matrices is a luxury, the iterative 
application of MINQUE is used to estimate the variance components in practice. First of 
all, suppose that by using a conventional technique of variance component estimation, 
we have the three estimates at the jth step σ̂ j

h, σ̂
j
H, σ̂ j

N . To continue the next iteration, we 

Table 2  Initial CV matrix characteristics (unit: cm)

GPS Leveling Geoid

Average σ 0.7 0.6 2.0

Fig. 3  Distribution of GPS benchmarks.
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compute the new set of two variance components, from which, the weights for the next 
iteration can be further computed,

The iterative procedures are given in Fig. 4. From Fig. 4 we can see that the iterative 
procedures need a priori values for the estimation of variance components which have 
been shown in Table 2, and need to specify a convergence criterion to determine when 
to terminate the process. In this scheme, the process should be stopped until all the val-
ues satisfy the converge of 

⌢

θh =
⌢

θH =
⌢

θN.
In order to study the correlations among observations, numerical tests are performed 

with diagonal CV matrices. Figure 5 shows the convergence behaviors of the estimated 
variance components by MINQUE in each of successive iterations for observable. The 
results demonstrate the computational efficiency.

Numerical examples for applying MINQUE to combined LS adjustment

A popular approach is to compute the difference between the gravimetrical geoidal 
undulation N, with ellipsoidal height h from GPS measurement and orthometric height 
H from leveling measurement �N = h−H − N . The discrepancies ΔN denote an evalu-
ation for the accuracy of gravimetric geoid. In order to estimate the accuracy of gravi-
metric geoid, the different between gravimetric geoid solutions are compared with 165 
GPS-leveling heights.

Each of the height data types refers to different reference surfaces which results in 
that biases are introduced into the geoid model. In order to absorb the errors due to 
the datum inconsistencies between the gravimetric geoid and GPS-leveling heights, a 
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Fig. 4  Iterative procedure of variance component estimation.
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parametric model has been used. In general, the process of choosing the parametric 
model suffers from a high degree of arbitrariness. In order to evaluate the availability of 
parametric models, the semi-automated assessment procedure combined with F-signif-
icance test is used. Figure 6 gives the computational process of semi-automated assess-
ment procedure. The detailed procedures are not elaborated in this paper. The interested 
reader should refer to the work by Dermanis and Rossikopoulos (1991). According to the 
results, multi-surface function is selected for computing the adjusted residuals here.

Since the main idea of this paper is to discuss the influence of a priori CV matrices 
on the final computed variance components, two numerical examples are conducted 
to assess the gravimetric geoid accuracy in this section. In the scheme of case study II, 
combined height adjustment is conducted by using the a priori CV matrices as given 
in Table 2. In the scheme of case study I, combined height adjustment is conducted by 
using variance-component estimated by MINQUE method. The widely used approach in 
case study I is the comparison of different geoid model computed by the scheme of case 
study II over the same region, which is an external method to evaluate the accuracy of 
gravimetric geoid.

Fig. 6  Flowchart of assessment meth for parametric model.

Fig. 5  Behavior of variance-component estimated by MINQUE.
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Such a scheme selects the best GPS benchmarks to evaluate the accuracy of geoid 
with minimum range and standard deviation criteria. The selected GPS benchmarks are 
used to fit geoid using the multi-surface function fit technique. 150  GPS benchmarks 
are selected to fit geoid models in this paper. The residual values at the all the rest GPS 
benchmarks denote the relative accuracy of the geoid. The statistical results of the resid-
uals at the 15 GPS benchmarks are shown in Table 3. We can see that the accuracy of 
geoid fitting with GPS-leveling heights based on VCE is with minimum range and stand-
ard deviation.

Conclusions
The main focus point of this study is to give a procedure of geoid determined with avail-
able high precise gravimetric geoid and GPS and leveling heights and to improve the 
accuracy of geoid. In the context, a precise formula for the geoid computation is derived, 
and the relationship between ellipsoidal, orthometric heights and gravimetric geoid data 
is conducted. And a detailed algorithm uses the complete description of the CV matri-
ces of the observation vector and of the coefficient matrix, possibly with unknown com-
ponents of each. In the practice of this context, the iterative application of MINQUE 
is employed to test the variance components matrices for heterogeneous height data. 
Numerical case studies shows that the best results were obtained combined with the 
variance components estimation, with an outside precision of 1.91 cm and an inside pre-
cision of 0.29 cm, while the classical method with a-prior CV matrix is a bit worse, with 
an outside precision of 4.70 cm and an inside precision of 1.25 cm. The results of numer-
ical examples show the capability and effectiveness of variance components estimation 
procedure in combined adjustment for calibrating geoid error model.
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Table 3  Statistical results of  the absolute and  relative accuracies of  gravimetric geoid 
(unit: cm)

Fit-model Inside precision Outside precision

Max Min Mean SD Max Min Mean SD

Case study I 2.24 −1.97 0.52 1.25 8.98 −7.42 2.41 4.70

CASE study II 1.32 −0.89 0.16 0.29 5.40 −4.63 1.15 1.91
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