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Abstract 

Meningoencephalitis caused by Cryptococcus neoformans (Cn) has become one of the leading causes of mortality in 
AIDS patients. Understanding the interactions between Cn and phagocytes is fundamental in exploring the patho-
genicity of cryptococcal meningoencephalitis. Cn may be extracellular or contained in the monocytes, macrophages, 
neutrophils, dendritic cells and even endothelial cells. The internalized Cn may proliferate inside the host cells, or 
cause the lysis of host cells, or leave the host cells via non-lytic exocytosis, or even hijack the host cells (Trojan horse) 
for the brain dissemination, which are regulated by microbe factors and also immune molecules. Coexistence of pro-
tective and deleterious roles of phagocytes in the progression of cryptococcosis warrant further investigation.
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Background
Cn has been co-evolved with the phagocyte preda-
tors, e.g., amoebas (Chrisman et  al. 2010), paramecium 
(Frager et al. 2010), or nematodes (Casadevall et al. 2003), 
for a long history. As mammalian phagocytes may origi-
nate from the common ancestors, it is plausible to specu-
late that roles of host phagocytes against Cn manifest the 
complex interactions between fungi and phagocyte pred-
ators (Chrisman et al. 2010). Ideally, predators and their 
prey fight with each other and maintain the fine balance 
of nature, implying that neither the prey (Cn) nor the 
predators (e.g., amoeba, or host phagocytes) would be 
totally extinguished. Therefore, in the host both Cn and 
phagocytes would survive, leading to a latent infection, as 
evidenced by the recent research (Alanio et al. 2015).

Cryptococcal meningoencephalitis occurs only when 
Cn leaves the infected lung, transmigrates across the 
blood–brain-barrier (BBB) and proliferates in the brain 
parenchyma. As Cn is a facultative intracellular patho-
gen, it is speculated that the transmigrating Cn might 
be extracellular or within some phagocytes, thereby 

invading the central nervous system (CNS) via a trans-
cellular pathway or Trojan horse pathway (Casadevall 
2010). In the trans-cellular pathway, Cn is directly inter-
nalized by brain endothelial cells via endocytosis. In the 
Trojan horse pathway, some phagocytes carrying Cn 
enter the CNS. High-affinity Fcγ receptor 3A promotes 
the phagocytosis and significantly contributes to the 
cryptococcal meningoencephalitis (Rohatgi et  al. 2013). 
Moreover, effective phagocytosis of Cn by macrophages 
counterintuitively predisposes to poor outcome (Sabiiti 
et  al. 2014), confirming the link between phagocytosis 
of Cn and the high mortality in patients with cryptococ-
cal meningoencephalitis (Alanio et  al. 2011). Together, 
these data suggest that phagocytes may help Cn invade 
the CNS. In this review, the interactions between Cn and 
phagocytes (monocytes, macrophages, neutrophils, den-
dritic cells, and endothelial cells) are discussed.

Monocytes and macrophages
Circulating Cn could be detected in monocytes col-
lected from peripheral blood or located in monocytes in 
the leptomeningeal capillaries. Besides, Cn also could be 
observed in macrophages in the leptomeningeal space, 
implying that monocytes and macrophages may play 
crucial roles in the pathogenesis of cryptococcal menin-
goencephalitis (Chretien et al. 2002). The outcomes of Cn 
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interacting with macrophages include at least phagocy-
tosis, replication, and non-lytic exocytosis (Coelho et al. 
2014; Garcia-Rodas and Zaragoza 2012; Leopold Wager 
and Wormley 2014; McQuiston and Williamson 2012), 
implicating the existence of Trojan horse pathway for 
the brain dissemination (Casadevall 2010; Charlier et al. 
2009) (Fig. 1).

Phagocytosis
Phagocytosis of Cn by macrophages is mediated by 
diverse factors, including complement proteins, spe-
cific antibodies, surfactant protein D (Geunes-Boyer 
et  al. 2009, 2012) or the scavenger receptors SCARF1 
and CD36 (Means et  al. 2009). IgM and IgA specific to 
the capsular glucuronoxylomannan (GXM) promote 
complement-independent and CD18-dependent phago-
cytosis (Taborda and Casadevall 2002). Phagocytosis of 
Cn by lung macrophages is significantly impaired in the 
sIgM deficient mice (Subramaniam et  al. 2010). Differ-
ent from IgG1, IgM and IgA, IgG3-mediated phagocy-
tosis is not associated with FcγR and CD18 (Saylor et al. 
2010). In contrast, antiphagocytic protein 1 (App1) from 
Cn, binding with CR2/CR3, inhibits the phagocytosis of 
macrophages (Stano et al. 2009; Williams and Del Poeta 
2011).

Replication
As a facultative intracellular pathogen, Cn replicates in 
and alkalifies the phagosome of macrophages, leading 
to phagosome breakage and macrophage lysis (Tucker 
and Casadevall 2002). Replication of Cn inside the mac-
rophages requires F-box protein 1 and its substrate ino-
sitol phosphosphingo lipid-phospholipase C1 (Liu and 
Xue 2014). In addition, Cn phospholipase B1 (PLB1) pro-
motes the survival of fungi in the macrophages by facili-
tating fungal eicosanoid production (Noverr et al. 2003). 
In addition, Cn proliferation may stimulate the abor-
tive mitosis (Coelho et  al. 2012) of some macrophages 
(Luo et  al. 2005). Mechanisms behind the balance of 
Cn replication and macrophage lysis/mitosis, however, 
still remain elusive. Interestingly, a recent study on the 
dynamics of interactions between Cn and macrophages 
suggested that fungal background influences outcome 
during cryptococcal meningoencephalitis in humans 
(Alanio et al. 2011).

Non‑lytic exocytosis
Besides breaking down the host macrophage, Cn could 
also escape from macrophages through non-lytic exo-
cytosis or phagosome extrusion in  vitro (Alvarez and 
Casadevall 2006; Ma et al. 2006) or in vivo (Nicola et al. 

Fig. 1  Roles of monocytes in the Cn pathogenesis. Upon infection, monocytes internalize and kill the Cn. However, Cn could also proliferate in the 
monocytes and escape the monocytes via the host cell lysis or non-lytic exocytosis. It is speculated that monocyte may also work as Trojan horse in 
the Cn brain dissemination.
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2011). Virulence factors from fungi, for example, secreted 
PLB1 and SEC14, are essential for non-lytic exocytosis 
(Chayakulkeeree et  al. 2011). Host factors also regulate 
the non-lytic exocytosis. The addition of the weak bases 
ammonium chloride and chloroquine resulted in a sig-
nificant increase of non-lytic exocytosis events, whereas 
the vacuolar ATPase inhibitor bafilomycin A1 had the 
opposite effect (Nicola et  al. 2011). Interestingly, both 
phagosomal maturation dependent (Alvarez and Casa-
devall 2006) and independent (Ma et al. 2006) pathways 
have been reported for non-lytic exocytosis of Cn by 
macrophages. Arp2/3 complex-mediated actin polym-
erization has been show to inhibit non-lytic exocyto-
sis (Johnston and May 2010). Antibody or complement, 
which mediates the phagocytosis, affects the outcome 
(Alvarez et al. 2008) but not the occurrence of non-lytic 
exocytosis (Alvarez and Casadevall 2006; Ma et al. 2006). 
Interestingly, autophagy knockdown increases the non-
lytic exocytosis of Cn by macrophages (Nicola et  al. 
2012). Th1 and Th17 cytokines decrease the non-lytic 
exocytosis, while Th2 cytokines augment the extrusion 
of Cn out of macrophages (Voelz et al. 2009), which may 
contribute to the extravasation of Cn and the aggravation 
of the disease.

Trojan horse
It has been well documented that monocytes could trans-
migrate across the BBB and differentiate into perivascu-
lar macrophages. Thereby, it is tempting to hypothesize 
that monocyte harboring Cn might function as Trojan 
horse in the Cn brain dissemination. Phagocytosis of Cn 
inhibits the chemotaxis of macrophages stimulated by 
CX3CL1 and CSF-1 (Luo et al. 2009), which might slow 
down the crawling of macrophages containing Cn along 
the brain vasculature and therefore facilitate Cn trans-
migration. More compelling evidence for Trojan horse 
comes from the deliberate experiment showing that brain 
fungal burdens following injection with Cn internalized 
by macrophages, compared with free Cn inoculation, are 
significantly higher (Charlier et al. 2009). However, many 
issues for Trojan horse in Cn brain dissemination, includ-
ing a direct observation rather the evaluation based on 
fungus quantification, and the mechanisms behind, still 
remain unresolved.

Neutrophils
It has been historically recognized that neutrophils have 
the ability to kill the Cn, participating in the first-line 
defenses before a cell-mediated immune response devel-
ops (Diamond et  al. 1972; Lehrer and Ladra 1977). In 
vitro, neutrophil kills Cn effectively especially combined 
with granulocyte colony-stimulating factor (G-CSF) 
or granulocyte–macrophage colony stimulating factor 

(GM-CSF) (Chiller et  al. 2002). In the murine model of 
cryptococcosis, G-CSF, if combined with fluconazole, is 
associated with the increased survival, suggesting that 
neutrophils contribute to host defenses in cryptococ-
cal meningoencephalitis (Graybill et  al. 1997). Admin-
istration of G-CSF into the AIDS patients increases the 
fungicidal activity and decreases the risk of infection 
(Vecchiarelli et  al. 1995), which is associated with the 
enhanced leukotrienes from neutrophils upon G-CSF 
therapy (Coffey et  al. 1998). In contrast, cryptococcosis 
is not usually associated with human neutropenia or with 
conditions characterized by defective neutrophil function 
(Casadevall and Perfect 1998), reflecting the complexity 
of roles of neutrophils against Cn. We hypothesize the 
blurring effects of neutrophils are due to the co-existing 
protective (positive) and deleterious (negative) roles from 
neutrophils in the Cn pathogenesis.

Cn or the capsular polysaccharide glucuronoxyloman-
nan (GXM) promotes the inflammatory cytokines (Retini 
et al. 1996) and chemokines (Lipovsky et al. 1998), thus 
displaying chemotactic activity on the neutrophils (Dong 
and Murphy 1993, 1995a). Paradoxically, GXM inhib-
its neutrophil migration or infiltration (Dong and Mur-
phy 1995b), partially by reducing the L-selectin (Dong 
and Murphy 1996), E-selectin (Ellerbroek et  al. 2002), 
IL-8 receptor (Lipovsky et  al. 1998) of the neutrophils 
via cross-desensitization, or competitively binding with 
CD14 (Ellerbroek et  al. 2004b), TLR4 (Ellerbroek et  al. 
2004b), CD18 (Dong and Murphy 1997) on the neutro-
phils. O-acetylation of GXM is a crucial motive for the 
inhibition of neutrophil recruitment (Ellerbroek et  al. 
2004a). Nevertheless, inoculation of Cn intravenously 
recruits neutrophils accumulated in pulmonary ves-
sels, which is dependent on the complement 5a (C5a) 
(Lovchik and Lipscomb 1993). Neutrophils recruitment 
into the lung is also observed at the early phase (Abe 
et  al. 2000; Feldmesser et  al. 2000; Herring et  al. 2005; 
Kawakami et al. 1999; Mednick et al. 2003) of Cn airway 
infection, although it might not be as evident as mononu-
clear cells in the mice infected with low-virulence strain 
(Feldmesser et  al. 2000; Huffnagle et  al. 1998). Recruit-
ment of neutrophils into the lung is dependent on the 
chemokines including IL-8 (Guillot et  al. 2008), MIP-2 
and KC (Kawakami et al. 1999), which are elevated upon 
Cn infection. Cn could also negatively regulate the influx 
of neutrophils into the lung (O’Meara et al. 2013), delib-
erately reflecting the paradoxically dual roles in the inter-
action between neutrophils and Cn.

The recruited neutrophils in the lung internalize Cn 
after intratracheal inoculation (Feldmesser et  al. 2000), 
which is mediated by complement 3 (C3) (Kozel et  al. 
1984). Neutrophils activation enhances the phagocyto-
sis (Kozel et  al. 1987); while capsule of Cn inhibits the 
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phagocytosis by neutrophils (Richardson et al. 1993). Cn 
is a facultative intracellular pathogen in the macrophages 
(Feldmesser et al. 2000). It is largely unknown the definite 
fate of Cn ingested by neutrophils. Although specula-
tively Cn might be protected in the neutrophils (Mednick 
et  al. 2003), most research focused on the killing of Cn 
(Miller and Mitchell 1991), which might happen intracel-
lularly or extracellularly (Qureshi et al. 2010, 2011), in a 
oxidative-dependent or oxidative-independent manner 
(Qu and Wang 1991). Myeloperoxidase (MPO) is a neu-
trophil-specific enzyme closely associated with reactive-
oxygen species. MPO-deficient mice infected with Cn 
intranasally or intravenously survive significantly shorter, 
due to the impaired clearance of fungus in the lung and 
the spleen (Aratani et al. 2006). Inhibition of sphingomy-
elin synthase (SMS) also profoundly impairs the ability of 
neutrophils to kill Cn, which are independent of phago-
cytosis (Qureshi et al. 2010).

Neutrophils are not only phagocytes but also the mod-
ulators of immune responses. Depletion of neutrophils 
results in a Th2 response and renders mice suscepti-
ble to Candida albicans infection (Romani et  al. 1997). 
However, roles of neutrophil depletion on the infec-
tion of Cn are more complicated. Mice infected with Cn 
intratracheally survive significantly longer if neutrophils 
are transiently depleted 24 h before the fungus inocula-
tion, which is associated with the higher levels of IL-10, 
TNF-α, IL-4 and IL-12 in the lung (Mednick et al. 2003). 

In contrast to the protective role of neutrophil deple-
tion, mice defective in neutrophil-specific enzyme MPO 
are hyper-susceptible to Cn, which might result from 
higher level of IL-4 and reduced production of IL-12, 
IFN-γ in the lung (Aratani et al. 2006). To add complex-
ity more, neutrophil depletion in the mice infected with 
Cn expressing IFN-γ results in increased IL-17A produc-
tion from γδT cells, but has no role on the fungus burden 
(Wozniak et al. 2012) (Fig. 2).

Dendritic cells
Upon Cn airway infection, CCR2 mediates the recruit-
ment of Ly6Ghigh monocytes (Osterholzer et  al. 2009a), 
which differentiate into dendritic cells (DCs) and con-
tribute to the Th1 response (Osterholzer et al. 2008). As 
the most potent antigen presenting cells, DCs internalize 
Cn via mannose receptor and FcγR-II in vitro (Syme et al. 
2002) and in  vivo (Wozniak et  al. 2006), which is par-
tially inhibited by the capsule (Vecchiarelli et  al. 2003). 
In contrast, mannoproteins, interacting with CD206 
and CD209 (Mansour et al. 2006), promote the matura-
tion of dendritic cells (Pietrella et al. 2005). In the CD206 
deficient mice, maturation of dendritic cells upon man-
noproteins, however, is not hampered (Dan et al. 2008). 
Complements and specific antibodies promote the 
phagocytosis of Cn by dendritic cells (Kelly et al. 2005). 
Following phagocytosis, DCs kill the intracellular Cn 
via the fusion of endosome and lysosome and present 

Fig. 2  Roles of neutrophils in the Cn pathogenesis. Neutrophil could kill Cn extracellularly or intracellularly. Meanwhile, limited evidences argue 
that neutrophil may also protect the internalized Cn.
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antigens to T cells (Wozniak and Levitz 2008). The direct 
cytotoxicity of DCs against Cn is further confirmed in a 
recent study showing that purified lysosomal enzymes, 
specifically cathepsin B, inhibit cryptococcal growth 
in vitro (Hole et al. 2012).

In the lymphnodes, Langerhans cells and myeloid DC 
induce protective CD4+ T cell responses against Cn 
(Bauman et  al. 2000), which is augmented by TNF-α 
(Bauman et  al. 2003). Accordingly, TNF-α deficiency 
decreases mature dendritic cell trafficking and produces 
a chronic Cn infection (Herring et  al. 2005). Compared 
with myeloid DCs, plasmacytoid DCs induce non-pro-
tective immune response against Cn (Bauman et al. 2000; 
Siegemund and Alber 2008). Besides, non-protective 
Th2 responses could also be induced by immature den-
dritic cells in the lung, which are promoted by Cn urease 
(Osterholzer et al. 2009b) (Fig. 3).

Endothelial cells
Different from monocytes/macrophages, neutrophils 
and dendritic cells, endothelial cells are not professional 
phagocytes. Yet, Cn is observed in the brain endothe-
lial cells of infected mice (Chretien et  al. 2002). In 
vitro, free Cn could be surrounded by microvillus-like 
membrane protrusions and subsequently internalized 
by brain endothelial cells (Chang et  al. 2004). Multi-
ple molecules are engaged in the interactions between 

endothelial cells and extracellular Cn. Hyaluronic acid 
(HA) from Cn is the ligand of CD44 on the endothelial 
cells (Jong et  al. 2008). In the process of transcellular 
migration, CD44 is co-localized with phosphorylated 
caveolin-1, forming thread-like structure (Long et  al. 
2012) and promoting the lipid raft-dependent endocy-
tosis (Huang et al. 2011). Fungal burden in the brain is 
significantly decreased in the CD44 deficient mice intra-
vascularly infected with Cn (Jong et  al. 2012). Besides 
HA-CD44 pathway, urease (Shi et  al. 2010), plasmin 
(Stie and Fox 2012), or metalloprotease Mpr1 (Vu 
et al. 2014) promotes migration of Cn across the brain 
endothelium by facilitating attachment of cryptococci 
to the endothelial cells, which induces the cytoskeleton 
remodeling and internalization (Vu et al. 2013). Of note, 
some other fungi, for example, Candida albicans also 
invades brain endothelial cells via endocytosis (Filler 
and Sheppard 2006). Thus, it would be interesting to 
explore whether or not brain endothelial cells express 
some unique receptors for Cn. Although there is no 
evidence, it is hypothesized that the internalized Cn 
would be expulsed from endothelial cells into the brain 
neuropil. Mechanisms for the Cn exocytosis from the 
endothelial cells are largely unknown. Moreover, human 
brain endothelial cells (Filler and Sheppard 2006) but 
not human umbilical vein endothelial cells (Roseff and 
Levitz 1993) or mouse brain endothelial cells (Sabiiti 

Fig. 3  Roles of dendritic cells in the Cn pathogenesis. As most powerful antigen presenting cells, myeloid dendritic cells process and present Cn 
antigen to CD4+ T cells for the differentiation of cytotoxic Th1 cells. In contrast, plasmacytoid dendritic cells induce the non-protective Th2 cells. No 
evidence for the survival or death of Cn inside the plasmacytoid dendritic cells has been yet provided in the literature.
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and May 2012) may also have the capability to kill the 
internalized Cn (Fig. 4).

Conclusions
Serological evidences suggest that people may have 
been infected with environmental Cn in early childhood 
(Goldman et  al. 2001). Most of Cn infection might be 
asymptomatic unless the immune defense is significantly 
suppressed (e.g., organ transplant patients) or defective 
(e.g., AIDS patients). Cn is overwhelmingly distributed in 
the environment and may hide in the people with weak-
ened immune system (Saha et  al. 2007). However, only 
a fraction of organ transplant patients or AIDS patients 
would develop fatal cryptococcosis. Are there any uni-
dentified factors breaking the fine balance between Cn 
and phagocytes in the lung or even in the brain? How 
do phagocytes dynamically interact with Cn in the brain 
vasculature? How do phagocytes containing Cn trans-
migrate to the brain parenchyma? How does the free 
Cn escape from the BBB endothelial cells? Obviously, 
roles of phagocytes in cryptococcosis deserve further 
investigation.
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