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Background
A symmetric Boolean function is a function whose inputs can be rearranged in some 
fashion without changing the output of the function. The importance such functions was 
first recognized by Shannon in (Shannon 1949), who characterized function symmetries 
using permutations of the input variables. Since that time, the detection and exploita-
tion of symmetric Boolean functions has been of recurring interest in the field of design 
automation (Abdollahi 2006; Biswas 1970; Born and Scidmore 1968; Butler et al. 2000; 
Chrzanowska-Jeske 2001; Chung and Liu 1998; Darga et al. 2008; Drechsler and Becker 
1995; Hu and Marek-Sadowska 2001; Hu et  al. 2008; Ke and Menon 1995; Kettle and 
King 2008; Kravets and Sakallah 2002; Maurer 2011; Mohnke et al. 2002; Moller et al. 
1993; Muzio et al. 2008; Rice and Muzio 2002; Scholl et al. 1997; Tsai and Marek-Sad-
owska 1996; Wang and Chen 2004; Zhang et al. 2004). Virtually all of these algorithms 
are based on Shannon’s Theorem (Shannon 1949) which detects symmetry by compari-
son of two-variable cofactors. (See below.) Although comparison of two-variable cofac-
tors is powerful enough to detect all total and partial symmetries, there are many types 
of symmetries that cannot be detected in this manner. As the number of input variables 
grows, these types of symmetry become more common than partial and total symmetry. 
Some progress has been made in detecting symmetries beyond partial and total sym-
metry (Chrzanowska-Jeske 2001; Tsai and Marek-Sadowska 1994; Kravets and Sakallah 
2000), but the problem of universal symmetry detection has remained open since 1949.

Abstract 

Research on symmetry detection focuses on identifying and detecting new types of 
symmetry. The paper presents an algorithm that is capable of detecting any type of 
permutation-based symmetry, including many types for which there are no existing 
algorithms. General symmetry detection is library-based, but symmetries that can be 
parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected 
without using libraries. In many cases it is faster than existing techniques. Furthermore, 
it is simpler than most existing techniques, and can easily be incorporated into existing 
software. The algorithm can also be used with virtually any type of matrix-based sym-
metry, including conjugate symmetry.
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Figure 1 lists the number of symmetries and the number of symmetry types for each 
number of inputs from 1 through 18. (Two symmetries are of the same type if they 
are the same but applied to different inputs.) Columns 2 and 3 are the total number of 
symmetry types and symmetries for each n. Columns 4 and 5 are the total number of 
symmetry types and symmetries for partial and total symmetry. Figure 2 gives the per-
centage of partial and total symmetries and symmetry types, compared to the total num-
ber of symmetries. The data from these tables shows that partial and total symmetries 
account for less than half of the available symmetry types when the number of inputs is 
more than 3, and only a tiny percentage of the available symmetries when the number of 
inputs is 8 or more.

The experiments with standard benchmarks (Brglez et al. 1985) show that symmetries 
other than partial and total symmetries are common. Other researchers have noted the 
existence of such symmetries (Kravets and Sakallah 2002; Mohnke et al. 2002). Ignoring 
such symmetries can cause major failures in layout verification and regression (Mau-
rer and Schapira 1988). These algorithms typically use graph-isomorphism algorithms, 
starting from the known elements of the circuit (the primary inputs, for example). If a 
failure occurs early in the process, such as not recognizing that the function x1x′2 + x3x

′
4 

in one circuit is identical to the function x3x′4 + x1x
′
2 in the other, the failure can cause 

a cascade of false errors throughout a major portion of the circuit. When too many 
false errors are reported, the real errors are extremely difficult to identify. (The function 

Input 

Count 

All Symmetry 

Types 

All 

Symmetries 

Partial/Total 

Symmetry Types  

Partial/Total 

Symmetries 

11111

22222

53643

51503114

257651915

302115541656

77851003,11697

8 296 151,221 22 4,140 

9 554 1,694,723 30 21,147 

10 1593 29,594,446 42 115,975 

11 3094 404,126,228 56 687,570 

12 10,723 10,594,925,360 77 4,213,579 

13 20,832 175,238,308,453 101 27,644,437 

14 75,154 5,651,774,693,595 135 190,899,322 

15 159,129 117,053,117,995,400 176 1,382,958,545 

16 686,165 5,320,744,503,742,316 231 10,480,142,147 

17 1,466,358 125,889,331,236,297,288 297 82,864,869,804 

18 7,274,651 7,598,016,157,515,302,757 385 682,076,806,159 

Fig. 1  Symmetries and symmetry types (Holt 2010).
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x1x
′
2 + x3x

′
4 is neither totally nor partially symmetric, but it is obvious the set of inputs 

{x1, x2} can be exchanged with the set {x3, x4} without altering the output.)
Correct handling of symmetry is also important when attempting to match design 

specifications to an existing library of functions (Mohnke et  al. 2002). Suppose the 
library contains a pre-laid-out implementation of the function x1x′2 + x3x

′
4, and the 

circuit being laid out contains the subcircuit x3x′4 + x1x
′
2. If symmetry-detection fails, 

these two functions will not be matched correctly, requiring a new layout (by hand or 
by machine) for x3x′4 + x1x

′
2, when none is actually required. This can be costly, both 

in terms of time and of correctness. New implementations must be verified and tested, 
whereas library implementations are already verified and are much more likely to be 
correct.

This paper presents an entirely new approach which, effectively, considers all inputs 
simultaneously instead of in pairs. This approach allows the algorithm to detect virtually 
any type of symmetry, including some types that go beyond permutations. (These types 
include matrix-based symmetry, auto-symmetry, Kronecker symmetry, anti-symmetry, 
and multi-phase symmetry.) For small numbers of inputs (less than 8) the USD is faster 
than using cofactors. In addition, the coding is simpler. Pseudo code is presented in "The 
symmetry detection algorithm", which can easily be adapted for use in existing EDA 
algorithms. The USD algorithm also is somewhat easier to parallelize than the conven-
tional algorithm, because it does not require the accumulation of results to completely 
characterize a function. The conventional algorithm checks for symmetric variable pairs 

Inputs Partial/Total 

Symmetry 

Percentage 

Partial/Total 

Type 

Percentage 

1 100.00% 100.00% 

2 100.00% 100.00% 

3 83.33% 75.00% 

4 50.00% 45.45% 

5 33.33% 36.84% 

6 13.95% 19.64% 

7 7.76% 15.63% 

8 2.74% 7.43% 

9 1.25% 5.42% 

10 0.39% 2.64% 

11 0.17% 1.81% 

12 0.04% 0.72% 

13 0.02% 0.48% 

14 0.00% 0.18% 

15 0.00% 0.11% 

16 0.00% 0.03% 

17 0.00% 0.02% 

18 0.00% 0.01% 

Fig. 2  Percentage of partial/total symmetries.
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and then combines the results from these tests to determine the symmetries of a func-
tion. Even though each of the symmetric variable pair tests could be done in parallel, 
combining the results requires some sort of binary fanin or pointer jumping, giving a 
parallel time bound of O(lg n). The USD tests an entire permutation group in one shot 
without needing to combine results. Each of these tests could be done in parallel, giving 
a parallel time bound of O(c).

Despite the advantages of the new approach, the algorithm includes the conventional 
symmetric-variable-pair detection algorithms as a subset of the new detection algo-
rithms. When no libraries exist for a particular number of inputs, this makes it possible 
to detect any partial, total, multi-phase, anti, and Kronecker symmetry using the con-
ventional approach.

Symmetries can be categorized into total symmetry, partial symmetry, and strong 
symmetry. Total symmetry permits the inputs of a function to be rearranged arbitrar-
ily without changing the output of the function. Partial symmetry is similar to total 
symmetry in that it permits one or more subsets of inputs to be rearranged arbitrarily. 
Strong symmetry is a catch-all term that includes every type of symmetry that is nei-
ther total nor partial. The function x1 + x2 + x3 + x4 is totally symmetric, the function 
x1x2x3 + x4 is partially symmetric, while the functions x′1x2 + x′3x4 and x1x2 + x3x4 are 
strongly symmetric. (Functions are specified as expressions in which multiplication sig-
nifies AND, addition signifies OR, and the prime symbol specifies NOT.) In x′1x2 + x′3x4 
no single variable can be exchanged with any other single variable, but the set {x1, x2} 
can be exchanged with the set {x3, x4}. The function x1x2 + x3x4 is more problematical 
because most existing algorithms will detect two partial symmetries, but ignore the fact 
that the set {x1, x2} can be exchanged with the set {x3, x4}. (The algorithm of (Kravets and 
Sakallah 2002) will detect the correct symmetry for this function.)

There are many more kinds of strong symmetry than partial and total symmetry (See 
Figs. 1, 2). Various sub-categories of strong of symmetry have been discovered, and algo-
rithms have been created to detect and exploit some of these symmetries (Mohnke et al. 
2002). Examples of such symmetries are hierarchical symmetry, rotational symmetry 
and dihedral symmetry (Kravets and Sakallah 2002).

The primary tool for categorizing symmetry (in any field) is the permutation group 
(Passman 1968). Let X be a finite set of objects. A permutation is a one-to-one function 
from X to itself. In other words, a permutation rearranges the elements of X without 
creating or destroying any elements. Permutations can be “multiplied” using function 
composition. If p and q are permutations, then so is pq where (pq)(x) = q(p(x)). The 
multiplication operation is associative, (p(qr) = (pq)r), but not necessarily commuta-
tive, (pq need not equal qp). A set of permutations, G, that is closed under multiplication 
(for all a, b ∈ G, ab ∈ G) is called a Group. The set of all permutations of a set X is called 
the symmetric group on X and is written SX.

Although it is possible to apply permutations to any finite set, the only thing that 
affects the structure of SX is the size of X. If X and Y  are two sets of the same size, then 
SX and SY  are identical. If p ∈ SX, and the size of X is n then n is the degree of p. If 
X = {1, 2, . . . , n} SX is written as Sn. When speaking of the input variables of a function, 
the variables will be designated as x1, x2, . . . , xn. All permutations are assumed to be ele-
ments of Sn, and permute the variables x1, x2, . . . , xn by operating on their indices.
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Every permutation group G has two important properties which are implied by G 
being closed under multiplication. First, the identity permutation, I, is a member of 
every group. (Ip = pI = p for all p.) Second, every permutation p ∈ G has an inverse 
permutation p−1 ∈ G such that pp−1 = p−1p = I.

Permutations can be specified in many ways, but in this paper cycle notation will nor-
mally be used. Every permutation in Sn can be characterized as one or more cyclic shifts 
of some subset of the integers {1,  2,  …,  n}. For example the permutation (1, 2, 3) ∈ S3 
maps 1 to 2, 2 to 3, and 3 to 1. A permutation may perform several cyclic shifts simulta-
neously, as in (1, 2, 3)(4, 5) ∈ S5, which shifts 1, 2, and 3 cyclically and also swaps 4 and 
5. Elements that are not moved by the permutation are normally omitted from the cycle 
notation, so the permutation (1, 2, 3)(4)(5)(6) ∈ S6 would normally be written (1, 2, 3). In 
a cyclic shift, it doesn’t matter which element comes first, so the cycles (1, 2, 3), (2, 3, 1), 
and (3, 1, 2) all denote the same permutation. To avoid this ambiguity, the smallest ele-
ment of a cycle is always listed first. A similar ambiguity occurs when a permutation 
performs two or more cyclic shifts of the same size, as in (1, 2, 3)(4, 5, 6). In this case the 
cycles of the same length are written in ascending order by their smallest elements.

Cycles of length two, such as (1,  2) and (2,  3) are called transpositions. Any cycle 
of length k can be factored into k − 1 transpositions in the following manner: 
(c1, c2, c3 . . . , ck) = (c1, c2)(c1, c3) . . . (c1, ck). This implies that any permutation can be 
factored into a product of transpositions. This factorization is not unique, but if a per-
mutation, p, can be factored into an even number of transpositions, then there is no way 
to factor it into an odd number of transpositions. By the same token if a permutation can 
be factored into an odd number of transpositions, then there is no way to factor it into 
an even number of transpositions. Thus it is possible to characterize each permutation 
as either even or odd. The product of two odd or two even permutations is even and the 
product of an odd permutation with an even permutation is odd. For every symmetric 
group Sn, there is a subgroup An, consisting of the even permutations of Sn. The group 
An is called the alternating group of degree n.

Let p be a permutation of degree n and let f be an n-input Boolean function. The per-
mutation p and the function f are compatible if using p to rearrange the variables of f  
leaves the output of f unchanged. The function f is also said to be invariant with respect 
to p. This terminology is extended in the obvious way to subgroups of Sn. The symme-
try group Gf  is the set of all permutations that leave f invariant. The group Gf  is closed 
under multiplication because if p and q leave f  invariant, then so does pq. Thus Gf  is a 
subgroup of Sn. Because the identity element leaves every function invariant, Gf  is never 
empty. Most recognized types of symmetric functions can be characterized using sym-
metry groups. For example, an n-input function f  is totally symmetric, if and only if 
Gf = Sn. A function is non-symmetric if and only if Gf = {I}.

Most existing symmetry-detection algorithms use symmetric variable pairs, which are 
detected by comparing the cofactors of a function (Chrzanowska-Jeske 2001). A cofac-
tor of f  is found by setting one or more input variables to constant values. For example, 
let f = x1x2 + x3x4. Two cofactors of f  are fxx1x = x1x2 + x4 and f0xxx = x3x4. The four 
positions in the subscript correspond to the four input variables x1, x2, x3, and x4 respec-
tively. The subscript indicates which variables have been set to constants and which are 
unaffected. When the unaffected variables are obvious, it is common to omit the x’s.
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Symmetric variable pairs are pairs of variables that can be exchanged without affect-
ing the output of the function. Shannon’s theorem (Shannon 1949) states that (x1, x2) 
is a symmetric variable pair if and only if f01 = f10. Symmetric variable pairs are tran-
sitive, which means that if (xi, xj) and (xj , xk) are symmetric variable pairs, then so is 
(xi, xk). Because of this, all partial and total symmetries can be detected using symmet-
ric variable pairs. However, symmetric variable pairs cannot be used to detect strong 
symmetries.

This paper introduces a new method of categorizing permutation groups called 
Boolean Orbits. Boolean orbits are used as the basis of a new symmetry detection algo-
rithm that can determine a function’s compatibility with any permutation group. The 
concept of Boolean orbits can be extended to virtually all types of known symmetry, 
allowing these types of symmetry to be detected by the algorithm described here.

Results and discussion
Boolean orbits

Orbits have been used by mathematicians for many years to analyze and categorize per-
mutation groups (Mohnke et al. 2002; Passman 1968). They have also been used to some 
extent to analyze symmetric Boolean functions (Mohnke et al. 2002). Orbits are com-
puted as follows. Let G be a permutation group that is compatible with a Boolean func-
tion f , and let X be the set of input variables of f . Two variables xi, xj ∈ X are said to be 
in the same orbit of G if there is a permutation p ∈ G, such that p(xi) = xj. Intuitively, an 
orbit contains all the variables that can be exchanged with one another, so the function 
x1x2x3 + x4 has two orbits {x1, x2, x3} and {x4}. Belonging to the same orbit is an equiva-
lence relation, so it breaks the set of input variables into a collection of disjoint subsets.

Orbits can be used to distinguish total and partial symmetries, but are not particu-
larly effective with strong symmetries. Consider the function x1x2 + x3x4, which pos-
sesses dihedral symmetry. At first it may appear that this function has two orbits, but 
in fact it has only one, {x1, x2, x3, x4}. By the same token, the totally symmetric function 
x1 + x2 + x3 + x4 has a single orbit, {x1, x2, x3, x4}. Thus the functions x1 + x2 + x3 + x4 
and x1x2 + x3x4 have the same orbits even though their symmetries are quite different.

(Strictly speaking, orbits are properties of permutation groups, not of functions. Thus, 
the orbit {x1, x2, x3, x4} is the orbit of the permutation group of x1x2 + x3x4, not of the 
function itself.)

This paper presents a new type of orbits, called Boolean Orbits, that permit one to deal 
effectively with strong symmetries as well as partial and total symmetries. Boolean orbits 
are computed with respect to the Boolean input vectors of a function rather than with 
respect to the variables. (Again, it is important to note that Boolean orbits are properties 
of permutation groups, not of Boolean functions.) Permutations of degree n can oper-
ate on n-element vectors by permuting the indices of the elements. For example, one 
can apply the permutation (1, 2, 3) to the vector (v1, v2, v3) to obtain (v3, v1, v2). Applying 
this permutation to the specific vector (1, 1, 0) yields the vector (0, 1, 1). The concept of 
Boolean orbits is formalized in the following definition.

Definition 1  Given a permutation group G of degree n, two n - input vectors v and w 
are in the same Boolean orbit of G if there is a permutation p ∈ G such that p(v) = w.
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Like ordinary orbits, belonging to the same Boolean Orbit is an equivalence rela-
tion, so this relation breaks the set of n - input Boolean vectors into a collection of 
disjoint sets. If Gf  is the symmetry group of a Boolean function, f , then the Boolean 
orbits of Gf  will partition the truth-table of f  into disjoint sets. In fact, the symmetry 
of a Boolean function is completely determined by the Boolean orbits of its permutation 
group. Figure 3 shows the symmetry groups and the Boolean orbits of the two functions 
x1 + x2 + x3 + x4 and x1x2 + x3x4. The first two lines of Fig. 3 give the function and the 
conventional orbits of the function. The final part of Fig. 3 contains the Boolean orbits of 
the function with one Boolean orbit per line. The Boolean orbits of the two functions are 
quite different, even though the conventional orbits are the same. (When listing Boolean 
orbits, all orbits of size 1 are omitted, since these orbits do not affect the symmetry of 
the function.)

The important properties of Boolean orbits are summarized in the following theorems. 
Theorem 1 states that a symmetric Boolean function must map the elements of each of 
the Boolean orbits of its symmetry group to a unique value.

Theorem 1  Let f  be a Boolean function, and Gf  be the symmetry group of f . If K  is a 
Boolean orbit of Gf  and u, v ∈ K , then f (u) = f (v).

Proof  If K  is a Boolean orbit of Gf  and u, v ∈ K , then there is a permutation p ∈ Gf  such 
that p(u) = v. Since every element of Gf  must leave f  invariant, f (u) = f (p(u)) = f (v). □

Theorem 2 is the converse of Theorem 1. It states that if the Boolean function, f , maps 
the orbits of a symmetry group, G, to unique values, then f  is compatible with G.

Theorem 2  Let f  be an n-input Boolean function and let G ⊆ Sn be a group such that 
for every Boolean orbit, K , of G, and for every pair of elements u, v ∈ K , f (u) = f (v) then 
f  is invariant with respect to G, and G ⊆ Gf .

Proof  Let p be an element of G, and let u be any input of f . The vectors u and p(u) are 
in the same Boolean orbit, K , of G. Since f (u) = f (v) whenever u, v ∈ K , f (u) = f (p(u)), 
and f  is invariant with respect to p. Since p was arbitrary, every element of G is compat-
ible with f . The group Gf  contains every permutation that leaves f  invariant, so if p ∈ G 
then p ∈ Gf , and G ⊆ Gf . � □

1 2 3 4x x x x+ + + 1 2 3 4x x x x+

1 2 3 4{ , , , }x x x x 1 2 3 4{ , , , }x x x x

0001 0010 0100 1000 0001 0010 0100 1000 

0011 0101 1001 0110 1010 1100 0011 1100 

0111 1011 1101 1110 0101 0110 1001 1010 

 0111 1011 1101 1110 
Fig. 3  Orbits, and Boolean orbits.
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Obviously, the singleton orbits (those containing a single vector) do not affect the sym-
metry of a function, so when testing a function f  for compatibility with a group G, the 
singleton orbits can be ignored.

Theorem 3 deals with the problem of functions that have more than one type of sym-
metry. As this theorem shows, if a Boolean function f  has two different types of symme-
try A, and B, then f  also possesses an overarching symmetry that includes both A and B. 
Thus if one can identify the largest symmetry group that is compatible with f , then all of 
the symmetries possessed by f  have been discovered.

Theorem 3  Let f  be a Boolean function and let G and H be two permutation groups 
that are compatible with f . Then there is a permutation group, K  compatible with f  such 
that G and H are both subgroups of K .

Proof  Let K  be the smallest subgroup of Sn containing G ∪H. Since Sn contains both G 
and H , K  must exist. From group theory it is known that that every element of p ∈ K  is 
of the form p = q1q2 . . . qk where qi ∈ G or qi ∈ H . Since every element of either G or H 
is compatible with f , p must also be compatible with f , and K  is the required group.�  □

The remainder of the paper will make extensive use of the characteristic function of 
an orbit. Let S be any set of n-element Boolean vectors. The characteristic function of S,  
Cs is an n-input Boolean function which is equal to 1 on every element of S, and zero 
elsewhere. Figure 4 gives a set of orbits along with their characteristic functions in truth-
table form.

The characteristic functions of the Boolean Orbits can be used to determine the sym-
metries of a Boolean function.

Given a permutation group, G, computing the Boolean orbits of G is straightforward. 
The algorithm is given in Fig. 5.

Shannon’s theorem, which is the basis of virtually all other symmetry detection algo-
rithms, is a special case of Theorem 2. Shannon’s theorem deals with symmetric variable 
pairs of a function f , (xi, xj). Formally, symmetric variable pairs are defined as follows.

Definition 2  Let f  be an n-input Boolean function and let xi and xj be two input vari-
ables of f . The pair (xi, xj) is a symmetric variable pair if and only if f  is compatible with 
the permutation group {I , (i, j)}.

The proof of Theorem 4 shows that Shannon’s theorem is a special case of Theorem 2 
above. (The truth of this theorem is, of course, well known.)

Theorem 4  Let f  be a Boolean function, and let f00, f01, f10 and f11 be the cofactors of f  
with respect to the pair of variables (xi, xj). The pair (xi, xj) is a symmetric variable pair of 
f , if and only if f01 = f10.

001 010 100 00010110 

011 101 110 01101000 
Fig. 4  Boolean orbits and characteristic functions.
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Proof  If (xi, xj) is a symmetric variable pair of f , then f  must be invariant with respect 
to the permutation group {I , (i, j)}. The Boolean orbits of this group are either singletons 
of the form {…0…0…}, or {…1…1…}, or pairs of the form {…0…1…,  …1…0…}, where 
the unspecified parts are identical for each vector. The pairs run through all Boolean 
combinations of the unspecified parts. The function f  must map the two elements of 
each Boolean orbit of the form {…0…1…,…1…0…} to the same value. If all vectors of the 
form …0…1… are combined into a single set, the 0, and the 1 are ignored, the result is 
the truth table of the cofactor f01. The truth table of the cofactor f10 is obtained in the 
same manner. Because each element of each Boolean orbit must be mapped to a single 
value, the truth tables must be the identical, implying that f01 = f10. For the converse, 
if f01 = f10, it is possible to expand each of the cofactors into a truth table. These truth 
tables must be identical. It is then possible to insert 0 and 1 into the appropriate posi-
tions of each truth table to obtain the values of f  for each of the inputs of the form 
…0…1… and …1…0…. Now consider two vectors of the form …0…1… and …1…0… 
where the unspecified parts are identical. These vectors were obtained from a single 
entry in a single truth table, therefore they must be mapped to the same value by f . 
Therefore f  must be invariant with respect to the permutation group {I , (i, j)}, and (xi, xj) 
must be a symmetric variable pair.�  □

The implication relation

Let f  and g be two n-input Boolean functions. The function f  is said to imply g if 
g(v) = 1 whenever f (v) = 1. The concept of implication to defines the fundamental 
relationship on which the USD algorithm is based. This result is given in Theorem 5.

Theorem 5  Let G ⊆ Sn be a permutation group, and let f  be an n-input Boolean func-
tion. Let K = {K1,K2, . . . ,Kn} be the collection of Boolean orbits of G with characteristic 

Set Orbit-Collection B to Empty

For Each n-element Boolean vector v

If v has not been assigned to an orbit 

Create a new orbit Z 

Assign v to Z

Mark v as assigned to an orbit 

For Each permutation p in group G

Apply p to v to obtain w

If w is not in Z

Assign w to Z

Mark w as assigned to an orbit 

End If 

End For 

Add Z to B

End If 

End For 
Fig. 5  Generating Boolean orbits.
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functions {C1,C2, . . . ,Ck}. The group G leaves f  invariant if and only if Ci implies either f  
or 

⇀

f  for every i, 1 ≤ i ≤ k.

Proof  Suppose Ci implies f , and v ∈ Ki. Then Ci(v) = 1, and because Ci implies f ,  
f (v) = 1 for all v ∈ Ki. Now suppose Ci implies f . If v ∈ Ki then Ci(v) = 1 and since 
Ci implies f , f (v) = 1, implying that f (v) = 0 for all v ∈ Ki. By Theorem 2, f  must be 
invariant with respect to G.

Now suppose f  is invariant with respect to G. By Theorem  1, if u, v ∈ Ki then 
f (u) = f (v). But Ci(u) = Ci(v) = 1. If f (u) = f (v) = 1, then Ci implies f . If 
f (u) = f (v) = 0, then Ci implies f . � □

Theorem 5 gives a principle that can be used to detect symmetry with respect to any 
permutation group. Given a permutation group G it is straightforward to compute the 
characteristic functions of its Boolean orbits. Given f  it is straightforward to compute 
⇀

f . Once these functions have been computed, one only need check the characteristic 
function of each orbit to determine whether f  is symmetric with respect to G.

Although symmetry detection is normally done on single-output functions, the princi-
ple can be extended easily to multiple-output functions. First it is necessary to define the 
function orbits of multiple output functions.

Definition 3  Let f be a Boolean function with n inputs and m outputs. For each m-ele-
ment vector v, S[v]f  is the set of all n-element input vectors on which f takes the value v. 
The sets S[v]f  are known as the function orbits of f. The function f [v] is the characteristic 
function of S[v]f .

Theorem  6 extends the implication principle to Boolean functions with multiple 
outputs.

Theorem 6  Let G ⊆ Sn be a permutation group, and let f  be an n-input Boolean func-
tion with m outputs. Let K = {K1,K2, . . . ,Kn} be the collection of Boolean orbits of G with 
characteristic functions {C1,C2, . . . ,Ck}. The group G leaves f  invariant if and only if for 
every i, 1 ≤ i ≤ k, Ci implies f [v] for some m-element vector v.

The proof is essentially identical to that of Theorem 5.

The symmetry detection algorithm

Figure 6 gives the pseudo code for the universal symmetry detection (USD) algorithm. 
In this figure, it is assumed that the algorithm is being applied to a collection of func-
tions, and that a library of symmetries is being used. Each library entry contains a set 
of characteristic functions that correspond to the Boolean orbits of a symmetry group. 
In most cases, the library will contain all subgroups of Sn for some integer, n, although 
there are a number of other more specialized libraries. Complete libraries for S2 through 
S8 have been created. Subgroup libraries for S9 through S18 exist on the web (Holt 2010; 
Pfeiffer 2005), but these have not yet been adapted for use with the USD. When used 
with a complete library for Sn symmetry detection begins with the largest group so the 
algorithm may stop as soon as a compatible group is found.
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As Fig. 6 shows, the algorithm reads each function, and compares it to each library 
entry until a compatible entry is found. Most libraries contain a “non-symmetric” entry 
which permits each function to be associated with at least one library entry. However, 
such an entry is not required. If no compatible subgroup can be found, the function is 
marked as non-symmetric.

Comparison between a function and a subgroup is done by enumerating the Boolean 
orbits of the subgroup. Each Boolean orbit is tested against f  and f  seeking an implica-
tion. If a particular subgroup orbit does not imply either function orbit, the comparison 
with the group is terminated. However, if all subgroup orbits imply a function orbit, the 
subgroup is assigned to the function as its symmetry group, and testing of the function 
terminates.

Libraries are not necessary for symmetries that can be parameterized for an arbitrary 
number of inputs. As yet, only a few symmetries have been so categorized, the most 
well-known of which are total, symmetry, partial symmetry, rotational symmetry, dihe-
dral symmetry, and various types of hierarchical symmetry. The USD algorithm has spe-
cial generators for total, partial, dihedral and rotational symmetry, which permits these 

Load Library

Sort Library into descending order by subgroup size. 

For each function f

For each subgroup G in Library 

GroupCompatible = True; 

For each orbit K of G While GroupCompatible

OrbitCompatible = False; 

For each orbit P of f

If KC  implies PC

OrbitCompatible = True; 

Break; 

EndIf 

EndFor 

If Not OrbitCompatible

GroupCompatible = False; 

Break; 

EndIf 

EndFor 

If GroupCompatible

Assign G as the symmetry group of f; 

Break; 

EndIf; 

EndFor; 

If Not GroupCompatible

Mark f as nonsymmetric 

EndIf; 

EndFor; 
Fig. 6  The universal symmetry detection algorithm.
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types of symmetries to be detected without having a precomputed library. Of course it is 
possible to cache the output of these generators for future use.

Most of the existing libraries contain one entry per symmetry group. However, for 
large numbers of inputs it is not feasible to store libraries in this fashion. (See Fig. 1.) 
The conjugacy relation can be used to reduce the size of the library for large numbers 
of inputs. Certain types of symmetry are fundamentally the same, but applied to dif-
ferent inputs, and certain types of symmetry are fundamentally different. For example, 
a 3-input partial symmetry on the first three inputs of a function is not fundamentally 
different from a three-input partial symmetry on the last three variables. But a partial 
symmetry in the first three variables is fundamentally different from a partial symmetry 
in the first two variables. The conjugacy relation is used to distinguish symmetries that 
are essentially the same from symmetries that are fundamentally different. Definition 4 
permits the formalization this idea.

Definition 4  Two permutations p and q are conjugate to one another if there is another 
permutation s such that p = s−1qs.

Conjugacy can be best understood by visualizing it in this way: to permute the last 
three variables of a function, move them to the first three variables using s, then apply q 
to the first three variables, and then use s−1 to move the variables back where they were.

This relationship can be extended to permutation groups in the following way: 
s−1Gs = {s−1ps|p ∈ G}. If two symmetries are fundamentally the same then their per-
mutation groups will be conjugate to one another. For example, all partial symmetries on 
three inputs have conjugate symmetry groups.

Conjugacy is an equivalence relation, so the subgroups of a group can be partitioned 
into a set of conjugacy classes. The Column 2 of Fig. 1 shows the number of conjugacy 
classes and Column 3 shows the number of subgroups for the symmetric groups from 
S1 through S18. The full libraries store each subgroup of the symmetric group. Reduced 
libraries store only one member of each conjugacy class.

To regenerate a conjugacy class, it is necessary to compute the conjugates of each 
library entry. However for each subgroup G of Sn there are many pairs of permutations 
(p, q) such that p �= q, but p−1Gp = q−1Gq. To avoid duplicated work a set of permuta-
tions is stored with the library entry. There is one permutation for each conjugate, so 
applying each permutation to the entry will restore the entire class.

The permutations are computed when creating the library. A group theoretic result 
states that “the number of conjugates of a group is equal to the index (i.e. number of 
right cosets) of its normalizer (Robinson 1995).” This is a simple idea, but requires some 
background discussion.

The normalizer of a group, G, written N (G), is the set of permutations that leave G 
unchanged with respect to conjugacy. That is, the set N (G) = {p|p−1Gp = G}. (N (G) 
is always a subgroup of Sn.) Since G is closed under multiplication, every element of 
G leaves G invariant under conjugation, and G is a subgroup of N (G). However, N (G) 
often contains other elements as well. If p /∈ N (G), then p−1Gp �= G, but for every ele-
ment q ∈ N (G), (qp)−1Gqp = p−1q−1Gqp = p−1Gp. So, if it is desired to include only a 
minimal set of permutations in the library entry, it is necessary to avoid including both 
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p and qp. In fact, a theorem of group theory states that if two permutations r and s pro-
duce the same conjugate of G, (i.e. r−1Gr = s−1Gs), then there must be some q ∈ N (G) 
such that qr = s. This means that the entire set of permutations that produce the same 
conjugate as permutation r is the set N (G)r = {qr|q ∈ N (G)}. The set N (G)r is called a 
right coset of N (G). Another theorem of group theory states that given two right cosets 
of N (G), N (G)r and N (G)s, either N (G)r = N (G)s or N (G)r ∩ N (G)s = φ. So if r and s 
belong to the same right coset of N (G), then r−1Gr = s−1Gs. If r and s belong to differ-
ent right cosets of N (G), then r−1Gr �= s−1Gs. This means that if one can generate all of 
the right cosets of G, and then select one permutation from each, one will have a mini-
mal set of permutations. Such a set is called a set of coset representatives.

In summary:

1.	 There is set of permutations that don’t change G under conjugation.
2.	 This set can be used to generate a collection of sets, each one of which contains per-

mutations that all produce the same conjugate of G.
3.	 Choosing one representative from each of the sets will give a minimal set of permu-

tations.

Figure  7 gives the algorithm for creating a reduced library entry. Figure  8 gives the 
library entry that is used to detect 2-variable partial symmetry in 3-input functions. The 
permutations are coded in the form of a list of numbers from the set {0, 1, 2}. The first 
permutation is the identity, I.

The first line of Fig. 8 is the name of the symmetry, the second is the number of inputs, 
the third is the list of coset representatives, and the remainder is the Boolean orbits, one 
orbit per line.

For the larger symmetric groups, reconstructing all conjugacy classes is a physical 
impossibility. So instead, the set of stored permutations is used to alter the function 
under test. Let’s suppose that g is invariant with respect to p−1Gp. Then, there is an f  
which is invariant with respect to G such that p−1f = g. If g is invariant with respect to 
p−1Gp, then pg is invariant with respect to G. Figure 9 gives the pseudocode for detect-
ing symmetry with reduced library entries. The test for compatibility in Fig. 9 is identi-
cal to that in Fig. 6. In most cases, this code will be slower than using a fully expanded 
library, so the algorithm of Fig. 9 is used only when necessary.

Forbidden groups

There are certain permutation groups, and certain matrix groups that cannot be the 
symmetry group of any function. For example, suppose G is a permutation group with 
Boolean orbits B, and suppose there is another group H such that G ⊂ H(G �= H) such 
that H also has Boolean orbits B. In this case, G cannot be the symmetry group of any 
function, because any function, f  that is compatible with G will also be compatible with 
H , but G does not contain every permutation that is compatible with f , so G cannot be 
the symmetry group of f .

Groups of this nature are called forbidden groups. Forbidden groups can arise in two 
different ways. Some forbidden groups are output limited and some are input limited.
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More formally, an output limited group, G, has three or more Boolean orbits of the 
same weight that must be distinguished from one another to keep a function from being 
compatible with larger groups containing G. However, because the function has only 

Read group G

Normalizer = {}; 

For each permutation p in nS

If 1p Gp G− =

Add p to Normalizer

Endif 

EndFor 

CosetCollection = {} 

For each permutation p in nS

If Gp is not in CosetCollection

Add Gp to CosetCollection

EndIf 

EndFor 

CosetRepresentatives = {} 

For each Coset c in CosetCollection

Select one element p from c; 

Add p to CosetRepresentatives

EndFor 

Write G with CosetRepresentatives 
Fig. 7  Generating coset representatives.

S3.S2 

3 

CSR: (0,1,2), (0,2,1), (2,1,0) 

010 100 

011 101 
Fig. 8  A reduced library entry.

Read function f; 

FoundSymmetry = False; 

For each Group G while Not FoundSymmetry

For each coset representative p in G

Compute pf

if pf is compatible with G

Assign 1p Gp−  as the symmetry group of G

FoundSymmetry = True; 

Break; 

EndIf 

EndFor 

EndFor 

Fig. 9  The reduced-library detection algorithm.
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two output values, this is impossible. Output limitations disappear when there are more 
than two output values.

An input limited group, G, contains a set of permutations that must be distinguished 
from those of a larger group containing G to keep a function from being compatible 
with the larger group. However, the permutations of the larger group cannot be so dis-
tinguished, because the only thing the larger group adds is a permutations that move 
the identical elements of each input vector. Input limitations disappear when inputs are 
allowed to have more than two values.

Input limited groups are easy to detect because they will have the same Boolean orbits 
as a larger group. Output limited groups are more complicated. For example, the group 
K4 = {I, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is output limited. (This group is known as 
the Klein 4-group, hence the name K4.) The Boolean orbits of K4 are given in Fig. 10.

These orbits are quite similar to the Boolean orbits of the three conjugates of D8, the 
dihedral group of order 8. These orbits are given in Fig. 11.

The problem with K4 lies with the three orbits {0011,  1100}, {0101,  1010} and 
{0110,  1010}. If a function maps the first two orbits to the same value, the result will 
be dihedral symmetry of type D8.2. If it maps the last two orbits to the same value, the 
result will be a dihedral symmetry of type D8.3. If it maps the first and last orbits to 
the same value, the result will be a dihedral symmetry of type D8.1. Because a single-
valued function has only two possible output values, at least two of these orbits must be 
mapped to the same value. Thus no single-valued function can have symmetry K4. On 
the other hand, it is possible for multiple-valued functions to have K4 symmetry. The 
function of Fig. 12 is an example. K4 also appears as a sub-symmetry in functions with 
five or more inputs.

A similar phenomenon occurs with input limited groups. For example, the two 
symmetry groups S3 and A3 have identical Boolean orbits, as shown in Fig.  13. Thus 

0001 0010 0100 1000 

0011 1100 

0101 1010 

0110 1001 

0111 1011 1101 1110 
Fig. 10  The Boolean orbits of K4.

D8.1 D8.2 D8.3 

0001 0010 

0100 1000 

0011 0110 

1001 1100 

0101 1010 

0111 1011 

1101 1110 

0001 0010 

0100 1000 

0011 0101 

1010 1100 

0110 1001 

0111 1011 

1101 1110 

0001 0010 

0100 1000 

0011 1100 

0101 0110 

1001 1010 

0111 1011 

1101 1110 

Fig. 11  The three conjugates of D8.
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A3 is forbidden. All of the alternating groups for n > 2 are forbidden, as is shown by 
Theorem 8.

To show that all alternating groups are forbidden, it is necessary to start with the fol-
lowing lemma.

Lemma 1  Let n be greater than 2, v be an n-element vector, and p be a permutation of 
degree n. If p(v) = w, then there is an even permutation q such that q(v) = w.

Proof  Suppose p is odd. Because n is greater than 2, there must be two elements of v that 
are identical. Suppose these are positions i and j, with i �= j. Thus (i, j) is a 2-cycle, and 
q = (i, j)p is an even permutation. But (i, j)(v) = v, and q(v) = p((i, j)(v)) = p(v) = w. □

Theorem 7  For all n > 2 An is forbidden.

Proof  Suppose u and v are in the same Boolean orbit of Sn. Then there must be a p ∈ Sn 
such that p(u) = v. By Lemma 1, there must be a q ∈ An such that q(u) = v. Therefore u 
and v must be in the same Boolean orbit of An. Thus every Boolean orbit of Sn must be 
contained in a Boolean orbit of An. Because the Boolean orbits of Sn are as large as pos-
sible, the Boolean orbits of Sn and An must be identical, and because An ⊆ Sn, An must 
be forbidden. � □

The groups An are examples of input limited groups. They are forbidden because there 
are only two distinct values for each input. For functions with multiple-valued inputs, 

Fig. 12  A function with K4 symmetry.

}{3 , (1, 2), (1,3), (2,3), (1, 2,3), (1,3,2)S I=

{ }3 , (1, 2,3), (1,3, 2)A I=

001 010 100 

011 101 110 
Fig. 13  The Boolean orbits of S3 and A3.
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not all of the alternating groups are be forbidden. (Extended versions of Lemma 1 and 
Theorem 7, would still be true for sufficiently large n.)

As an example, the subgroup of S6, S3a = {I , (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)}, is 
isomorphic to A3 (but not conjugate to A3). S3a is not forbidden, in fact the function 
x1x4x

′
5 + x2x5x

′
6 + x3x

′
4x6 possesses S3a symmetry. This function is derived from the 

three cubes of Fig. 14, which make it easy to see that a rotation of the first three variables 
must be accompanied by a rotation of the last three variables. The reason that S3a is not 
forbidden is that the inputs operate in pairs: {x1, x4}, {x2, x5} and {x3, x6}. Each pair of 
inputs has four possible values, so the argument of Theorem 7 does not apply.

The elimination of forbidden groups from symmetry libraries is an important optimi-
zation step, because it eliminates symmetry tests that can never succeed.

Matrix-based symmetry also displays the phenomenon of forbidden groups.

Sub‑symmetries

For functions with many inputs, it may be more useful to detect smaller, more manage-
able symmetries on a subset of inputs. Such symmetries are called Sub-Symmetries. The 
USD algorithm is capable of detecting sub-symmetries using two different techniques.

The first technique is to “promote” existing symmetry rules to a collection of rules for 
a larger number of inputs. Although this process is technically feasible, it is cumber-
some, and can be extremely slow for reduced library entries.

The second procedure alters the functions under test rather than the libraries. It is 
based on the following Theorem 8.

Theorem  8  Let R be a symmetry group of degree k, and let f  be a function of n > k 
inputs. Let S be a subset of k inputs taken from the n inputs of f . If f  possesses R symmetry 
in the set of k variables, then every cofactor obtained by fixing the n− k variables to con-
stant values must possess R symmetry.

The Proof is obvious.
There are 2n−k such cofactors for each set of k inputs. When testing an n-input func-

tion using a symmetry rule of degree k < n, the USD algorithm begins by generating all 
combinations of n inputs taken k at a time. For each combination, the USD algorithm 
generates all 2n−k cofactors, and tests each one for R symmetry. Figure 15 gives the algo-
rithm for detecting sub-symmetries. If n− k is extremely large, this algorithm may be 
unacceptably slow, but for small n− k, the performance is reasonable.

The algorithm then tests for a sub-symmetry in the k variables selected by the combi-
nation. Each such test requires computing 2n−k cofactors. These cofactors are computed 
by setting the variables not selected by the permutation to every possible combination 
of zeros and ones. The procedure continues until a sub-symmetry is found, or until all 
combinations have been exhausted. The C-Bar return value is a combination of n things 

xx10x1 

x1xx10 

1xx10x 
Fig. 14  The cubes of x1x4x′5 + x2x5x

′
6
+ x3x

′
4
x6.
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taken k at a time that specifies the variables containing the sub-symmetry. It is easily 
computed from C.

The algorithm of Fig. 15 can be easily modified to find multiple sub-symmetries of the 
same type, however to avoid detecting overlapping symmetries, it is better to run the 
algorithm of Fig. 15 on cofactors of f that do not include the variables specified by C-Bar.

Partial symmetries

In some cases, it may be desirable to restrict the focus to partial and total symmetries. 
These symmetries are well understood, and can be exploited by several existing algo-
rithms. The universal symmetry detection algorithm can be used to detect these types of 
symmetries either by testing for symmetric variable pairs or by using a library of partial 
symmetry orbits.

Although partial symmetries are easy to understand, enumerating all of them is a 
difficult task. For n inputs, the number of partial symmetries is equal to the number 
of partitions of a set of size n. A partition of a set S is a collection of non-empty sets 
P = {Q1,Q2, . . . ,Qk}, such that Q1 ∪ Q2 ∪ . . . ∪ Qk = S and Qi ∩ Qj = φ whenever i �= j.  
The number of partitions of a set of size n is given by the Bell number Bn, where B1 = 1, 
and Bn+1 =

n
∑

i=0

(

n
i

)

Bi. This formula was used to compute the numbers of partial sym-

metries listed in Fig. 1.
The number of conjugacy classes of partial symmetries is equal to the number of inte-

ger partitions of the integer n, p(n). Exact formulas for p(n), are known, but they are 
so complex that, for small n, it is easier to generate all integer partitions of n and count 
them. The results for all integers less than or equal to 18 are given in Fig. 1.

To generate a library of all partial symmetries for a specific number of inputs, n, it 
is necessary to generate all partitions of the input variables. Because the Bell numbers 
provide only a count of the partitions, not the partitions themselves, it is necessary to 
begin with the integer partitions of n. Each integer partition generates a number of par-
titions. Each partition generates a set of Boolean orbits. The Boolean orbits are stored in 
a library in function form. When the number of inputs is seven or less, using libraries is 
faster. For larger numbers of inputs, the USD uses the conventional approach of generat-
ing and comparing cofactors to detect symmetric variable pairs.

Read the Boolean Orbits of R

For each combination C of n things taken n-k at a time 

For each n-k-element vector V

  // Obtain the cofactor of f

E = Set the variables of f specified by C to the values of V

If R is not compatible with E

Return “No Sub-Symmetry” 

EndIf 

EndFor 

EndFor 

Return C-Bar
Fig. 15  The sub-symmetry detection algorithm.
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Extended symmetric variable pairs

Researchers have identified various types of symmetric variable pairs that go beyond 
those discussed in “Background”. These extended types are defined in terms of the cofac-
tors of a function f , with respect to a pair of variables {xi, xj}. As before, these are des-
ignated f00, f01, f10, and f11. The extended types of symmetry are defined by relations 
between these four cofactors. Figure 16 lists the six possible relations, and the types of 
symmetry defined by each.

It is possible to create Boolean orbits for each of these six relations. Assume that it is 
desired to detect these symmetries in a four-input function f , with respect to the vari-
ables x1 and x2. The Boolean orbits for these six relations are given in Fig. 17.

As pointed out in (Maurer 2011), the single-variable relations are a special case of con-
jugate symmetry, and are best handled through matrix-based symmetry. Multi-phase 
symmetry is discussed more thoroughly in the following section.

Multi‑phase symmetry

Multi-phase symmetry is the same as ordinary symmetry with one or more inputs 
inverted with respect to the others. In other words, the inputs of the function are 
assumed to be a mixture of active-high and active-low inputs. Multi-phase symmetry is 
normally defined in terms of pairs of symmetric variables, but like ordinary symmetry, it 
can be defined entirely by Boolean orbits. Suppose it is desired to detect a multi-phase 
symmetry between the first two variables of a four-input function, f . In terms of cofac-
tors, it is necessary to verify that f00 = f11. This is just the Shannon relation, f10 = f01, 
with one of the inputs inverted (it doesn’t matter which one). The Boolean orbits of this 
relation are given in Fig. 18, along with the Boolean orbits of an ordinary symmetry in 
the same two variables. (These are the same orbits given in Fig. 17.)

Figure 17 shows that one can obtain the multi-phase Boolean orbits by inverting one 
of the inputs of the ordinary Boolean orbits. In fact, it is possible invert any subset of the 
inputs, but not all such inversions will change the orbits. For example, inverting the last 
two bits of the orbits of Fig. 18 will leave them unchanged.

In terms of vectors, the multi-phase orbits of Fig. 18 were obtained by XORing a con-
stant vector, 0100, to each vector of each orbit as follows. If S is an orbit and v is a vector, 
then S ⊕ v = {w ⊕ v|w ∈ S}, where ⊕ denotes the XOR operation. This principle can be 
applied to any set of orbits, not just those representing symmetric variable pairs. Con-
sider the symmetry group {I , (1, 2)(3, 4)}. This type of symmetry cannot be defined in 

Relation Type 

01 10f f= Ordinary 

00 11f f= Multi-Phase 

00 01f f= Single Variable 

00 10f f= Single Variable 

01 11f f= Single Variable 

10 11f f= Single Variable 

Fig. 16  The extended symmetry relations.
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terms of symmetric variable pairs. (The function x1x′2 + x3x
′
4 from “Background” pos-

sesses such symmetry.)
It is possible detect multi-phase symmetry in an arbitrary number of variables, by 

XORing an arbitrary vector with each of the orbits of the original symmetry. Assume 
that it is desired to detect symmetry of type {I , (1, 2)(3, 4)} in a function whose first and 
last variables are active high. To do this, one must add the vector 1001 to all orbits of the 
original symmetry. Figure 19 shows how this is done.

Computation of multi-phase orbits can be performed on the fly or loaded from a 
library.

If v ⊕ w = 11 . . . 1, the vector of all 1’s, then adding v to a set of orbits will produce the 
same result as adding w to the same orbits. In practice, only those vectors whose first 
element is zero are used.

Conventional multi-phase symmetries (i.e. those related to partial and total symmetry) 
can also be detected by using cofactor relations.

01 10f f=

0100 1000 

0101 1001 

0110 1010 

0111 1011 

00 11f f=

0000 1100 

0001 1101 

0010 1110 

0011 1111 

00 01f f=

0000 0100 

0001 0101 

0010 0110 

0011 0111 

00 10f f=

0000 1000 

0001 1001 

0010 1010 

0011 1011 

01 11f f=

0100 1100 

0101 1101 

0110 1110 

0111 1111 

10 11f f=

1000 1100 

1001 1101 

1010 1110 

1011 1111 

Fig. 17  Boolean orbits for extended relations.

Multi-Phase Ordinary 

0000 1100 0100 1000 

0001 1101 0101 1001 

0010 1110 0110 1010 

0011 1111 0111 1011 

Fig. 18  The Boolean orbits of a multi-phase symmetry.

Original Multi-Phase “1001” 

0001 0010 1000 1011 

0100 1000 1101 0001 

0101 1010 1100 0011 

0110 1001 1111 0000 

0111 1011 1110 0010 

1101 1110 0100 0111 

Fig. 19  Complex multi-phase symmetry.
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Anti‑symmetry

Anti-symmetry (Tsai and Marek-Sadowska 1994) (which is also known as Skew Symme-
try and Negative Symmetry) was initially defined in terms of symmetric variable pairs. 
As with other symmetries, the anti-symmetries are defined with respect to the four 
cofactors f00, f01, f10 and f11, taken with respect to the variables xi and xj. The normal 
symmetric variable pairs are defined by the relations in Fig. 16. The corresponding anti-
symmetry relations are given in Fig. 20.

Anti-Symmetry is important, because it is just as common as normal symmetry. For 
example, an analysis all 4-input functions shows 24,576 examples of ordinary symmetric 
variable pairs, and the same number of ordinary anti-symmetric variable pairs.

Suppose f  has an anti-symmetric variable pair (xi, xj). If this were an ordinary sym-
metric variable pair, the symmetry group of f  would contain the group 

{

I , (xi, xj)
}

. To 
test for this subgroup one would check the orbits {01x…x, 10x…x}, where “x…x” ranges 
through all bit combinations. However, because this is an anti-symmetric variable pair, 
f10 and f01 must produce the opposite value for each input. If 01x…x produces a one 
value then 10x…x must produce a zero value, and vice versa. Thus, no orbit may imply 
either f  or f ′. This is a necessary and sufficient condition for the anti-symmetric varia-
ble pair to exist. Thus, it is possible test for anti-symmetric variable pairs using the same 
library used to detect normal symmetric variable pairs. When testing the orbits, it is 
necessary to test for non-implication rather than implication. This is a simple change, 
enabling the algorithm to detect anti-symmetric pairs just as easily as normal symmetric 
pairs. This principle extends to anti-symmetric pairs of all six types.

Anti-symmetry exists with respect to any permutation group, but only the anti-sym-
metries with respect to variable pairs appear to be useful.

As with partial, total and multi-phase symmetry, anti-symmetries can be detected 
using variable pair relations when no library exists.

Kronecker symmetry

As with multi-phase and anti-symmetries, the Kronecker symmetries (Chrzanowska-
Jeske 1999) of a Boolean function f  are defined with respect to two input variables xi 
and xj. Let f00, f01, f10, and f11 be the cofactors of f  with respect to these two variables. 
There are five types of Kronecker symmetry, defined by the five relations given in Fig. 21. 
In this figure, 0̂ represents the constant zero function.

Relation Type 

01 10f f= Ordinary 

00 11f f= Multi-Phase 

00 01f f= Single Variable 

00 01f f= Single Variable 

01 11f f= Single Variable 

10 11f f= Single Variable 

Fig. 20  The anti-symmetry relations.
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If the function under test a 4-input function with input variables x1, x2, x3, and x4. The 
Boolean orbits of the Kronecker symmetries are given in Fig. 22.

As with other Boolean orbits, each orbit is reduced to a characteristic function. 
Because the vectors of each orbit are not required to be mapped to the same value, one 
cannot use the implication relation to detect Kronecker symmetries. Instead i compute 
the function Di = f&Ci for each orbit Oi, and count the number of input vectors that are 
mapped to 1 by Di. (The result cannot exceed the number of vectors in the orbit.) If the 
result is an even number for each orbit, then f  possesses the associated Kronecker sym-
metry. Note that the function Di can be used to compute the implication relation, since 
Ci implies f  if and only if Di = Ci, and implies f  if and only if Di = 0̂.

There are also symmetries known as the Negative Kronecker symmetries, defined by 
the relations of Fig. 23, where 1̂ represents the constant-one function.

One proceeds exactly as before, but in this case, after obtaining Di, and counting the 
vectors mapped to 1, one checks for an odd number instead of an even number.

The USD algorithm can detect Kronecker symmetries using variable-pair relations 
when no libraries exist.

Matrix‑based symmetry

As pointed out in (Maurer 2011), it is possible to characterize the symmetry of an 
n-input Boolean function in terms of n× n permutation matrices instead of degree-n 

01 10 11 0̂f f f⊕ ⊕ =

00 10 11 0̂f f f⊕ ⊕ =

00 01 11 0̂f f f⊕ ⊕ =

00 01 10 0̂f f f⊕ ⊕ =

00 01 10 11 0̂f f f f⊕ ⊕ ⊕ =

Fig. 21  The Kronecker symmetries.

01 10 11 0̂f f f⊕ ⊕ = 00 01 10 11 0̂f f f f⊕ ⊕ ⊕ =

0100 1000 1100 0000 0100 1000 1100 

0101 1001 1101 0001 0101 1001 1101 

0110 1010 1110 0010 0110 1010 1110 

0111 1011 1111 0011 0111 1011 1111 
Fig. 22  Boolean Orbits for Kronecker symmetries.

01 10 11 1̂f f f⊕ ⊕ =

00 10 11 1̂f f f⊕ ⊕ =

00 01 11 1̂f f f⊕ ⊕ =

00 01 10 1̂f f f⊕ ⊕ =

00 01 10 11 1̂f f f f⊕ ⊕ ⊕ =

Fig. 23  The negative Kronecker symmetries.
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permutations. When this is done, the matrices are assumed to be over the field GF(2), 
which has two elements, zero and one, and which uses the AND and XOR functions in 
place of multiplication and addition. The advantage of doing this is that any group of 
n× n non-singular matrices can be used as a symmetry group, and there are many more 
matrix groups than there are permutation groups. The number of degree-n permuta-
tions is n!, while the number of n× n non-singular matrices is given by the following 
formula.

The number G(n) grows much faster than n!. [For example, 6! = 720, but G(6) is over 
20 million.] Because of the large number of non-singular matrices, the opportunities to 
detect symmetry are much greater. There are many types of matrix-based symmetry that 
have no counterparts in permutation-based symmetry. Conjugate symmetry (Maurer 
2011) is just one of these.

Just like permutation-based symmetry, matrix-based symmetry can be characterized 
in terms of Boolean orbits. The Boolean orbits of a matrix group can be computed using 
the same algorithm as for permutation groups. Figure 24 shows a matrix group that has 
no counterpart in permutations, and gives the Boolean orbits for it.

Like permutation groups, the symmetry generated by a matrix group is completely 
determined by its Boolean orbits. Theorem 5 applies to matrix groups as well as to per-
mutation groups, so the same principle can be used to detect symmetry with respect 
to matrix groups. Of course, the set of all matrix groups is much too large to permit a 
library of all possible subgroups to be constructed. It is therefore necessary to focus on 
known symmetry types such as conjugate symmetry and the subgroups of these sym-
metries. For such symmetry types, it is possible to generate the library entries on the fly 
using the standard libraries as a basis.

Other types of symmetry

The USD algorithm has dynamic generators for rotational and dihedral symmetry. The 
symmetry groups in question are Rn for rotational symmetry of degree n, and D2n for 
dihedral symmetry of degree n. The output from these generators is normally used on 
the fly and discarded, but it could easily be placed in a library for future use. To create 
a library entry for rotational symmetry one starts with an n-element vector and rotates 
it n − 1 times to create each orbit. This normally creates orbits of size n, but sometimes 
they are smaller. For example, the vector 101010 yields an orbit of size 2. Figure 25 shows 
the orbits for rotational symmetry of degree 5.

G(n) =

n−1
∏

i=0

(

2n − 2i
)

000 

001 111 110 

010 100 101 

011 

Fig. 24  A matrix group and its Boolean orbits.
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For n < 6 rotational and dihedral symmetry are the same. Dihedral symmetry includes 
all n rotations of a vector, but also includes the mirror image of a vector. (The mirror 
image of (v1, v2, v3, v4) is (v4, v3, v2, v1).) For n < 6, the mirror image of a vector can be 
obtained by rotating the vector. However, for n = 6 and larger, there are vectors whose 
mirror image cannot be obtained in this fashion. For 6 inputs, the vector 001011 has a 
mirror image of 110100, but no rotation of 001011 will produce 110100. This means that 
for n = 6 and larger, that dihedral symmetry and rotational symmetry are distinct.

To create an entry for dihedral symmetry of degree n, one first starts with rotating 
each vector n− 1 times, and then one reverses each vector to produce the required 
orbits.

Another type of symmetry, that is used to simplify Boolean functions, is Auto Symme-
try. Auto symmetry occurs when an n-input Boolean function becomes an n− k-input 
function under a linear transformation of its inputs (Bernasconi et al. 2008).

As explained in (Bernasconi et al. 2008) autosymmetric functions take constant values 
on a subspace of {0, 1}n and its affine spaces. The subspace and its affine spaces constitute 
the Boolean orbits of the autosymmetry. Autosymmetry is detected in the same way as 
ordinary symmetry. Figure 26 gives an example of a set of autosymmetry orbits. Auto-
symmetry orbits are always all the same size. Every element of {0, 1}n appears in one of 
the orbits, and the size of the orbits is a power of 2.

Although hierarchical symmetry has been extensively studied (Kravets and Sakallah 
2000, 2002), the USD algorithm not treat it as a distinct type of symmetry. As with other 
symmetries, hierarchical symmetries are specified as groups of permutations. In group 
theory, a hierarchical symmetry is defined by a permutation group that is the wreath 
product (Robinson 1995) of two or more other permutation groups. The existing librar-
ies contain many examples of wreath product groups.

Experimental data

Many experiments were run to test the efficacy of the USD algorithm. All experiments 
were on modest hardware: a Dell laptop containing an Intel P9500 Core 2 Duo 2.53 Ghz 

00001 00010 00100 01000 10000 

00011 00110 01100 11000 10001 

00101 01010 10100 01001 10010 

00111 01110 11100 11001 10011 

01011 10110 01101 11010 10101 

01111 10111 11011 11101 11110 
Fig. 25  Boolean orbits for R5.

0000 0111 1011 1100 

0001 0110 1010 1101 

0010 0101 1001 1110 

0011 0100 1000 1111 
Fig. 26  Autosymmetry Boolean orbits.
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CPU with 3.48 GB of RAM and Windows XP Professional with Service Pack 3. Initially, 
the experiments focused on analyzing all functions with 5 or fewer inputs primarily to 
gauge the speed of the algorithm. Functions with 2 and 3 inputs are trivial, because a 
2-input function is either non-symmetric or totally symmetric. A 3-input function is 
non-symmetric, totally-symmetric, or partially symmetric in two variables.

Four-input functions are more interesting. In addition to total and partial symmetries, 
there is dihedral symmetry and lock-step symmetry between two variable pairs. The 
term “lock-step symmetry” describes non-independent sub-symmetries between two 
or more, not necessarily disjoint, sets of variables. The only example of this for 4-input 
functions is exemplified by the function x′1x2 + x′3x4 from “Background”. The symmetry 
group for this function is {I, (1, 3)(2, 4)}, where the two transpositions (1, 3) and (2, 4) 
must operate in lock-step with one another. Strictly speaking, lock-step symmetry is not 
a type of symmetry, but a catch-all term to describe a phenomenon that occurs in many 
different ways. The term set-symmetry (Mohnke et al. 2002) has been used to describe 
symmetries such as that defined by the group {I, (1, 3)(2, 4)}, but similar phenomena can 
occur in many other ways. Describing the ways in which “lock-step” symmetries arise 
would require an extensive discussion of advanced group theory, and would add little or 
nothing to the understanding of the USD algorithm.

There are 65,536 4-input functions and 4,294,967,296 5-input functions. The results 
of the analysis of 4-input functions took 2 s of real time and are given in Fig. 27. This 
figure combines results for the symmetries that are conjugate to one another. The num-
ber of conjugates is given in parentheses following the symmetry type. Each function is 
counted only once. There are subgroups of S4, such as K4 and A4, which are not listed, 
because they are forbidden.

As Fig. 27 shows, the proportion of symmetric functions to non-symmetric functions 
decreases as the number of inputs increases. The results of the analysis for all 5-input 
functions took about 4 h of real time and are given in Fig. 28.

It is not possible to obtain a complete analysis of all n-input functions, where n > 6. 
Even for n =  6, such an analysis would require many of thousands of years on exist-
ing hardware because the total number of functions is 18,446,744,073,709,551,616. This 
is unfortunate, because the number of different types of symmetry explode for six or 
more inputs. For five and fewer inputs, the types of symmetry are more-or-less what 
one would expect. For six and more inputs, the variety is astounding, and some types 

Type Count 

Total Symmetry 32 

8D  dihedral (3) 96 

Three-variable Partial 

(4) 

896 

(2,2) Partial (3) 1,344 

(2,2) Lock-Step (3) 1,344 

Two-variable Partial (6) 18,816 

Non-Symmetric 43,008 

Fig. 27  All 4-input functions.
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are less than intuitive and quite difficult to describe. For example, S6 contains a class 
of subgroups which is isomorphic to the wreath product of S2 and S3, a class that is the 
split extension of S3 × S3 by S2, and another that is the non-split extension of S2 by S3.  
In S8 there is a class that is isomorphic to the quaternion group. (These are only a few 
examples out of many.) One needs considerable expertise in group theory even to under-
stand what these groups are. Describing their effects is quite difficult. When the number 
of inputs is greater than seven, even classification by the techniques of advanced group 
theory fails. In (Pfeiffer 2005) there are several subgroups of S7 − S12 that are classified 
as “a group of size n,” with no further explanation.

Figure  28 reinforces the idea that as the number of variables increases, the propor-
tional number of non-symmetric functions decreases. However, this does not necessar-
ily describe what happens with functions that are used in practice. To determine what 
sort of functions one would encounter in practice, experiments were conducted with the 
ISCAS85, LGSynth89 and LGSynth91 benchmarks. The initial results for ISCAS85 were 
uninformative because the standard description of these circuits is in terms of individual 
gates whose symmetries are obvious. To obtain more substantive results the gates of the 
ISCAS85 circuits were combined into larger groups and each group was treated as a sin-
gle function. The method for doing this was to identify the fanout-free regions of each 
circuit, and treat each such region as a function. (A fanout-free circuit has a single out-
put, and can easily be treated as a single function.) Because there are no complete librar-
ies for circuits with more than eight inputs, the fanout-free regions were partitioned into 
subcircuits containing no more than eight inputs. This procedure was expected to pro-
duce mostly partial and total symmetries, and this was indeed the case, but there were 
also some interesting surprises. Figure  29 summarizes the results for total and partial 
symmetry and gives the counts of the interesting cases.

To further study the symmetries of (more or less) real circuits, tests were run on the 
LGSynth89 and LGSynth91 benchmarks. The results of these tests are given in Fig. 30. 

tnuoCepyT

Total Symmetry 64 

Four Variable Partial (5) 4,800 

(3,2) Partial (10) 40,320 

10D  Dihedral (6) 1,152 

8D  Dihedral sub-

symmetry (15) 

46,080 

(2,2) Partial (15) 3,749,760 

K4 sub-symmetry (5) 30,720 

(2,2) Lock-Step (15) 11,606,400 

Three Variable Partial 

(10) 

595,200 

Two-Variable Partial 

(10) 

158,204,160 

Non-Symmetric 4,120,688,640 

Fig. 28  All 5-input functions.
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Figures 29 and 30 clearly show that the circuits used in practice contain far more sym-
metries than randomly chosen circuits. This emphasizes the importance of correctly 
detecting the symmetries of a function.

The USD is implemented as a collection of objects representing, functions, orbits, 
symmetry rules (a group and its orbits), rule libraries and function libraries. The low-
level implementations were hidden from the user, to enable many different implementa-
tions to be used without affecting the high-level algorithms. The only requirement for 
the USD algorithm to function correctly is the ability to compute the implication rela-
tion. For compressed libraries and sub-symmetries it is also necessary to compute cofac-
tors and the product of a permutation with a function.

The current implementation models functions as compressed truth tables, which is 
an array of 64-bit integers with one bit for each input vector. This implementation is 
extremely efficient for up to six inputs, but rapidly becomes less efficient as the number 
of inputs increases beyond this point. A single 64-bit integer will suffice for up to six 
inputs. Beyond six inputs, the number of integers doubles for each input, with 16–20 
inputs being the practical limitation. For more general circuits, Binary Decision Dia-
grams or something similar would almost certainly more efficient.

tnuoCepyT

Total Symmetry 2,674 

Single Partial Symmetry 923 

Multi-Partial Symmetry 193 

Non Symmetric 191 

8D  Dihedral 146 

8D  Dihedral × 2S 12 

8D  Dihedral ×  (2,2) lock step 4 

K4 sub-symmetry 1 

(2,2) Lock-Step 3 

4 (2,2) Lock-StepS × 1 

Fig. 29  The ISCAS85 benchmarks.

Type Count 

Total Symmetry 5,266 

Single Partial Symmetry 1,129 

Multi-Partial Symmetry 308 

Non Symmetric 977 

8D  dihedral 337 

8D  in Lock-Step with 2S 8 

(3,3) Lock-Step 2 

(2,2) Lock-Step 29 

(2,2) Lock-Step 2S× 6 

(2,2) Lock-Step 4S× 185 

Wreath Product of 3S , 2S 2 

Fig. 30  The LGSynth89, and LGSynth91 benchmarks.
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To further gauge the efficiency of the algorithm, the amount of real time required to 
determine the symmetry of 1,000,000 functions was measured. The results are reported 
in Fig. 31. For three and four input functions, it was necessary to test the same func-
tions repeatedly. For five, six and seven inputs, the first 1,000,000 functions were tested. 
It should be noted that the efficiency of the algorithm depends heavily on the underlying 
implementation, so these numbers should be taken only as rough guidelines.

The superior speed of the USD algorithm is obvious for 3–6 inputs. The superior speed 
is also evident for the 7-input test when one remembers that the conventional algorithm 
is testing for 877 different symmetries while the USD algorithm is testing for 11,300 dif-
ferent symmetries. (Twelve times as much work for three and a half times as much time.)

The categorization of all 4-input functions was virtually instantaneous, as were the 
experiments with the ISCAS85, LGSynth89 and LGSynth91 benchmarks. The categori-
zation of all 5-input functions took about 4 h.

For eight or more inputs, the conventional approach will normally be faster than the 
USD algorithm. However the results will be considerably less satisfactory, since only a 
small fraction of the available symmetries will be detected.

The reader is cautioned that these results are valid only for the current implementation 
of the USD algorithm. It is extremely likely that much more efficient implementations 
will be developed in the future, necessitating a new characterization of the algorithm’s 
performance.

Conclusions
The USD algorithm is a powerful tool that can be used in many different contexts. It is a 
simple, yet powerful and efficient algorithm for detecting virtually any type of symmetry. 
It is my belief that many types of symmetry could be exploited if there were methods to 
detect them. Because the USD algorithm makes these types accessible, it is expected that 
significantly more exploitation of symmetry will take place in the future.

The initial paper on detecting symmetry in Boolean functions was published in 1949 
(Shannon 1949), and since that time the basic principle introduced in this paper has 
been refined and improved many times. I believe that the USD algorithm is similar to 
(Shannon 1949) in that it is a beginning rather than an end. I hope that the principles 
elucidated here will be refined and improved in the same way that Shannon’s principle 
has been refined and improved over the years.

One area of potential improvement is in the parallelization of the USD algorithm. The 
USD algorithm does many comparisons, virtually all of which are independent of one 

Number of 

Inputs 

USD Conventional 

3 8.268 124.736 

4 12.464 258.660 

5 30.420 433.378 

6 246.751 640.029 

7 3189.840 893.361 

Fig. 31  Seconds per 1,000,000 functions.
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another. Library searches could easily be parallelized, because searching one entry is 
only loosely connected to searching other entries. While it is true that the USD algo-
rithm searches the largest subgroups first, these searches tend to be faster than the 
searches for smaller subgroups because there are fewer Boolean orbits. This would allow 
the faster parallel searches to abort the slower ones once a match is found. Searching an 
individual library entry could also be easily parallelized since the testing of one Boolean 
orbit does not depend on the outcome of any other test. When large numbers of func-
tions are being tested, each function can be tested in parallel with the others. It is prob-
able that that the USD algorithm could be parallelized in such a way as to take advantage 
of virtually any available parallelism.

As for my own plans, the future development of the USD algorithm will include the 
incorporation of at least a portion of the S9 through S18 material, as well as the iden-
tification and incorporation of new parameterized symmetry types. In particular, I am 
interested in creating automatic generators for various types of matrix-based symmetry.

In any case, the USD algorithm should prove to be a powerful tool that can be used in 
many different areas of Electrical Design Automation.
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