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Background
Introduction

Epilepsy has to be determined by several diagnostic tests. One of the them is the elec-
troencephalogram (EEG). Frequently, this is the first test chosen by neurologists and 
when a patient is diagnosed to suffer such disease it is necessary to practice several EEG 
studies yearly. As time goes by, the accumulation of EEG studies implies a massive stor-
age of information, specially when the epilepsy results difficult to deal with. Epilepsy 
demands a major burden at global levels. Worldwide, about 1% of people suffer epilepsy 

Abstract 

Epilepsy demands a major burden at global levels. Worldwide, about 1% of people suf‑
fer epilepsy and 30% of them (0.3%) are anticonvulsants resistant. Among them, some 
children epilepsies are peculiarly difficult to deal with as Doose syndrome (DS). Doose 
syndrome is a very complicated type of children cryptogenic refractory epilepsy (CCRE) 
which is traditionally studied by analysis of complex electrencephalograms (EEG) by 
neurologists. CCRE are affections which evolve in a course of many years and customar‑
ily, questions such as on which year was the kid healthiest (less seizures) and on which 
region of the brain (channel) the affection has been progressing more negatively are 
very difficult or even impossible to answer as a result of the quantity of EEG recorded 
through the patient’s life. These questions can now be answered by the application 
of entropies to massive information contained in many EEG. CCRE can not always be 
cured and have not been investigated from a mathematical viewpoint as far as we 
are concerned. In this work, a set of 80 time series (distributed equally in four yearly 
recorded EEG) is studied in order to support pediatrician neurologists to understand 
better the evolution of this syndrome in the long term. Our contribution is to support 
multichannel long term analysis of CCRE by observing simple entropy plots instead 
of studying long rolls of traditional EEG graphs. A comparative analysis among aproxi‑
mate entropy, sample entropy, our versions of multiscale entropy (MSE) and composite 
multiscale entropy revealed that our refined MSE was the most convenient complex‑
ity measure to describe DS. Additionally, a new entropy parameter is proposed and is 
referred to as bivariate MSE (BMSE). Such BMSE will provide graphical information in 
much longer term than MSE.
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and 30% of them (0.3%) are anticonvulsants resistant. Among them, some children epi-
lepsies are peculiarly difficult to deal with. Not only for being antiseizure medications 
resistant but also for being time varying. Childhood syndromes are typical cases of this. 
Nonlinear analysis of electroencephalographic signals can help to understand better a 
very difficult case of abnormal dynamics in brain, the Doose Syndrome (DS) (Stephani 
2006; Doege et al. 2014; Von Spiczak et al. 2011; Kelley 2010). DS is a type of children 
epilepsy described by serious alterations in the EEG. However, sometimes it is difficult 
to give a definitive diagnostic of such disease because of overlapping with other similar 
pathologies. Moreover, this affection may evolve to other types of epilepsy complicating 
more a differential diagnostic. In addition, the aetiology (cause) of this class of illness is 
sometimes unknown. In this case, the type of epilepsy is referred to as cryptogenic. As 
a result, anticonvulsants do not cure the ill and so the epilepsy is known as refractory. 
The case of DS considered in this work belongs the this class of combined character-
istics and is known as cryptogenic refractory children epilepsy (CRCE). Moreover, this 
affection is multifocal and may evolve to other types of epilepsy complicating more a 
differential diagnosis. When a pediatric neurologist wants to diagnose DS in a child, his/
her first step is to analyze a set of EEG. This set may consist of many volumes of EEG 
studies accumulated during the patient’s history. However, recording an EEG typically 
lasts one or more hours which implies a lot of printed paper with long-term plots. Since 
the development of the affection must be studied, the neurologist has to compare sev-
eral EEG among them at the same time. But in addition, these EEG are plenty of abnor-
malities (high frequency spikes, polyspikes, slow waves, etc.) all of this resulting in an 
unhandy volume of information. In this sense, the contribution of this paper is twofold: 
First, a bidimensional (2D) graphical alternative to understand in a much simpler way 
than before the evolution of this DS is given in terms of the complexity  of each time 
series. Comparing long term EEG-changes through different years is now easier by ana-
lyzing complexity plots than proceeding as usual. Such graphs are interpreted here from 
a mathematical-medical point of view. As a result of our contribution, neurologists can 
be supported by math modelers in order to understand better the progress of the affec-
tion or even to find a cure for a very serious disease. The idea offered in this work can 
be extended to more types of CCRE. Second, an additional contribution of this work is 
to provide MATLAB-based-3D-graphical criteria (in terms of BMSE) to describe and 
understand better the long term evolution of DS. In this sense, since typical one-page 
plots of EEG (known as epochs) last typically 10  s, long term will be understood here 
as a period which ranges from some minutes to several hours, i.e., periods which are 
not visible in only one EEG page or even in a complete EEG study. It will be shown later 
that periods of study of hours can be clearer exhibited in static or dynamic 3D graphs 
by means of BMSE. So, SBMSE and DBMSE will stand for static and dynamic BMSE, 
respectively. BMSE will be very useful in a situation like this: Think for instance in a 
set of EEG recorded two or three times a year during 3, 4, 5 or more years to study the 
evolution of a child’s epilepsy. And moreover, consider as well to compare those periods 
with another child (or children) EEG. Since the volume of information becomes unhandy 
and not comparable, hence subjectivity tends to increase.

As a further matter, there is no gold standard for an EEG’s true interpretation (Rat-
ing 2014; Grant et  al. 2014). It is a rather subjective and experience-based activity. In 
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“3D-MSE: BMSE numerical experiments as clinical interpretation” it will be shown that 
this intuitive character in EEG’s interpretation can be assisted by the use of BMSE. Note 
1 about nomenclature. BMSE can be used generically for SBMSE and DBMSE.

As far as we are concerned, our contribution is new in CCRE and DS. Hopefully, better 
treatments to cure DS can be explored in this way.

Some issues about epilepsy

International League Against Epilepsy (ILAE) defines the following terms (Shorvon 
2011). An epileptic seizure is a transient occurrence of signs and/or symptoms due to 
abnormal excessive or synchronous neuronal activity in the brain. Normally, brain 
behavior is non-synchronous (Fig. 1). An epileptic seizure can last from a few seconds 
to more than five minutes at which point it is known as status epilepticus. Epilepsy is 
defined as a disorder of the brain characterized by an enduring predisposition to gen-
erate epileptic seizures, and by the neurobiological, cognitive, psychological, and social 
consequences of this condition. The definition of epilepsy requires the occurrence of 
at least one epileptic seizure (Shorvon 2011). The seizure stages are four: (a) Pre-ictal, 
which refers to the state immediately before the actual seizure; (b) Ictal, relates an state 
when actually the seizure appears; (c) Postictal applies to the state shortly after the event; 
(d) Interictal, means the period between seizures (Shorvon 2011; Stephani 2006; Gil-
Nagel 2001). Note: The epileptic seizures stages considered in our study are: preictal, 
ictal and postictal. No interictal state was taken into account because this state resulted 
of relative low voltage with respect to the other three phases and do not give important 
information for our goals.

It is noteworthy mention that the aetiology-based classification of epilepsy is the 
following:

a.	 Idiopathic Epilepsy of not known cause but presumably genetic.

Fig. 1  Normal and abnormal findings in a DS EEG. Bursts of spike-wave activity superimposed on an other‑
wise normal background. Preictal, ictal and postictal stages are also indicated.
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b.	 Symptomatic Epilepsy secondary to a condition affecting the brain.
c.	 Cryptogenic Epilepsy of unknown origin but most likely to be symptomatic.

Temporary substitutions have been recently proposed for those terms as genetic, 
structural-metabolic, and unknown, respectively, but their use is still being discussed 
(Shorvon 2011; Wilmshurst et al. 2014).

Doose syndrome

A syndrome is a group of signs and symptoms that, added together, suggest a particular 
medical condition. The german doctor, Hermann Doose first described the features of a 
previously incompletely defined epilepsy syndrome characterized by very different sei-
zures, consisting of jerks, sudden falls to the ground (drop attacks), or sometimes a jerk 
followed by a fall. Absence seizures can happen (when consciousness is lost briefly) as 
well as the so called generalized tonic-clonic seizures (stiffness and jerking of the whole 
body). The EEG may be initially normal, but development of the disease will exhibit pat-
terns of generalized spike and wave activity, 4–7 rhythms/s and bursts. Photoparoxysmal 
reaction may be observed in the EEG as well. In addition, DS is well known as being 
very refractory to be treated with many anticonvulsants and with alternative therapies. 
The boundary of DS with other close syndromes as Lenaux-Gastaut, Dravet, Pseudo 
Lenox,etc. is fuzzy (Doege et al. 2014; Stephani 2006; Von Spiczak et al. 2011; Shorvon 
2011; Kelley 2010).

The case under study: an overlapped DS

The child considered in this paper suffers DS as a particular case of CCRE. However, 
this child’s affection is an event where DS has not been possible to confirm as a result of 
overlapping with other similar pathologies. Although there exist genetic/metabolic tests 
to differentiate DS from close pathologies [as Nieman-Pick disease, Dravet syndrome, 
lipofuscinosis (Von Spiczak et al. 2011)] such tests have resulted negative in this child 
although clinical evidence (as EEG interpretation by neurologists) indicates that this 
affection is very probably a DS. We remark that this situation complicates even more 
finding a reliable treatment. About twenty five different types of anticonvulsants have 
been probed in our child with a very poor success (see “Anticonvulsants information”). 
Hence, since a good diagnosis is missing, we have to look for any alternative which could 
give a clue about the cause and the way such DS changes. As explained in “EEG data-
bases”, there are four EEG recorded in 2008, 2010, 2011, and 2013, one per year. The EEG 
were retrieved from an important children hospital in Mexico City, where neurologists 
have given up (until summer 2014) as a result of the complexity of the case.

Some invasive techniques have been considered (vague nerve stimulator and corpus 
callosotomy) but their efficiency varies (Doege et  al. 2014; Wakai and Kotagal 2001; 
Montavont et al. 2007; As and Smyth 2014). In addition, callosotomy is not reliable as 
a result of the presence of multifocal sources (Doege et al. 2014; Kelley 2010). Besides, 
ketogenic diet (KD) had also been taken into account but it was discarded as a result 
of pancreatitis suffered by this kid (see “Anticonvulsants information” and Doege et al. 
2014). Hence, some other anticonvulsants from the few which have not been used have 
to be considered yet. Genetic studies have been also conceived to discover the aetiology 
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of this CCRE but even finding the cause of this CCRE, would not change the medication 
(there does not exist a genetic “glue” to repair damaged genes or exomes Von Spiczak 
et al. 2011). Another complication ex medicina is the gap between resource—equipped 
and resource poor hospitals in some countries. Advances in medical treatments have 
been improved in so—called developed nations but the gap between resource—equipped 
and resource developing countries is remarkable. For instance, the quantity of demand-
ing children to be attended may impose months-long waiting lists for admissions, even 
for seriously affected epileptic patients. These facts worsen seizures as well and normally 
they are not considered as exacerbating factors (Mbuba et  al. 2008; Wilmshurst et  al. 
2014 and references therein).

Note about pathologies in adults

Although some works in epilepsy have been done (see for instance Stam and van Straaten 
2013; Bai and et al. 2010 and references therein), papers which investigate children epi-
lepsies by entropy measures are practically null. Main attention has been devoted to 
adults affections. Serious diseases as Alzheimer Disease (AD), Creutzfeldt-Jakob Disease 
(CJD), schizophrenia, Parkinson Disease (PD) an others have already been studied from 
a quantitative point of view (Stam et al. 1997; Stam 2003; Stam and van Straaten 2013; 
Abasolo et al. 2008; Labate et al. 2014, 2013; Ahmed and Mandic 2011). Since math anal-
ysis of EEG records is involved, such field is referred to as Quantitative EEG (QEEG) by 
some authors. Nevertheless, as we remarked in the Abstract we are focused in children 
epilepsies (CCRE) and our contribution is new as far as we are concerned.

Contributions as goals

Although the goals of this work were already explained in the Abstract and Introduction 
sections, the following list provides in detail the contributions of this document. They 
are shown to be accomplished through the development of “Results and discussion”. See 
also “Mathematical-medical relation: anticonvulsants and BMSE”.

	 a.	 To evaluate a set of four entropy measures in order to obtain only one that can be 
useful to describe multiple long term EEG of CCRE (see beginning paragraph in 
“2D-complexity: improved MSE” and “ApEn, SaEn–CMSE analysis”)

	 b.	 To analyze the long term development of a case of CCRE, DS by observation of mul-
tichannel EEG complexity plots in an easier way than studying unhandy informa-
tion, i.e., hundreds of traditional time-voltage printed plots (“Entropy of the three 
stages of a seizure–DBMSE: computational animation of 2.5 h of BMSE evolution 
inEEG4”).

	 c.	 To know how seizures stages look like in terms of flat entropies (“Entropy of the 
three stages of a seizure”).

	 d.	 To make comparable multiple long term information (too long rolls of traditional 
plots can not be compared to each other easily and without subjectivity by neurolo-
gists, see “Comparison of preictal, ictal and postictal phases in multiple EEG”).

	 e.	 To answer the following questions also posed by the parents of any child in this situ-
ation: which area of the brain is the most affected by seizures through the four years 
of studies and moreover, how is the evolution of the disease by brain zone through 
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all this time? On which year was the kid healthiest and why? Naturally, the answers 
will influence medications, therapies, home-cares, and so on (“Multiple long term 
EEG analysis”).

	 f.	 To propose a bivariate complexity parameter referred to as Bivariate Multiscale 
Entropy, BMSE (“Description of comparisons: static and dynamic BMSE”).

	The following goals are shown to be fulfilled in “Comparison of BMSE and MSE in X19 of 
EEG2 (2010)” and “Conclusions”:

	 g.	 To comprise information of the evolution of DS in BMSE plots instead of studying 
hundreds of EEG traditional printed plots.

	 h.	 To remove the subjective interpretation of EEG due to neurologists experience.
	 i.	 To consider the use of BMSE in any other kind of CCRE.
	 j.	 To make comparable long term EEG (for even longer periods than those deemed by 

MSE entropies) by BMSE.

Results and discussion
2D‑complexity: improved MSE

As it is explained in “Methods” the entire EEG database was analyzed with the four com-
plexity measures. ApEn, SaEn, and MSE revealed well short term activity but CMSE not 
(see Algorithms). ApEn, SaEn are variance sensible to the length of the data series but 
MSE and CMSE are not. Memory restrictions have to be taken into account with ApEn 
(self matches need to be evaluated) and CMSE (extra coarse graining process computed) 
but not with SaEn and MSE (see “ApEn, SaEn”—“MSE analysis”). So, our analysis yielded 
that MSE was the most convenient measure to work with as a result of shorter comput-
ing time and fidelity in reproducing long and short term brain activity. In “Entropy of 
the three stages of a seizure” and “Comparison of preictal, ictal and postictal phases in 
multiple EEG” the three seizure stages considered here are analyzed in terms of MSE 
complexity. In addition, in “Multiple long term EEG analysis” from all the set of EEG (80 
time series) it is concluded that the brain region F3 is the most affected through all these 
years of study. It is also deduced that 2010 was the worst year for the kid as a result of the 
low complexity and high variance shown in the corresponding plots.

ApEn, SaEn

From the results obtained by ApEn and SaEn it was concluded that the complexity of 
all EEG is low during ictal stages. This conclusion is in line with another serious neuro-
logical diseases as explained in “Note about pathologies in adults”. Without reviewing 
traditional EEG plots obtained in the hospital, it can be concluded from MSE curves 
that unfortunately, this person suffers a continuous state of discharges (voltage levels 
oscillates from high to very high). However, ApEn and SaEn are very sensitive to the 
length of data. By developing some algebra, we also concluded that standard deviation 
of both quantities are inversely proportional to such length of data N. See also “Aproxi-
mate entropy, ApEn”. In spite of this, some authors still like to use modified versions of 
ApEn or SaEn as nonlinear statistics (Sharanreddy 2013). This pair of metrics was imple-
mented by Algorithms 1 and 2, respectively (see “Methods”).
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MSE analysis

Computer memory restrictions are not that problematic as those presented during ApEn 
calculations. This is due to the fact that MSE starts from raw data (the original time 
series corresponding to an EEG channel) and later computes the set of coarse grained 
series for different time scales τ. The computations are done in shorter and shorter time 
series (see Algorithm 3 in “Methods”) which converges to a faster computing time. This 
fact allowed to compute MSE for all channels during much longer EEG times. Broadly 
speaking, by observation of MSE plots (Figs.  2, 3, 4, 5) they indicate a relative low 

Fig. 2  MSE during preictal phase in four channels during 5 years. The evolution of this DS is compared in four 
channels of EEG2. Observe how the general trend is upwards at this preictal stage.

Fig. 3  MSE during ictal phase in four channels during 5 years. The evolution of this DS is compared in four 
channels of EEG2. Observe how the general upwards trend of the preictal stage is distorted here.
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complexity in all EEG during states preponderantly ictal. This fact coincides with the 
conclusions obtained from ApEn, SaEn and CMSE (see “CMSE analysis”).

CMSE analysis

CMSE resulted to be too smooth in order to show fast variations of the EEG signals. 
This fact is explained by the extra coarse -graining process used in this computation (see 

Fig. 4  MSE during postictal phase in four channels during 5 years. The evolution of this DS is compared in 
four channels of EEG2 in a postictal stage. Notice how the how the general trend is upwards again, indicating 
that the brain recovers of the seizure.

Fig. 5  MSE behavior during 1 h time corresponding to one million samples through 5 years. This plot exhib‑
its how this DS behaves in long term. The general trend is upwards, showing so that the child’s brain presents 
complex thoughts (playing, reading, walking, etc).
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Algorithm 4 in “Methods”). In addition, time calculation was also long with respect to 
the other entropies. Thus, the parameter chosen to describe the evolution of this affec-
tion as the best complexity measure was MSE.

Entropy of the three stages of a seizure

Consider channel X19 = PZ in EEG2 (2010). A period which contains the three phases 
of a seizure was analyzed in terms of MSE (Fig. 6). Such interval lasts from second 58 
to second 73 in the EEG study. For ease of exposition the preictal duration was sepa-
rated in two sub phases and posictal stage was split in three sub stages, keeping only 
one time window for the ictal phenomenon as a result of its brevity. The MSE curves 
were computed for each of the periods described above and are given in Fig. 7. Notice 
that during both preictal sub phases the corresponding MSE plots lie above 1 (excluding 
the initial value at τ = 1 where MSE ≅ 1). There are complexity high peaks for MSE ≥ 
1.5, indicating so that brain activity is mainly normal. Now, let us analyze the ictal phe-
nomenon. It can be seen that the complexity is low i.e., MSE< 1 for 1 ≤ τ ≤ 6 and MSE 
≅ 1 for 6 < τ ≤ 10. This indicates that there exists similar patterns during this period of 
time (Fig. 6) as expected. The first postictal subphase (seconds 66–69.5 in Fig. 6) reflects 
a recuperation-like MSE curve with values going beyond 1 gradually (Fig.  7). Ulterior 
intervals of the postictal duration show high complexity again. These set of curves show 
that MSE is a good option to investigate complicated EEG patterns. 

Comparison of preictal, ictal and postictal phases in multiple EEG

Recall that a normal brain activity presents high complexity with respect to simpler sig-
nals. This was the case for channel X7 which was compared to a sinusoid wave, a chaotic 
state variable, Brownian motion and white noise (Figs. 1, 8, 9). In contrast, the preictal, 
ictal and postictal periods will be analyzed in terms of MSE next for the four years. Since 

Fig. 6  Phases of a seizure separated to study their corresponding complexity curves. Subseparation of stages 
to compute their MSE curves.
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the total number of plots is big, 228, i.e., 19 channels × 4 years × 3 seizure phases, the 
most representative figures were chosen to be those corresponding to the first four EEG 
channels of all EEG. Each stage was chosen to last approximately the same to make them 
comparable in time. So, the preictal phase lasts about 13 s, the ictal one, 5 s and the pos-
tictal phase, 5 s.

Observe in Fig.  2 how at this preictal stage MSE complexity curves go upwards, 
indicating a normality tendency (seizure free period and normal distribution of the 

Fig. 7  MSE curves for the three stages of a seizure. See text. Complexity curves for each of the sub stages of 
a seizure.

Fig. 8  SaEn as a function of �τ . SaEn as a function of τ plotted for five 10,000 samples long signals in order to 
compare complexity among them.
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corresponding set of time series as explained before). Consider now Fig. 3. It is clearly 
seen that the improving pattern is destroyed during the ictal state. Additionally, the MSE 
seems to oscillate. This fact means that the brain equilibrium is being altered. Finally, the 
postictal behavior is given in Fig. 4. There it seems to be a transition from the electrical 
attack to an improving process. Notice particularly at the end of the horizontal axis an 
increasing trend in complexity. Again the set of plots coincides with the clinical behavior 
observed during the EEG recording. We remark that analyzing these plots is much more 
easier than studying scrolls of printed plots in paper. So, as neurologists coincides, our 
contribution ended up in a useful support in EEG-analysis.

In Fig. 5 MSE was plotted for four channels. This image can be considered as a portrait 
of the evolution of the complexity of this DS through 2008–2013 during 1 h and 20 min 
of EEG recording. Notice how the four plots go up in spite of the affection showing that 
the little patient achieves a normal mental activity. Observe also how otherwise long 
rolls of traditional EEG plots are comprised in these entropy curves. It can be conclude 
as well that our entropy measures are spatially descriptive, i.e., any brain zone can quan-
titatively be investigated.

Multiple long term EEG analysis

Given a set of several EEG studies, it is always difficult for neurologists to decide which 
one is the best and as a consequence, to explain the evolution of a disease in terms of 
the whole EEG data set. As we offered at the beginning of this work, our version of MSE 
is useful to deal with this, displaying multiple long term information in a simpler way 
than before. Consider for instance the following case. The parents of this kid ask to the 
neurologist:  which area of the brain is the most affected by seizures through the four 
years of studies and moreover, how is the evolution of the disease by brain zone through 

Fig. 9  MSE as a function of �τ . MSE as a function of τ plotted for five 10,000 samples long signals in order to 
compare complexity among them.
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all this time? These questions can be answered as follows in terms of MSE. Consider 
Fig. 10 where channels X1 to X4 are given for the four years of studies. In each subplot 
the mean curve and mean plus/minus one standard deviation curves are also included 
for each channel. Examining mean and standard deviation MSE plots in the other chan-
nels (not shown) it was possible to observe that the most irregular of them i.e., those 
who exhibit more time-amplitude fluctuations were X2, X4, X7, X10, X14 and X18. On 
the other hand, by inspecting only the lowest mean complexity it can be deduced that 
regions X2, X4, X7, X8 and X10 are the worst. Hence, X2, X4, X7 and X10 represent 
the areas which behave with more irregularities and lowest complexities. Nevertheless, 
among all of them the channel with lowest entropy and highest variability was channel 
X2. Hence, X2 = F3 is the region which presents more seizures during these 5 minutes 
of EEG time. That is why it was decided to show this set of plots for channels X1 to X4. 

Now consider the parents posing the following question to the child neurologist:  Ana-
lyzing the EEG data set, on which year was the kid healthiest and why?. Naturally, the 
answer will influence medications, therapies, home-cares, and so on. Scrutinizing Fig. 11 
where MSE mean, MSE mean plus one standard deviation and MSE mean minus one 
standard deviations curves are displayed, it can be observed that the best years were 
2008 and 2013 and the worst years, 2010 and 2011. Observing the latter plots it can be 
deduced that 2010 is the worst year among all. Notice there that the level of the MSE 
mean is around 1 but the standard deviation curves reflect high fluctuations. Hence, 
2010 presents the lowest complexity with the highest variations (predominance of ictal 
seizures). All of this is valid for the period of time analyzed in all these curves, 5 min of 
EEG time. Of course, this period of time can be changed. It can be concluded that during 
2008, 2010, 2011 and 2013 the worst year of the child was 2010 with X2 = F3 as the most 
affected zone. These conclusions were in line with clinical observations done by neurolo-
gists (Zavala-Yoé et al. 2015). 

Fig. 10  MSE mean, MSE mean plus/minus one standard deviation curves per channel. Multichannel long 
term MSE plots for all the years considered (X1–X4 shown here). MSE mean, MSE mean plus/minus one 
standard deviation curves are also shown to help to decide which channel was better in the long term.
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“3D-MSE: BMSE numerical experiments as clinical interpretation” describes the 
results obtained during the computation/plotting of BMSE for the experiments 
explained in “Numerical experiments”. The mathematical-medical link is given in “Math-
ematical-medical relation: anticonvulsants and BMSE”.

3D‑MSE: BMSE numerical experiments as clinical interpretation

Analysis of 90 s time containing multiple preictal, ictal and postictal phases

In Fig. 12 (upper panel) several preictal, ictal and postictal phases are given from signal 
X1. In the lower panel, the corresponding SBMSE surface is provided. In general, during 
a preictal stage, neither neuron synchronization nor high amplitudes are present in the 
EEG pattern. As a consequence, relative high values of BMSE appear coloring in yellow/
red tones the corresponding region. Later, during the ictal phase, the neurons are syn-
chronized and the voltage amplitude increases a lot, hence blue tones color the SBMSE 
plot. Finally, throughout the postictal part, amplitudes come down and blue tones tend 
to disappear in the SBMSE surface. The following details can be appreciated in the afore-
mentioned Fig. 12. It can be seen that there are periods where the pikes and high fre-
quency activity are greater than in other sections of this signal. Analyzing for instance 
the first fifteen seconds of X1, it can be seen that some high voltage peaks are present. 
Comparing this period of time with the BMSE plot below, it can be appreciated that the 
complexity goes up until second 15, where BMSE ≈ 2. It is also interesting to observe 
that at second 15, and going towards τ axis (going ”inside” the page), there are peaks 
colored in red/yellow, meaning that the complexity is really high at second 15 (notice 
the BMSE scale). This fact matches with the information provided by the EEG in chan-
nel X1 shown above. Later, from second 15 to second 20, although the complexity still is 
relatively high, it starts to go downwards (observe also this towards τ). Approximately at 

Fig. 11  MSE mean, MSE mean plus/minus one standard deviation curves per year. Multichannel long term 
MSE plots for all the EEG channels per year.
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second 28, complexity falls down to its lowest value in this period. This coincides with 
the peak pointing downwards in the X1 plot. Notice also the blue color in the BMSE at 
second 28 (τ direction) which says that for all values of τ the complexity is low. From 
second 30, the BMSE tries to improve (notice the yellow peaks in the 3D surface), reach-
ing its highest value approximately at second 40. High frequency and high voltage peaks 
appear after second 40 and until second 55 (see X1 graph in the current image). This 
events are displayed in the BMSE surface where BMSE ≤ 1 for the period from second 
45 to second 55, approximately. Next, up to the second 70, the X1 amplitude remains 
normal, fact reflected by the BMSE surface. The highest value of BMSE is reached at 
second 75, because a little bit later some irregular activity shows up until second 82, 
approximately. Finally, after second 82 the brain activity looks well in channel X1 with 
BMSE going upwards and with yellow/red tones in the τ direction. 

Comparison of BMSE and MSE in X19 of EEG2 (2010)

Signal X19, EEG2 (2010) was already described by MSE in “Entropy of the three stages of 
a seizure”. Now, that signal will be studied by BMSE (SBMSE in four phases, 90 s each). 
Recall that there is an important negative peak during the ictal phase (Figs. 6, 7) which 
is now shown by SBMSE surfaces (see Fig. 13). Subpanel (1,1) of the latter image says 
that the lowest complexity of the surface appears at second 65 approximately. Blue zones 
means low complexity (BMSE  ≤  1). Yellow/red tones means high complexity, predomi-
nant in the remainder surfaces. Notice that the lowest parts of the surfaces which appear 
in subfigures (1,2), (2,1) and (2,2) exhibits blue areas. This means that the complexity is 
low for the original time series and small values of τ. However, when τ becomes bigger, 
the complexity (BMSE values) tend to be high (bigger than 1) and ripples appear. In spite 

Fig. 12  X1 and its corresponding BMSE plot during 90 s time. From EEG2, the first 90 seconds of brain activ‑
ity are shown in X1 and its corresponding BMSE surface.
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of the aggressive seizure appeared at second 65, the background brain activity tends to 
be of high complexity, i.e., the brain recovers and tries to go on. This fact coincides with 
the results given by MSE.

Description of long term BMSE complexity in 2.5 h time of channel X1 in EEG4

In the last experiments the BMSE computation has been done for relative short times, a 
matter of minutes. BMSE is also useful to study very long term patterns of complexity of 
EEG signals. Consider for instance Fig. 14 where 2.5 h are split in four 37.5 min long 3D 
graphs. The left upper panel shows the first 37.5 min of complexity evolution. It can be 
seen there that the blue regions of low complexity are relatively scanty and appear at the 
bottom of the surface. Note the light blue line which appear at BMSE = 1. Upper regions 
are colored in yellow/green indicating higher values of BMSE. At the end of the figure 
red spikes can be observed. All of this says that the first 37.5 min are relatively good for 
the kid. The figure corresponding to the following 37.5 min (70 min up to now) presents 
bigger blue zones than the first one in the right upper panel. Moreover, the surface looks 
rather flat, yellow/green areas are not big and there are some red spikes. There are not 
many seizures but the complexity (in general) tends to be low in this period of time. The 
left lower panel shows a recovery of the above mentioned low complexity because yel-
low/red areas can be easily observed. Nevertheless the surface looks curly as a result of 
a constant irregular activity. The latter means that although the child suffers a constant 
electric state (see the ripples) this kid performs high level tasks for a human being (she 
plays,she watches TV, etc.). Finally for this image, in the right lower figure, the latter 

Fig. 13  Bivariate �MSE(t , τ) complexity corresponding to 6 min time in X19, EEG2 (2010). Compare this subfig‑
ure (1,1) with Fig. 6, panel (2,1); a 2D and a 3D viewpoints of the negative peak Here, each surface comprises 
90 seconds of EEG2.
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behavior persists, indicating that the child lives (almost) a normal life. He might not 
exhibit seizures but he really suffer them. This is confirmed by both lower panels of this 
figure. It is very remarkable that neurologists have coincided with this sad characteristic 
of this kid. 

Comparison among X17, X18, X19 and X20 during 10 minutes of EEG4 time

In this case, four different channels were compared in order to observe their long term 
BMSE complexity during 10  min of EEG time. It is possible to notice that X19 is the 
worst one because its surface remains almost flat (slightly above 1 in the BMSE scale) 
indicated by vast blue regions. See Fig. 15. These surfaces make comparable patterns that 
otherwise would not match as a result of the length of the plots and the quantity of EEG 
involved. If we reflect that an epoch (an EEG page) lasts typically 10 seconds, 10 minutes 
of an EEG study means that we have 60 pages of voltage-time graphs. Such information 
is condensed in MSE and BMSE plots. 

DBMSE: computational animation of 2.5 h of BMSE evolution in EEG4 

The multiple figure described above in “Description of long term BMSE complexity in 
2.5 hours time of channel X1in EEG4” was animated by a MATLAB program (see Algo-
rithm 3) which permits to observe and follow the behavior just described. In this case, 
2.5 h of an EEG recording can be comprised in four frames movie which shows gradually 

Fig. 14  Bivariate �MSE(t , τ) complexity corresponding to 2.5 h of an EEG study in channel X1. Each figure 
comprises 37.5 min of an EEG record. Long rolls of traditional EEG plots may be supported by this kind of 
graphs.
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how DS evolves. Naturally, the animation can be as finer or broader as the user wishes. 
The subjective interpretation of an EEG (see “Introduction”) can be supported by BMSE 
plots as it has been explained in this section. It is possible to identify low complexity 
zones, which correspond in the EEG graph to repetitive patterns with low amplitudes. 
Red/orange regions in BMSE surfaces means high complexity patterns in the EEG record 
as explained before. Naturally, a DBMSE can also be obtained for the set of figures (or 
more if it is desired) given in “Comparison of BMSE and MSE in X19 of EEG2 (2010)”.

Mathematical‑medical relation: anticonvulsants and BMSE

The results just showed in “3D-MSE: BMSE numerical experiments as clinical interpre-
tation” were considered to be the most representative ones for this case of DS as a result 
of the neurologists observations, particularly the frontal fuzzy focus explained at the end 
of “EEG databases”. The 3D plots of BMSE as well as the computational animations were 
done for all the EEG channels in the database. Although these results were not included 
for space restrictions, all of them coincide with the observations done by neurologists. It 
was confirmed that 2008 and 2013 were worse years than 2010 and 2013. This could be 
deduced from all the BMSE surfaces and animations which showed less ripples and blue 
zones in 2008 and 2013 than in 2010 and 2011. Anticonvulsants therapeutic action is 
manifest in yellow/red zones and peaks of high complexity in static BMSE and dynamic 
BMSE (see Table 1 and “Anticonvulsants information”). In spite of a constant discharge 
state in the kid, the successful combo ethosuximide, levetiracetam, clonazepam, lacosa-
mide and lamotrigina resulted to be good until 2013. The red/orange/yellow zones con-
firm this fact with high complexity activities in the kid as playing computer games, going 
to school, etc. Nevertheless there does exist an impairment between the kid’s develop-
ment and the rest of the children of the same age, but psychologists and neurologists 

Fig. 15  BMSE in channels X17-X20 in EEG4. This image reveals that channel X19 is the worst one during 
the 10 min of the study in EEG4. Note low BMSE zones (approximately equal to one) which indicates low 
complexity for this period of time.
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agree that the child is improving, slowly, but improving at least until 2013. Long term 
static and dynamic BMSE also coincide with this as well as our computations of MSE.

Conclusions
Four entropy parameters were investigated: ApEn, SaEn, a modified version of MSE and 
CMSE. These nonlinear measures confirm low complexity not only during ictal stages 
but also throughout long periods in some brain regions. Again, this comes as a result of 
a constant discharging state. Among the aforementioned statistics, our modified MSE 
was chosen as the best one to deal with this type of children epilepsy. In this sense, it 
was found out that massive information contained in traditional long rolls of EEG can 
be condensed in very simple MSE plots. Moreover, the latter is also possible considering 
not only one EEG but also many. So, the information contained in multiple long term 
EEG can be resumed and made suitable for self comparisons through time in terms of 
MSE graphs. We have to reflect that such massive information may induce subjective 
interpretation by neurologists. Hence, MSE can quantify objectively from which brain 
area came the more aggressive discharges as well as on which year. These facts have 
not been answered specifically and quickly by medical experts under the conditions 
explained. Besides of these advantages, the evolution of one patient can be compared 
objectively with respect to others.

After applying MSE to the set of 80 channels it could be determined that 2010 was 
the worst year for the kid with X2 = F3 as the most discharging region. Later on, in this 
work we will develop and asses another entropy statistic which will be applied to this 
type of CCRE.

Finally, DS was investigated in terms of static and dynamic BMSE as complexity meas-
ures. This fact offers a significant advantage in long term interpretation of this disease 
by studying complexity measures over traditional observation of long rolls of EEG plots. 
Long term and very long term evolution can be studied with the proposed BMSE. The 
red/orange zones in static and dynamic BMSE indicated that the kid is progressing in 
spite of this difficult struggle (Zavala-Yoé et al. 2015).

Table 1  Anticonvulsants per year

√
 and ×, a relative good and poor control of seizures, respectively; NA, not applicable.

* an EEG was recorded in that year and is used in this work

Anticonvulsant Year Comments Seizures MSE BMSE

IMI, PA 2006 First medicines consumed. Stopped 
suddenly

NA NA NA

VPA+, TPM, CLB, VPA 2007 Beginning of VA NA NA NA

VPA, LTG, TPM, VPA+, CLB, LEV, ATX, 
ESM, PSE, MDZ

2008* Pancreatitis. Beginning of ESM,LEV. 
ATX worsen seizures

√
OK OK

TPM, LEV, LTG, PSE, ESM, CZP, ZNS 2009 ZNS useless. Retirement of ETS 
worsen seizures

NA NA NA

ZNS, ESM, CZP, LEV, CZP 2010* CZP useless. Seizures worse × Bad Bad

CZP, LEV, LTG, ESM, PB 2011* PB useless × Bad Bad

LCM, ESM, LEV, LTG, CZP 2012 LCM shows up.ETS retired again 
worsening seizures

NA NA NA

LCM, LEV, LTG, PRM, CZP, Q10, ESM 2013a* Gastritis aggravate
√

OK OK

LEV, ESM, LCM, LTG, CZP 2013b* Idem
√

OK OK
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Future work
As a future work, more databases recorded from other children have to be included in 
order to determine whether it is possible to use BMSE as a DS marker. It will be inves-
tigated if BMSE has a finger print in DS (and also in other CCRE). Moreover, the use of 
complexities and specially BMSE can be extended to other types of CCRE. This work 
is presently being developed. On the other hand, the possibility of predicting seizures 
by means of MSE or BMSE has to be explored. High frequency components complicate 
prediction of EEG time series, but MSE and BMSE do not show this problem. However, 
it is necessary to have some thousand samples to compute an Identification Model, but 
MSE and BMSE are not that long. Hence, a trade off has to be found. Actually, in par-
allel with the results shown in this work, prediction simulations were obtained using 
NLARX (Non Linear Auto Regressive with eXogenous inputs) models working directly 
with the EEG time series but since this DS is multifocal, 20 times series have to be pre-
dicted at the same time complicating the scenario (Zhang and Ljung 2007). NLARX is a 
good prediction model but for one or two steps ahead and only one time series. As more 
steps ahead and channels required, as less precise are the prediction outputs (Zhang and 
Ljung 2007). Results were also obtained predicting MSE and BMSE with NLARX models 
but the outputs were not satisfactory. These algorithms are currently being extended to 
improved versions.

Researching deeper this topic we hope to support better to neurologists to clarify mul-
tiple long term EEG in CCRE. May be we can contribute to find a definitive clue that can 
determine the origin (and maybe the cure) of this cruel pathology which silently affects 
to many children.

Methods
Design of the study

A very rare case of DS known by its medical complexity (CCRE) is considered here in 
order to be investigated mathematically. DS is described by a set of four EEG (80 time 
series) which were be investigated by four complexity measures, implemented in our 
three-dimensional arrays (ApEn, SaEn, our refined MSE and CMSE). Among the latter, 
our improved version of MSE ended up to be the best to describe the evolution of this 
DS. So, this non-linear statistic was used to answer the questions posed in “Contribu-
tions as goals” successfully. First, MSE was used to make multiple long term EEG infor-
mation comparable during the three phases of a seizure. Second, 2D-complexity plots 
(MSE plots) were able enough to explain quantitatively which region of the brain was the 
most affected and which year was the healthiest during the time of the study considered. 
Proceeding as usual in EEG analysis by neurologists, these conclusions would not have 
been possible to obtain. Third, since it was determined that the most convenient entropy 
to analyze EEG was MSE, it is proposed here to construct another complexity measure 
referred to as Bivariate Multiscale Entropy (BMSE) which will be a function of time and 
scale factor time τ, i.e., a 3D-measure. The evolution of a channel with respect to time 
will be displayed as MSE(t). MSE(τ ) will show how the EEG signal varies its regular-
ity pattern conforms vector τ varies. So, BMSE will be defined as BMSE = MSE(t, τ ).  
Since BMSE is a function of two parameters, the corresponding BMSE will be a 3D plot 
(SBMSE). Moreover, it will be shown here that putting several BMSE plots together at 
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the same reference frame, it will be possible to produce a useful computational anima-
tion (DBMSE) which will give long term information about EEG complexity. Note 2 
about nomenclature. Since BMSE = MSE(t, τ ) these terms are used as synonyms.

Subject,EEG databases and record of anticonvulsants

Subject

A female child whose age ranges 8–12 years old was investigated. It is noteworthy men-
tion that only one patient was considered here because DS is a relatively uncommon 
affection (Stephani 2006; Doege et al. 2014; Kelley 2010). A yearly average of 2.4 children 
with DS are admitted to this hospital in Mexico City. As far as we are concerned, this 
is a unique case at this hospital with such severe symptomatology. As a consequence, 
the child has not been cured yet. This is the reason of considering only one child in this 
investigation.

EEG databases

Although the disease history of the child starts in 2006, the database consider only 2008, 
2010, 2011 and 2013. Years before 2008, i.e., 2006 and 2007 were not available and miss-
ing years from 2008 to 2013 were not accessible for administrative purposes. Hence, four 
EEG compose the present database: 2008, 2010, 2011 and 2013 so they are referred to 
as EEG1, EEG2, EEG3 and EEG4, respectively. Each of them is conformed by 20 chan-
nels. The entire set of the four EEG clearly shows typical features of DS although some 
clinical manifestations are not consistent with a typical DS (overlapping). The EEG were 
recorded according to the international 10–20 system with 7 mm, 7 µv calibration (Gil-
Nagel 2001). As known, this system identifies electrodes with the following identifiers: 
The letters F, T, C, P and O stand for frontal, temporal, central, parietal, and occipital 
lobes, respectively. Although there is no central lobe letter ”C” is used only for identifica-
tion purposes. Letter ”z” means zero and it refers to an electrode placed on the midline. 
The right hemisphere electrodes are identified with even numbers (2,4,6,8) whereas odd 
numbers (1,3,5,7) refer to those on the left hemisphere. Fp means frontal polar electrode. 
That is why our electrode positions were: Fp1, F3, F7, T3, C3, T5, P3, O1, Fp2, F4, F8, 
T4, C4, T6, P4, O2, FZ, CZ, PZ,Oz (twenty) (Gil-Nagel 2001; Shorvon 2011), see Fig. 16. 
Although BMSE did not show memory restrictions as it was reported in “CMSE analy-
sis”, the number of channels considered in the numerical experiments were 19 as it was 
for the flat entropies (ApEn, SaEn, MSE, CMSE). So, for sake of clarity in graphics, these 
channels were renamed as Xi, i = 1,…,19. The sample frequency was 200 Hz correspond-
ing to 5 ms of sample time. A/D converter resolution was 16 bits.

The EEG records are matrices of different sizes, thousands of rows (samples) by 19 col-
umns (channels). There were no abnormal body activity nor evident seizures exhibited 
during recording of EEG1 and EEG3. However, this was not the case during recording 
of EEG2 and EEG4. See “Anticonvulsants information” and “Mathematical-medical rela-
tion: anticonvulsants and BMSE” where the latter is confirmed in this second part. 

Neurologists reported that it would have been great to find the focus of this disease 
because the discharges spread throughout the brain very quickly. Sometimes a surgery 
can extirpate the focus area in order to finish the affecting discharges. But in this child, 
neurologists found that this epilepsy is multifocal and a surgery is not reliable. In spite of 
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being a multifocal problem, one of the main origins of seizures is the frontal lobe. Never-
theless, this focus is fuzzy in the sense that there are other small foci in this region.

Anticonvulsants information

Table 1 provides information about the main anticonvulsants prescribed for the kid dur-
ing 2008–2013. In that table the abbreviations used are explained in the List of Abbre-
viations, at the end of this document. Details about those antiseizures can be reviewed 
in (Doege et al. 2013; Stephani 2006; Steinhoff and Bast 2013; WHO 2013a, b).

It was very difficult to express the whole and detailed information available about 
dates, dosages, duration of medicines treatments, side effects and so on in only one 
resumed table. However, so far the information displayed in Table 1 is good enough for 
the purposes of this work. It is also remarked that although the medicines cited above 
are produced by international companies, some of them have local versions in Mexico 
City. Examples are LTG and ESM. From the table, it can be seen that ESM is useful for 
the kid but the side effect is gastritis (WHO 2013a, b; Steinhoff and Bast 2013). Stop-
ping consumption of this product exacerbates seizures as reported above. Q10 was pre-
scribed as an emergency help but it was useless. It is also remarkable that phenytoin is 
forbidden for this child because it causes her status epilepticus (SE) (Doege et al. 2014). 
The last two columns in this table indicate the univariate MSE and BMSE for each year 
of the EEG. Notice how this parameters coincide with all the other information provided 
by this table. Since MSE and BMSE are curves and surfaces, respectively, the value ‘ok’ 
means that the complexity was mainly high (see “Results and discussion”).

Evolution of DS according to medical treatment

The following description is complemented in “Mathematical-medical relation: anti-
convulsants and BMSE”, where the mathematical connection is established. Consider 
Table  1 Seizures history starts at the beginning of 2006 with just a few Absence epi-
sodes which seemed to be normal. Later, at the end of 2006, some irregular EEG activ-
ity was detected. The diagnosis was brain immaturity (Michels et  al. 2011) which was 
supposed to be not serious. However, presumably, sudden retirement of IMI and PA 

Fig. 16  International std. 10–20 system for electrode positions (head seen from top). Each position is called 
channel and corresponds to one time series.
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exacerbated seizures. Since the affection was evolving, 2008 was worse with respect to 
2006 and 2007. In 2007 VPA+ was used to mitigate myoclonic and atonic seizures which 
had showed up. Since VPA+ did not reduced the seizures, VPA was prescribed in 2008 
and was used during that year until pancreatitis (pancreas inflammation) complicated 
the treatment. Pancreatitis is a very dangerous disease which may affect people that are 
medicated with VPA+ or VPA (Hartford Hospital Evidence-based PracticeCenter 2011; 
Steinhoff and Bast 2013; WHO 2013a, b). In this case, people have to be sent to a hospi-
tal for medical attention. After two weeks of admission, during which the child received 
midazolam, seizures vanished. In that time, the child suffered a bit of what was diag-
nosed as attention deficit and hyperactivity syndrome (ADHD) and atomoxetine was 
prescribed to help (WHO 2013a, b; Steinhoff and Bast 2013). Nevertheless, this drug 
worsened seizures again and it had to be retired. From the comments above, in 2008 
seizures were partially controlled and the kid had a relative good control of her epilepsy 
in spite of the pancreatitis and the side effects caused by atomoxetine. 2009 is a miss-
ing year in the EEG database of this work and could not be studied with BMSE. How-
ever, during some months of that year zonisamide was tried with no success. In addition, 
ethosuximide was retired exacerbating the seizures. This fact continued in 2010 (avail-
able EEG) when clorazepate dissodium came into picture with no control of seizures. 
Summing up, 2010 was a bad year for the kid as a result of a poor control of her epilepsy. 
Next, in 2011 a special combination of anticonvulsants was conceived. As a result, a bet-
ter control of the seizures was achieved with respect to 2010. In 2012 ethosuximide was 
gradually stopped with the consequent worsening of seizures. So, although 2012 is miss-
ing in our database it certainly influenced the future and was not a good year in terms 
of epilepsy control. Finally, in 2013 a right amalgam of medicines was found after a very 
long and painful trial and error process. It is concluded that 2013 was a relatively good 
year. It is interesting to notice that this successful combo was already used since 2011 (a 
relative good year) but mixed with other medicines. Summing up, 2008 and 2013 were 
good years and 2010 and 2011 were not. This observations coincide with the conclusions 
thrown by MSE in “MSE analysis”.

Description of comparisons: complexity of multiple long term EEG

The evolution of epilepsies as DS is explained traditionally in terms of the multiple 
long term EEG. However, the amount of information contained in such set of studies is 
unhandy and may become subjective. That is why it is proposed in this work to assess 
a set of complexity measures in order to choose the most suitable to describe multi-
ple long term EEG. The set of entropies were assessed in a set of test signals described 
in “Test signals”. One of them is an EEG-signal which qualifies as normal for the work 
period chosen.

One way to define complexity of a dynamical system is by means of its entropy. In this 
context, entropy is the rate of information production (Richman and Moorman 2000). 
Pincus (1991) developed the theory for a measure of regularity, the rate of generation of 
new information that can be applied to clinical data. Pincus named this measure approx-
imate entropy, ApEn, having as a goal to measure system complexity. From ApEn, some 
other entropies have been proposed (Chon et  al. 2009; Richman and Moorman 2000; 
Costa et al. 2002; Shuen-De 2013), and our versions of MSE and CMSE used in this work 
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(“ApEn, SaEn–CMSE analysis”) as well as our BMSE (SBMSE and “Description of com-
parisons: static and dynamic BMSE”). We remark that we analyzed all EEG-channels of 
our entire database with all the statistics (complexity measures) described here. How-
ever, from our 320 graphs (80 times series × 4 entropy measures) we only show relevant 
figures.

Test signals

In total, a set of five test signals were used to compare complexity among them:

1.	 Sine function, f = 1 Hz. The least complex signal.
2.	 Brownian Motion. A self similar signal but more complex than a sinusoid (Mikosch 

1998).
3.	 Chaotic system: One state variable of a Roessler system (Strogatz 1994).
4.	 EEG channel, X7, parietal 3 (a brain signal which behaves normal).
5.	 White noise.

Every test signal is 10,000 samples long, equivalent to 50 s time. We want to show how 
normal brain activity looks like in terms of complexity (the four entropies already men-
tioned) with respect to other typical signals. As expected, as simpler the signal as lower 
its complexity measures.

Complexity as univariate multiscale entropy, MSE

A time series is considered more complex than another if for majority of the vector 
scales τ its entropy values are higher than other. In addition, a monotonic decrease of the 
entropy values with respect to scale factors reveals that the signal only contains informa-
tion in the smallest scale.

It is known that one way to define complexity of a dynamical system is by means of 
its entropy. In this context, entropy is the rate of information production (Richman and 
Moorman 2000). Pincus (1991) developed the theory for a measure of regularity, the 
rate of generation of new information that can be applied to clinical data. Recall that 
ApEn was improved in a new algorithm developed by Richman and Moorman (2000) 
where the new statistic was named sample entropy (SaEn). Later, such SaEn was refined 
by Costa et al. (2002) and the resulting parameter was called multiscale entropy (MSE). 
This MSE was improved here (see “Multiscale entropy, MSE”) and later (“Description 
of comparisons: static and dynamic BMSE”) an enhanced version of it is referred to as 
BMSE. The complete EEG data base was analyzed with this new BMSE algorithm and 
the conclusions were agree with traditional EEG time-amplitude graphs. So, the MSE 
complexity plots are included below in order to be compared with their corresponding 
BMSE plots. In all the algorithms, given a vector V1, semicolon means to construct a sub-
vector V2 which starts in entry V1(a) and finishes in entry V1(b). If an increment �V  is 
specified, V2 is written as V2 = [V1(a) : �V : V1(b)], a < b. If �V  is not specified, then it 
is assumed to be one. Our algorithms are based in 3D-arrays storing (Zavala-Yoé 2008).
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Aproximate entropy, ApEn

Pincus designed an algorithm to approximate a computation of the so called Kolmog-
orov-Smirnov (KS) entropy (see Pincus 1991 and references therein). The KS-entropy 
formula is rather abstract and involves numerical disadvantages:

The meaning of the variables in Eq. 1 will be clear next. ApEn is widely used to under-
stand complexity of physiological data (Pincus 1991; Chon et al. 2009. With regard to 
compute ApEn, given a monovariate time series X of length N, the basic algorithm (Pin-
cus 1991) firstly creates N-m+1 sub series x of length m from X. Secondly, computes a 
distance between two consecutive vectors as the maximum difference in their respec-
tive scalar components (see Pincus 1991 and our algorithm below). Thirdly, a param-
eter Cm

i (r) measures within a tolerance r the regularity or frequency of patterns similar 
to a given pattern. Finally, parameters �(r)m and �(r)m+1 are calculated to represent 
the average stability of these similar patterns on incrementing. ApEn is computed as 
�(r)m −�(r)m+1. See details in (Pincus (1991); Chon et al. 2009); Richman and Moor-
man 2000). So, ApEn measures the logarithmic likelihood that runs of patterns that are 
close remain close on next incremental comparisons within a tolerance r. This idea is 
referred to as complexity Pincus (1991). Thus, summing up, an ApEn complexity plot is 
obtained in two basic steps. First, by downsampling a time series at a scale factor vec-
tor τ, which will produce l sub time series (see step 3 in Algorithm 1 below). Second, an 
ApEn is computed for each sub time series. Finally, the complexity graph is obtained by 
plotting τ vs. ApEn (see Algorithm 1). A time series is considered more complex than 
another if for majority of the vector scales τ its ApEn values are higher than other. In 
addition, a monotonic decrease of the ApEn values with respect to scale factors reveals 
that the signal only contains information in the smallest scale. This is confirmed by the 
fact that its standard deviation σ(ApEn)is inversely proportional to the length N of the 
time series (Richman and Moorman 2000; Pincus 1991).

Think for instance in the following example. Assume that we want to analyze 
the complexity of an N-samples long signal given by X ,= ..., 11.74, 1.25,−4.55,

11.74, 1.25,−4.55, 11.74, 1.25,−4.55, ..., N = 51. Assume that m = 2, r = 3. In this 
case the sequence of sub vectors x(i), i = 1, ...,N −m+ 1 of length m (see Algorithm 
1) is given by x(1) = [11.74 1.25], x(2) = [1.25 − 4.55], x(3) = [−4.55 11.74],  
x(4) = [11.74 1.25]. Now, the distances are evaluated in such a way those vectors 
which satisfy the constraint d = max|x(i), x(j)| ≤ r = 3 will be counted. Observe that 
d(x(1), x(2)) = max|1.25− (−4.55)|, |11.74 − 1.25|  =  |11.74 − 1.25| = 10.49 > 3 
(not counted). Similarly, d(x(1), x(3)) = 16.29 > 3 (not counted either) and 
d(x(1), x(4)) = 0 < 3 (counted). Proceeding this way, we realize that vectors which sat-
isfy d(x(1), x(j)) < 3 are x(1), x(4), x(7),  ..., x(49) (seventeen elements). Next, �(m) will 
be constructed as

(1)KSEntropy = lim
r→0

lim
m→∞

lim
N→∞

[

�m(r)−�m+1(r)
]

≈ ApEn

(2)�m(r) =
1

N −m+ 1

N−m+1
∑

i=1

ln(Cm
i (r))
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The first term of Eq. 2 is C2
1 (3) = 17/50. Continuing this way �2(3) will be

Analogously for �m+1 we obtain

Finally, ApEn = �2(3)−�3(3) = 0.000033 ≈ 0. Hence, this periodic signal (or at least, 
the part considered here) is not complex. The complete and detailed algorithm is shown 
below. See “Why entropy is expected to decrease as a consequence ofregularity?” for an 
extended explanation of complexity and regularity. Our entire data set is conformed by 
3D-matrices. It consists of n EEG. Each EEG has q channels by N data where each chan-
nel corresponds to one time series. Any EEG data set defined like this permits the com-
putation of ApEn and the other entropies. Our ApEn algorithm is an adaptation from 
(Pincus 1991) taking advantage of three dimensional arrays in MATLAB (Zavala-Yoé 
2008). Our remaining algorithms are based in such 3D matrices. 

(3)�2(3) =
1

50

50
∑

i=1

ln(C2
i (3)) = 0.333666

(4)�3(3) =
1

49

49
∑

i=1

ln(C3
i (3)) = 0.333666

2. For nEEG = 1, 2, ..., n repeat steps 3-10.
3. Fix the smallest value of τ , increment of τ , and biggest value of τ as

τmin,∆τ, τmax, resp., such that we form a time scale vector ranging from τmin

to τmax incremented in ∆τ defined as τ = [τmin : ∆τ : τmax], l = length(τ).
4. For each τ(i), i = 1, 2, ..., l; τ(1) = τmin, τ(2) = τ(2∆τ), ..., τ(l) = τmax repeat

steps 5-10:
5. For i1 = 1, 2, ..., N ; j1 = 1, 2, ..., q; k1 = 1, 2, ..., n define a set of arrays (raw data)

as X(i1, j1, k1). Each X(i1, j1, k1) is a three dimensional array which defines each
EEG.

6. Fix m, m is the length of compared runs of data; compute r which gives a
tolerance as r(k1, j1) = sσ(X(i, j, k)), σ(X(i, j, k)) is the standard deviation of
the original time series of each EEG channel, 0 < s < 1. For most physiological
time series, s ranges from 0.1 to 0.2. We chose s=0.2, m=2 [33].

7. For a = 1, 2, ..., N − m + 1, i2 = 1, 2, ...,m + a − 1; k2 = 1, 2, ..., N − m + 1
construct arrays x(i2, 1, k2) defined as x(i2, 1, k2) = X(i2, j1, k1). Each sequence
of arrays x(i2, 1, k2) defines a sub series from X(i,j,k).

8. Use the sequence x(i2, 1, k2) to construct for each k3 = 1, 2, ..., N−m+1, Cm
k3
(r)

= number of x(i2, 1, k3) such that (d(x(i2,1,k2),x(i2,1,k3))≤r(k1,j1))
N−m+1 . The distance d

is defined as d(x(i2, 1, k2), x(i2, 1, k3)) = maxi2,k2,k3 |x(i2, 1, k2), x(i2, 1, k3)|.
9. Define Φm(r) = 1

N−m+1

∑N−m+1
k3=1 ln(Cm

k3
(r)).

10. Define ApEn(i)=Φm(r)− Φm+1(r).
11. Plot τ vs. ApEn.

Algorithm 1, ApEn.
1. n=No. of EEG in the database, q=No. of EEG channels considered, N=length

of time series (one times series per channel). In this study we fix n=4, q=19, N
depends on the experiments.
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ApEn computes the conditional probability of similarity between a data segment of a 
given duration and the next set of segments of the same duration. Thus, a lower value of 
ApEn means a high degree of regularity which indicates low complexity of data.

Sample entropy, SaEn

This statistic was defined in (Richman and Moorman 2000) in order to avoid some 
disadvantages ApEn has. For instance, although useful, ApEn is a biased statistic as a 
result of including self matches. This happens when the distance (defined in Algo-
rithm 1) is measured for the same vector x, i.e., d(x, x) = 0. In order to reduce such 
bias in the ApEn algorithm (step 8) the distance definition has to be modified to 
d(x(i2, 1, k2), x(i2, 1, k3)) = maxi2,k2 �=k3 |x(i2, 1, k2), x(i2, 1, k3)|. Basically, the algorithm to 
compute SaEn and ApEn remains the same considering the latter constraint (Richman 
and Moorman 2000; Pincus 1991). 

The complexity plot for SaEn is given in Fig. 8. The sine function resulted to be the 
least complex signal among all and the white noise signal and the EEG-series the most 
complex. In the case of the chaotic system and the Brownian motion they are in the mid-
dle as result of their repetitive nature. This is revealed in the phase-space trajectories for 
the former and by self similarity patterns for the latter as a function of time (Stam et al. 
1997; Mikosch 1998). The length of the series was 10,000 samples (equivalent to 50 s of 
EEG time). Recall that X7 behaves predominantly normal here.

Multiscale entropy, MSE

Computation of MSE is based on the definition of SaEn (Costa et  al. 2002). As seen, 
from the algorithm to compute SaEn, the time scale is only one in the sense that a given 
time series (EEG channel) lasts from time t1 to t10000. SaEn is quite dependent on time 
series length, actually its standard deviation is also inversely proportional to the length 
of the time series (see definition of SaEn and ApEn above and Richman and Moorman 
2000). This fact may cause that some times, ApEn and SaEn take a high value when it is 
calculated in certain pathologic time series that are assumed to represent less complex 
dynamics than to time series obtained from healthy patients. Instead of considering only 
one time scale, in (Costa et al. 2002) it is proposed to create finer time scales based in 
the original one. So, given a time series Xi a coarse-grained time series Y τ

j  is constructed 
by taking pieces of Xi of certain length τ and rescaling these pieces of Xi in terms of this 
length (Costa et al. 2002). The algorithm to determine MSE was taken from (Costa et al. 
2002) but we modified step 4 (see also note below): 

Algorithm 2, SaEn.
1. Do steps 1-7 in algorithm 1.
2. Do step 8 in algorithm 5.3.3 with :

d(x(i2, 1, k2), x(i2, 1, k3)) = maxi2,k2 �=k3 |x(i2, 1, k2), x(i2, 1, k3)|.
3. Do step 9 in algorithm 5.3.3.
4. Define here SaEn(i)=Φm(r)− Φm+1(r).
5. Plot τ vs. SaEn.



Page 27 of 33Zavala‑Yoé et al. SpringerPlus  (2015) 4:437 

In this work, we propose to modify step 4 above as: MSE  =  SaEn(Y τ
j ) with 

r(τ ) = 0.2σ(Y τ
j ) i.e., considering r as a function rather than a constant. This continu-

ous updating of r permits to compute a better variance of Y τ
j  because r is not calculated 

from Xi as r = 0.2σ(Xi) but from each sub series Y τ
j . This fact makes σ inversely propor-

tional to the length of each sub series Y τ
j  instead of keeping such inverse proportionality 

relative to N. The tolerance r is so being adjusted for each sub series Y τ
j . The behavior of 

complexity for the MSE case is shown in Fig. 9. Good results in modeling pathologies 
have been obtained by MSE (Costa et al. 2002).

Composite multiscale entropy, CMSE

An additional nonlinear metric to measure complexity is provided by the so called com-
posite multiscale entropy, CMSE (Shuen-De 2013). Such metric constructs k coarsed 
-grained subseries from those already obtained by the MSE algorithm as 
Y τ
k = Y τ

k ,1,Y
τ
k ,2, . . . ,Y

τ
k ,jmax

, jmax = N/τmax. Next, SaEn is computed for each sub coarsed 
-grained subseries. CMSE is calculated as the result of averaging all the SaEn computed 
for each sub coarsed-grained time series for each value of τ (Algorithm 5.3.6).  

This figure is not included but we realized that the complexity pattern persists (with 
respect to SaEn and MSE but a little bit less to ApEn) but their plots look smoother (high 
frequency activity is missed) as a result of the extra coarse -graining process and by tak-
ing r (tolerance) as function of each subseries Y τ

k = Y τ
k ,1,Y

τ
k ,2, ...,Y

τ
k ,jmax

 (see step 4 in 
Algorithm 5.3.5 and steps 3 and step 4 in Algorithm 5.3.6). This also means that we have 
improved the original algorithm developed for CMSE (Shuen-De 2013). It is also note-
worthy mention that the processing time used by the CMSE algorithm is much longer 
than that of ApEn, SaEn and MSE as a consequence of the extra coarse-graining pro-
cesses plus the computation of SaEn for each of them (compare Algorithms 2, 3 and 4).

Algorithm 4, CMSE.
1. Define X (raw data for each EEG) and τ as in algorithm 1.
2. For each τ = [τmin : ∆τ : τmax]; jmax = N/τmax, j = 1, ..., jmax; k = 1, ..., τ

repeat steps 3-5 below.
3. Y τ

k,j =
1
τ

∑jτ+k−1
i=(j−1)τ+k Xi

4. Compute SaEn for each sub coarsed grain time series as:
SaEn(k) = SaEn(Y τ

k,j)
5. Define CMSE as the mean value of all SaEn obtained in step 4 as:

CMSE(k) = 1
k

∑τ
k=1 SaEn(k)

6. Plot τ vs CMSE.

Algorithm 3, MSE.
1. Define X (raw data for each EEG) and τ as in algorithm 1.
2. For each value of τ repeat steps 3-4.
3. Given a one-dimensional time series (an EEG channel) Xi = X1, X2, ..., XN a

set of consecutive coarse-grained time series is calculated as:
1 ≤ j ≤ N

τ ;Y
τ
j = 1

τ

∑jτ
i=(j−1)τ+1 Xi. (A subseries Y τ

j of length N
τ is computed

for each value of τ).
4. Compute MSE(i)=SaEn(Y τ

j ) with r=0.2σ(Xi).
5. Plot τ = [τmin : ∆τ : τmax] vs. MSE.
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All the entropy measures could reveal the associated complexity of the test signals cor-
rectly. However, when they were assessed in the EEG database, our improved version of 
MSE ended up to be the best. ApEn and SaEn are variance sensible to the length of time 
series and CMSE, although improved here as well, needs much more computer memory 
than the other statistics. MSE did not show these problems (Zavala-Yoé et al. 2015).

Description of comparisons: static and dynamic BMSE

As a result of the succeed of MSE in “Results and discussion” it is proposed here to con-
struct an enhanced version of such MSE, referred to as Bivariate MSE. This means that 
an MSE value will be computed for each time scale factor τ but during an arbitrary dura-
tion of the EEG channel, having in this way that BMSE is defined as BMSE = MSE(t, τ ). 
This makes a big advantage over traditional MSE and EEG because for the former there 
will be a tree dimensional plot which will comprise information in only one surface. For 
the latter, the evolution of this affection can be studied better as it will be explained in 
“Results and discussion”. An interesting 3D plot can be generated by plotting τ, the time 
scale factor, the time axis t, and MSE computed for an arbitrary interval of time �t. This 
can be done by placing together complexity MSE-plots corresponding to continuous 
periods of time (slices, see Algorithm 5). For instance, the MSE-plot corresponding to 
the first 10 seconds is placed next to the MSE-plot corresponding to the following 10 
seconds and so on. All together will form a three dimensional surface considering (in 
this example) n times 10 seconds. Of course the period of time can be anyone. Thus, we 
can bring together a general 3D interpretation of MSE complexity. Compare now MSE 
in Fig. 9 and BMSE in Fig. 17. The complexity pattern persists for the all signals. In all 
the BMSE plots, the BMSE variations are chromatically shown by gradual alterations of 
colors which go from dark blue to red. Dark blue means low complexity, i.e., BMSE ≤ 1. 
The value for BMSE =  1 is indicated by a lighter tone of blue. Relative high values of 
complexity, i.e., 1 < BMSE < 1.5 are colored in tones which vary slowly from light blue 
to green and yellow, phase by phase. Higher complexities are two toned in orange and 
red. The algorithm which computes and plots these complexity surfaces is given below.

In step 7 of Algorithm 5.4, ”Surface” means to construct a 3D structure to plot a 3D MSE 
graph properly. In addition, 3D-arrays were used to simplify computations (Zavala-Yoé 
2008). The complexity pattern coincides with the univariate version of MSE. Note that in this 
case, as lower the curve (for τ = 1 and so on) as less complex the signal. The MSE surface at 

Algorithm 5. Static BMSE: BMSE = MSE(t, τ).
1. Define tEEG, duration (in seconds) of the selected EEG channel, tsamp = 0.005

seconds as the sample time.
2. Define ∆samp = tEEG

tsamp
, ∆t, number of samples and time step size, respectively,

to plot in 3D.
3. Compute the number of slices to build the 3D surface as nslices = ∆samp/∆t.
4. For τ = [1 : ∆τ : τmax], i = [1 : nslices] repeat step 5
5. Compute arrays MSE(:, i) = MSE(τ) with Algorithm 1.
6. Compute the time vector t as t = [1 : nslices] ∗∆t ∗ tsamp to plot the surface.
7. Define MSE(t, τ) = Surface(τ, t,MSE(:, i)).
8. Plot the complexity surface MSE(t, τ).
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the bottom corresponds to the sine wave. The one which appears at top, corresponds to 
white noise. Those in the middle are the MSE surfaces of: Brownian motion, one state varia-
ble, x1, of the chaotic system and one EEG signal (X7), respectively. Once with this algorithm 
to compute the BMSE, it is also possible to create a 3D animation for a set of BMSE surfaces 
as follows. This algorithm will be used in the following section.

Algorithm 6. Dynamic BMSE: 3D Animation of BMSE.
1. Define tsamp=0.005 seconds as the sample time, X is the selected EEG channel.
2. Obtain mX , nX the number of rows and columns of X, respectively, as

[mX , nX ]=size(X).
3. Define the number of surfaces to animate as nsurf .
4. Compute the number of samples necessaries to construct each surface as nss =

mX/nsurf .
5. Define a counter q which will be used to construct nsurf surfaces to create the

3D animation.
6. Define ∆t as the step time between two slices of a surface (twoMSE(t, τ) curves).
7. Construct the scale time vector τ = [1 : ∆τ : τmax]. Initialize counter q=1.
8. for s=1:nsurf repeat steps 9-17.
9. A set of subseries of X is constructed according to nss as Xsub = X((q − 1) ∗

nss + 1 : q ∗ nss)).
10. Initialize counters i=0, c=0.
11. Do while ∆t+ c ≤ nss steps 12- 14.
12. i=i+1
13. Use algorithm 1 to compute MSE(:, i) = MSE(τ,Xsub((c+ 1) : ∆t+ c), 1)).
14. c = c+∆t.
15. Compute tgraf = [1 : i] ∗∆t ∗ tsamp, the time vector to plot surfaces.
16. surf(τ, tgraf ,MSE(:, i)) plots the i-th surface to construct the animation.
17. q=q+1; store images: surface=getframe;
18. Create the movie from the stored images: movie(surface)

Fig. 17  BMSE during 5 min time. The BMSE plotted at bottom corresponds to the sine wave and the highest 
corresponds to white noise. Compare with Fig. 9.
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Numerical experiments

The content of the Methods section converges to the following list of numerical experi-
ments. Compare this part with “Contributions as goals” and “Results and discussion”.

ApEn, SaEn, MSE and CMSE were used in part 1 below. MSE was used from 2-4 and 
BMSE from 5-10.

	 1.	 Assessing of four entropies to obtain only one which can be used to study the evolu-
tion of this affection based in massive data (MSE succeeded).

	 2.	 Interpreting and comparing the three states of a seizure in traditional voltage-time 
plots with their respective complexity (MSE) plots.

	 3.	 The chosen entropy (MSE) will be applied in multiple long term EEG to give simul-
taneous long term information during the three states of a seizure.

	 4.	 The chosen entropy (MSE) will be used to find which region of the brain behaves 
worst and on which year.

	 5.	 From the aforementioned entropy, a new one will be designed (BMSE) to exhibit 
much longer term information by means of 3D surfaces and 3D animations (SBMSE 
and DBMSE, repectively).

	 6.	 Analysis of 90 seconds time containing multiple preictal, ictal and postictal phases 
by BMSE.

	 7.	 Comparison of BMSE and MSE in X19 of EEG2 (2010).
	 8.	 Description of long term BMSE complexity in 2.5 hours time of channel X1 in EEG4.
	 9.	 Comparison among X17, X18, X19 and X20 in EEG4 during 10 minutes.
	10.	 DBMSE: Computational animation of 2.5 h of BMSE evolution in EEG4.

Recall that, in a EEG, a preictal stage is characterized by an asynchronous pattern with 
relative low voltage amplitude. As a consequence, the complexity is higher in this case 
than during an ictal phase where the neurons are synchronized exhibiting high voltage 
amplitude peaks. Hence, the complexity comes down. During the postictal period, the 
voltage amplitude starts to decrease slowly increasing complexity gradually. These char-
acteristics were well reflected by BMSE (see “Results and discussion”).

Why entropy is expected to decrease as a consequence of regularity?
In “Aproximate entropy, ApEn”, the concept of ApEn was explained and it also was 
emphasized that as a result of some drawbacks, SaEn replaced ApEn (“Sample entropy, 
SaEn”). Our evaluation among ApEn, SaEn, MSE and CMSE revealed that our modified 
version of the original MSE was the best statistic to be applied to our EEG-database. 
Since our MSE is based in the calculation of SaEn, with no loss of generality, this sec-
tion is written in terms of SaEn. In “Aproximate entropy, ApEn”, “Sample entropy, SaEn”, 
“Multiscale entropy, MSE”, and “Composite multiscale entropy, CMSE” it is explained 
that given a time series X, such X is arranged in a collection of x(i), i = 1, . . . ,N −m+ 1 
sub vectors (templates (Pincus 1991; Richman and Moorman 2000) of length m. SaEn 
counts the number of these vectors x(i) whose component-wise distance d to each other 
is lower than a tolerance defined as r = 0.2σ(X). As more sub-vectors satisfy this con-
straint, as more regular X is (Pincus 1991; Richman and Moorman 2000; Costa et  al. 
2002; Shuen-De 2013; Chon et  al. 2009). Why? Well, first, recall that, in “Aproximate 
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entropy, ApEn”, the Kolmogorov-Smirnov entropy was defined by means of Eq. 1. This 
equation is approximated as follows:

In Pincus (1991) ApEn is defined as

The argument of the logarithm is a probability of occurrence of such x satisfying the 
above mentioned distance tolerance for sub-vectors x of length m and m+ 1, denoted as 
♯x(i)|m,d≤r and ♯x(i)|m+1,d≤r, respectively.

The component-wise distance constraint d(X(τ ),X(τ�τ)) = |X(τ )− X(τ�τ)|

≤ 0.2σ(X(τ )), τ = [τmin : �τ : τmax], �τ = 1, 2, . . . ,�τmax, �τmax = τmax − 1, 
τmax = N −m+ 1, can be written as d(X(τ ),X(τ�τ))/σ (X(τ )) ≤ s, 0 ≤ s ≤ 1 for an 
arbitrarily value of s. The latter ratio measures the change in amplitudes with respect to 
the signal variation. In (Pincus 1991; Chon et al. 2009; Costa et al. 2002; Richman and 
Moorman 2000) values of s = 0.15, 0.2 are considered either by definition or as a result 
of experiments. Hence, a sampled signal is considered as regular if that ratio is less than 
s; we also considered s = 0.2.

Consider now the definition of SaEn (“Sample entropy, SaEn” and Richman and Moor-
man 2000). Roughly speaking, SaEn looks the same as Eq. 6 but considering the distance 
constraint as d(X(τ ),X(τ�τ)) = |X(τ )− X(τ�τ)|

∣

∣

�τ �=1
≤ 0.2σ(X(τ )). With this clari-

fication, we can study the complexity of a periodic sampled signal X in terms of SaEn. 
Since a periodic signal repeats its pattern every n periods T for n = 1, 2, 3, . . ., SaEn can 
be expressed in this case as

The signal will be the same for all periods nT, so it is possible to write Eq. 8 as follows:

Where S denotes the summation. If a signal is periodic or preponderantly periodic (as 
in the case of an epileptic seizure) then it follows that ♯x(i)

∣

∣

m,d≤r
≈ ♯x(i)

∣

∣

m+1,d≤r
. This 

implies that P(i) ≈ 1 for many sub-vectors x and in this case, ln(P(i)) ≈ 0, and hence 
SaEn ≈ 0, i.e., low complexity. So, small values of SaEn mean low complexity. Moreover, 

(5)KSEntropy = lim
r→0

lim
m→∞

lim
N→∞

[

�m(r)−�m+1(r)
]

≈ �m(r)−�m+1(r)

(6)ApEn = �m(r)−�m+1(r) =
1

N −m+ 1

N−m+1
∑

i=1

ln

(

Cm
i (r)

Cm+1
i (r)

)

(7)P(i) =
Cm
i (r)

Cm+1
i (r)

=
♯x(i)

∣

∣

m,d≤r

♯x(i)
∣

∣

m+1,d≤r

(8)SaEn =
1

N −m+ 1

n
∑

j=1

N−m+1
nT
∑

i=1

ln

(

Cm
i (r)

Cm+1
i (r)

)

(9)SaEn =
n

N −m+ 1

N−m+1
T
∑

i=1

ln

(

♯x(i)
∣

∣

m,d≤r

♯x(i)
∣

∣

m+1,d

)

=
n

N −m+ 1
S
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if we assume that n
N−m+1

S > 1 then S > N−m+1
n . However, the number of samples N of 

X is of order of magnitude 4,5 or even 6 for EEG records (which last from some min-
utes to about 2 hours) while S will be very small because ln(P(i)) ≈0. It follows that the 
latter inequality is false and SaEn < 1 for periodic and approximately periodic signals. 
Analogously, for a random signal where -in contrast- ♯x(i)

∣

∣

m,d≤r
≈ 0 then P(i) ≈ 0 and 

ln(P(i)) > 1, and SaEn > 1, i.e., high complexity.
Now, consider that SaEn = 1. Let us write Eq.  6 for SaEn as 

SaEn = (N −m+ 1)−1(s1 + · · · + sN−m+1). As all the terms of the summa-
tion are positive, they have to be less or equal than one. If at least one si = 1, then 
sj = 0, i �= j, i = 1, 2, . . . ,N −m+ 1. In this case, all the complexity of the signal 
(SaEn = 1) will only be equivalent to the i-th element complexity. This means that the 
relevant information is contained in that part of the signal and the other part will be peri-
odic. Next assume that for any two terms si, sj , si + sj = 1, i �= j, i = 1, 2, . . . ,N −m+ 1.  
This again means that the complexity of the complete signal is concentrated in two 
parts of the time series and again the signal behaves preponderantly periodic. When 
si = (N −m+ 1)−1, i = 1, 2, . . . ,N −m+ 1 the complexity of the whole signal is 
equally distributed through it in very tiny values of SaEn.

Since our MSE is also based on SaEn, the conclusions about complexity for our MSE 
are similar.
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