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Abstract 

Background:  Outcomes data for the efficacy of interventions designed to decrease the time to initial target vanco-
mycin troughs are sparse.

Objective:  A vancomycin therapeutic drug monitoring (TDM) program was initiated to reduce the time to initial 
target troughs and to examine the impact on clinical outcomes.

Methods:  Single-center, pre- and post-intervention observational study in a 250 bed teaching facility. Adult inpa-
tients treated with physician-guided, vancomycin therapy (historical control, CTRL) were compared to high trough, 
pharmacist-guided vancomycin therapy (TDM). Nephrotoxicity analyses were conducted to the ensure safety of the 
TDM. Clinical outcome analysis was limited to patients with normal renal function and culture-confirmed gram posi-
tive infections and a pre-defined MRSA subset.

Results:  340 patients met initial inclusion criteria for the nephrotoxicity analysis (TDM, n = 173; CTRL, n = 167). Acute 
kidney injury occurrence was similar between the CTRL (n = 20) and TDM (n = 23) groups (p = 0.7). Further exclu-
sions yielded 145 patients with gram positive infections for clinical outcomes evaluation (TDM, n = 66; CTRL, n = 75). 
The time to initial target trough was shorter in the TDM group (3 vs. 5 days, p < 0.001). Patients in the TDM group dis-
charged from the hospital more rapidly, 7 vs. 14 days (Hazards Ratio (HR), 1.41; 95% Confidence Interval [CI] 1.08–1.83; 
p = 0.01), reached clinical stability faster, 4 vs. 8 days (HR, 1.51; 95% CI 1.08–2.11; p = 0.02), and had shorter courses 
of vancomycin, 4 vs. 7 days (HR, 1.5; 95% CI 1.15–1.95; p = 0.003). In the MRSA infection subset (TDM, n = 36; CTRL, 
n = 35), patients in the TDM group discharged from the hospital more rapidly, 7 vs. 16 days (HR, 1.89; 95% CI 1.08–3.3; 
p = 0.03), reached clinical stability faster, 4 vs. 6 days (HR, 2.69; 95% CI 1.27–5.7; p = 0.01), and had shorter courses 
of vancomycin, 5 vs. 8 days (HR, 2.52; 95% CI 1.38–4.6; p = 0.003). Attaining initial target troughs in <5 days versus 
≥5 days was associated with improved clinical outcomes. All cause in-hospital mortality, and vancomycin treatment 
failure occurred at comparable rates between groups.

Conclusions:  Interventions designed to decrease the time to reach initial target vancomycin troughs can improve 
clinical outcomes in gram positive infections, and in particular MRSA infections.
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Background
Methicillin-resistant S. aureus (MRSA) infections are a 
significant problem in both healthcare and community 
settings. Healthcare-associated methicillin-resistant S. 
aureus is frequently associated with invasive disease, such 
as skin and soft tissue infection, bloodstream infection 
(BSI), and pneumonia. In contrast, community-associ-
ated methicillin-resistant S. aureus is classically associ-
ated with skin and soft tissue infections, and necrotizing 
pneumonia in young, otherwise healthy persons. Van-
comycin is most commonly utilized in the treatment of 
proven or suspected MRSA infections. Over time, there 
has been an increase in vancomycin resistance with 
subsequent treatment failure in MRSA infections. In 
addition, there have been concerns about the tissue pen-
etration of vancomycin to sites of infection (most notably 
the lung) (Rybak et al. 2009). As a result, current dosing 
guidelines have advocated significantly higher doses of 
vancomycin than in the past (Rybak et al. 2009).

Vancomycin dosing and drug monitoring has been the 
subject of deliberation over the years (Rybak et al. 2009). 
Vancomycin drug level monitoring has been advocated 
to lessen the potential for nephrotoxicity and to achieve 
therapeutic concentrations (Rybak et al. 2009). However, 
opponents of monitoring cite the lack of evidence relat-
ing to meaningful clinical outcomes, and uncertainties 
about the role of vancomycin in nephrotoxicity (Rybak 
et al. 2009). Others highlight the increased cost and per-
sonnel time associated with monitoring (Rybak et  al. 
2009).

To address dosing and therapeutic monitoring of van-
comycin in adult patients, a consensus statement was 
released in January 2009 advocating higher vancomycin 
doses (Rybak et al. 2009). There is significant concern that 
higher vancomycin doses and troughs carry an increased 
risk for nephrotoxicity and this has been suggested by 
recent studies (Hazlewood et  al. 2010). Vancomycin-
associated nephrotoxicity risk is higher in critically ill 
patients, patients receiving concomitant nephrotoxins, 
and those with chronic kidney disease (Hazlewood et al. 
2010; Vandecasteele and De Vriese 2010). Some sug-
gest that increased nephrotoxicity rates attributed to 
aggressive vancomycin dosing in recent studies may be 
related to selection bias as such patients are more likely 
to receive concomitant nephrotoxins and have other risk 
factors for nephrotoxicity (Hazlewood et al. 2010). How-
ever, a recent systematic review and meta analysis found 
that vancomycin-associated nephrotoxicity was signifi-
cantly higher with vancomycin levels ≥15  mg/L (Stein-
metz et al. 2015). With nephrotoxicity in mind, there has 
been a large body of research to investigate the optimal 
manner to safely achieve target troughs to include use 
of vancomycin dosing nomograms, pharmacokinetic 

modeling software, computerized prescriber-order-entry 
systems, and pharmacist managed therapeutic drug 
monitoring (TDM) programs (Aubron et al. 2011; Gole-
nia et al. 2013; Kullar et al. 2012; Leu et al. 2012; Li et al. 
2012; McCluggage et al. 2010; Minne et al. 2012; Morri-
son et al. 2012; Nunn et al. 2011; Patanwala et al. 2009; 
Pea et al. 2009; Revilla et al. 2010; Swartling et al. 2012; 
Traugott et  al. 2011; Truong et  al. 2012). TDMs have 
been shown to increase dosing efficiency and accuracy, 
reduce drug toxicity, and decrease hospitalization costs 
(Bond and Raehl 2005; Corallo et al. 2011; Fernández de 
Gatta et  al. 1996; Iwamoto et  al. 2003; Welty and Copa 
1994). Most TDM studies published focus on whether 
or not the target level was reached and the efficiency of 
trough monitoring (Golenia et  al. 2013; Leu et  al. 2012; 
Minne et  al. 2012; Morrison et  al. 2012). The time to 
reach a therapeutic vancomycin trough is beginning to be 
recognized as an important factor (Li et al. 2012). How-
ever, few studies have examined this variable, and none 
to our knowledge have conducted a study to look at this 
parameter specifically (Aubron et al. 2011; Clemens et al. 
2011; Gawronski et  al. 2013; McCluggage et  al. 2010). 
There has been no suggested time-frame at which a goal 
trough should be reached, though the consensus guide-
lines recommend a loading dose of 25–30 mg/kg to facili-
tate rapid attainment (Rybak et al. 2009). The concept of 
reducing the time to therapeutic trough is enticing as it 
parallels evidence that receipt of early, appropriate anti-
biotic therapy in severe infections is likely to improve 
clinical outcomes (Kumar et al. 2006). The time to reach 
target trough is discussed briefly in the 2009 consensus 
guidelines in relation to the study by Jeffres et al. (2006) 
and note that this may be an important predictor of out-
come (Rybak et al. 2009). Thus, it was the purpose of the 
current study to institute a vancomycin TDM with the 
goal of reaching target vancomycin troughs faster, ensur-
ing there is no increased risk of nephrotoxicity, and eval-
uating the subsequent impact on clinical outcomes for all 
empirically treated gram positive infections and culture 
proven MRSA infections.

Methods
Study design and patient population
This was a pre- and post-intervention observational 
study at Tripler Army Medical Center (Honolulu, HI, 
USA), a 250 bed teaching facility. The study protocol 
was approved by the Human Use Committee. Investi-
gators adhered to the policies for protection of human 
subjects as prescribed in 45 CFR 46. Patients treated 
with vancomycin from July 2007–March 2008 (histori-
cal control, CTRL) were compared to those treated with 
vancomycin therapy via a pharmacist run, continuously 
active vancomycin therapeutic drug monitoring (TDM) 
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program from July 2009–March 2010 (TDM). Those who 
received fewer than four doses of vancomycin and/or no 
troughs were drawn were excluded by initial automated 
data search leaving 340 patients for analysis. The devel-
opment of acute kidney injury (AKI) and the characteris-
tics of these patients were compared between the groups 
for all patients in the initial dataset for nephrotoxicity 
evaluation to determine the safety of the TDM interven-
tion (Figure 1). Those with gram negative or no positive 
culture result (n = 144), those with vancomycin resistant 
organisms (n = 2), and those with chronic kidney disease 
(CKD) stages III/IV/V (n = 49) were excluded (Figure 1). 
We also examined a predefined subset of culture con-
firmed MRSA infections only (Figure 1).

Description of the Intervention
To reduce the time to target trough, vancomycin ther-
apy was guided by a standardized, pharmacist managed, 
TDM program. The vancomycin TDM was implemented 
hospital-wide and was active continuously. A cause and 
effect approach, adapted from business models, such as 
the Ishikawa diagram was utilized to identify systemic 
problems that impaired efficient and accurate dosing of 
vancomycin. Multidisciplinary interventions were then 
implemented to improve vancomycin dosing practices 
(Crowley et al. 2007). The critical vancomycin level was 
changed from 10 to 50 mg/L to avoid doses being inap-
propriately held by nursing staff. In addition “batching” 

of the troughs with daily morning lab draws was elimi-
nated with emphasis on recording the actual “collected 
time” rather than the time the sample was run. This prob-
lem was further avoided by pharmacists scheduling the 
trough levels after “batched” morning laboratory speci-
mens were collected. The goal to avoid batching was also 
based on the concept of attaining real-time test results 
to guide therapy, which has the potential to improve 
clinical outcomes (Barenfanger et al. 2001; Boissinot and 
Bergeron 2002). The investigators met with the nursing 
practice council and worked with the shared governance 
group of each nursing unit regarding the following: inap-
propriate holding of doses, and importance of obtain-
ing levels at the exact time requested. In-services were 
organized to educate the nursing staff and clinical phar-
macists assigned to the different nursing units worked 
with individual nurses as needed. In addition, the inves-
tigators went to different department meetings to explain 
the rationale of the project and to seek other physicians’ 
cooperation, including resident physicians.

Vancomycin dosing strategies utilized by the TDM 
were in accordance with the 2009 vancomycin consen-
sus guidelines (Rybak et  al. 2009). A Microsoft Excel® 
spreadsheet was designed to calculate the maintenance 
dose to reach a specified target trough and for subse-
quent dose adjustments. The formula utilized was based 
on a one-compartment model and the details of the phar-
macokinetic calculations are available in a Additional 

Pa�ents mee�ng ini�al inclusion criteria (n= 340)

Nephrotoxicity Evalua�on:
TDM (n=173) vs. Historical Control 

(n=167)

Clinical Outcomes Evalua�on
(n= 145)

TDM (n=66) vs. Historical Control 
(n=79)

MRSA Subset:
TDM (n=36) vs. Historical 

Control (n=35)

Addi�onal Exclusions (n=195):
1. All culture results except gram posi�ves, n= 144
2. Vancomycin resistant organisms, n= 2 
(Vancomycin resistant Enterococci)
3. Those with impaired renal func�on (Acute Kidney 
Injury, history of End Stage Renal Disease, and 
history of Chronic Kidney Disease), n= 49

Pa�ents who developed Acute 
Kidney Injury:

TDM (n=23) vs. Historical Control 
(n=20)

Figure 1  Study design.
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file  1 (Winter 2003). Steady state conditions were con-
sidered to be achieved when 4 half-lives (~94% to steady 
state) had elapsed, during which time the dose and dos-
ing frequency remained the same, and the renal function 
was stable.

It is important to note that the CTRL group was prior 
to the release of the 2009 vancomycin dosing consen-
sus guidelines, but high trough vancomycin dosing was 
already being utilized by many providers for infections 
in which MRSA was a concern due to the 2005 Ameri-
can Thoracic Society (ATS) guidelines on nosocomial 
pneumonia (American Thoracic Society 2005). During 
the CTRL period pharmacists were available to assist 
with vancomycin dosing, but this was not routinely 
documented in the chart. In addition, in the ICU, a criti-
cal care pharmacist was available during regular busi-
ness hours, excluding weekends. Of note, the goal target 
trough was always stated explicitly in the pharmacist 
note for the TDM group, and for the CTRL group it was 
determined by chart review of physician notes.

The intervention began on hospital admission with the 
physician ordering vancomycin and the pharmacist cal-
culating the appropriate initial dose after determining 
the optimal target trough in consultation with the physi-
cian. The pharmacist then placed the vancomycin order 
and arranged the next vancomycin trough level time. This 
data and any further vancomycin dose adjustments and 
follow-up trough levels were documented daily in the 
electronic medical record. Loading doses were generally 
given to critically ill patients with serious infections at 
the discretion of the pharmacist and physician.

Data collection, study definitions
Data collected from patients’ medical records included 
demographics, culture data, pharmacokinetic param-
eters, and clinical outcomes. Site of infection was iden-
tified via physician notes. The Co-morbidity Index and 
Score of Charlson (CCI) was calculated for each patient 
at the time of initiation of vancomycin therapy with a 
Microsoft Excel® spreadsheet that is shared electronically 
through BioMed Central (Hall et al. 2004). Immunosup-
pression was defined as patients receiving any systemic 
corticosteroids prior to or during treatment with vanco-
mycin, a positive HIV antibody test result, chemotherapy 
within the past 45  days, neutropenia resulting from the 
administration of chemotherapy, and recipients of an 
organ transplant (renal, liver, heart, or bone marrow) 
(Hidayat et al. 2006).

Monitoring data
The following monitoring data was collected: receipt of a 
loading dose, total vancomycin dosage (g), target trough 
(15–20 or 10–15  mg/L), value of trough if >20  mg/L, 

initial dose, total troughs drawn, and the number of mis-
timed troughs.

Microbiological data
All positive bacterial cultures were recorded. If MRSA 
was cultured, the MIC (minimum inhibitory concentra-
tion) for vancomycin was documented. During the study 
periods, the laboratory determined the MIC for MRSA 
via VITEK® 2 (Biomerieux), with isolates showing MICs 
2–4 mg/L subjected to E-test confirmation.

Nephrotoxicity analysis
As the TDM utilized more intensive vancomycin dosing 
practices, we had to enhance our safety monitoring for 
nephrotoxicity as this is the primary vancomycin dose-
related toxicity of concern to clinicians (Lodise et  al. 
2009). Nephrotoxicity was defined and graded as acute 
kidney injury (AKI) via the RIFLE [Risk, Injury, Failure, 
Loss, ESRD (End Stage Renal Disease)] Criteria (Hoste 
et  al. 2006; Minejima et  al. 2011; Shen et  al. 2011). The 
reported etiology of the acute kidney injury in the chart 
was extracted from provider notes (Clemens et al. 2011). 
In addition, whether or not vancomycin was implicated 
as the cause of the AKI by the clinician in the chart was 
also recorded (Clemens et  al. 2011). We departed from 
the typical definition of vancomycin nephrotoxicity 
(Rybak et al. 2009) as we felt it is difficult to apply such a 
definition and to establish causality retrospectively. Simi-
lar approaches are being utilized in the literature with 
both RIFLE and AKIN (AKI Network) criteria (Minejima 
et  al. 2011; Shen et  al. 2011). In addition, concomitant 
nephrotoxins, and whether those with AKI had an initial 
vancomycin trough >20  mg/L were evaluated. Nephro-
toxicity was not evaluated among subjects with end-stage 
renal disease requiring hemodialysis prior to initiation of 
vancomycin (Clemens et al. 2011).

Outcome analysis
Primary outcome measures included time to target 
trough (days), time to clinical stability (defined below), 
all cause in-hospital mortality, and the inpatient length of 
stay (days). Other outcomes included vancomycin treat-
ment failure, time to normalization of the WBC count 
(normal range  =  4,500–10,000 cells/mL) in days, and 
inpatient lengths of vancomycin therapy (days). Time to 
clinical stability was defined as the return of vital signs 
to normal baseline values (heart rate <100 beats/min, 
systolic blood pressure >90 mmHg, respiratory rate <24 
breaths/min, oxygen saturation >90%, and tempera-
ture <37.2°C) (Hidayat et al. 2006). Patients that met the 
definition of clinical stability at the time of admission 
were excluded from the time to clinical stability analy-
ses; and patients that had a normal WBC at admission 
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were excluded from the analyses of time to reach nor-
mal WBC. A parameter was considered to be stable if all 
measurements met the criteria for normality over a 24-h 
period (Halm et al. 1998).

There are a variety of definitions of clinical responses, 
clinical cure and clinical failure utilized in the literature 
(Kullar et al. 2011a; Hidayat et al. 2006; Stryjewski et al. 
2007). However, there is no consensus on the definition 
of treatment failure in the literature (Sánchez 2009). For 
this study vancomycin treatment failure was defined as 
re-initiation of vancomycin therapy for any reason dur-
ing the hospital stay after a full course of treatment or 
a switch to an alternate MRSA agent (daptomycin, lin-
ezolid, or tigecycline), but not including a true vancomy-
cin allergy.

Statistical analysis
Statistical analyses were conducted using SAS software v 
9.2, Cary, NC, USA. A two-sided Fisher’s exact test was 
used to compare differences in proportions between the 
VPS and pre-intervention groups for categorical variables 
and two-sided Wilcoxon test was used for continuous 
variables. Kaplan–Meier (K–M) and Cox proportional 
hazard models were used to assess differences for dura-
tion variables. A multivariable logistic regression analysis 
was used to estimate odds ratios for mortality.

For the K–M and Cox proportional hazards analy-
ses, time to clinical stability, time to reach a therapeu-
tic trough, length of vancomycin treatment and time to 
white blood cell normalization were treated as right cen-
sored and set to the length of stay if the patient died or 
was discharged before reaching the endpoint. A stepwise 
approach using an inclusion criterion of p  <  0.05 was 
done to develop multivariable Cox proportional hazard 
models. Analyses based on selected subsets of data used 
the same predictors as the overall model.

Results
Nephrotoxicity analysis
The characteristics of patients who developed AKI to 
determine TDM safety are summarized in Table 1. There 
were 340 patients meeting criteria for the nephrotoxicity 
analysis [TDM (n = 173); CTRL (n = 167)], and of those 
43 (13%) developed AKI. AKI occurrence was similar 
between the CTRL (n = 20) and TDM (n = 23) groups 
(p = 0.7). In addition, of the 340 patients included in the 
safety analysis, 50 (15%) had initial vancomycin troughs 
>20 mg/L, and was similar between the CTRL (n = 26) 
and TDM (n = 24) groups (p = 0.76). Of note, most of the 
patients who developed AKI had underlying renal insuf-
ficiency, were admitted to the ICU, had sepsis or septic 
shock, and were on a number of concurrent nephrotoxins 
(Table 1). There were no significant differences in RIFLE 

scores between the CTRL and TDM groups. No patients 
in either group were assigned a RIFLE score of ESRD. 
Vancomycin was equally implicated by clinicians as a 
cause for nephrotoxicity in both the CTRL (n = 4), and 
TDM (n = 2) groups (4 vs. 2%, p = 0.3). The occurence of 
AKI with an initial vancomycin trough >20 mg/L was no 
different between groups (25 vs. 27%, p = 0.74). However, 
those in the TDM group had a significantly lower median 
initial vancomycin trough (22 vs 31, p  =  0.05). The 
cases of AKI attributed solely to vancomycin were few, 
with 1 case in the TDM and 2 cases in the CTRL group 
(p = 1.0). The remaining cases in which vancomycin was 
implicated were considered multifactorial.

Patients in the clinical outcomes analysis
Clinical outcomes analysis was only conducted on 
patients with culture confirmed gram positive infections 
that were sensitive to vancomycin, and with normal renal 
function, which resulted in 195 exclusions leaving 145 
patients (79 patients in the CTRL group and 66 from the 
TDM group) (Figure  1). The baseline characteristics of 
the patients in the CTRL and the TDM group were simi-
lar (Table 2). For the MRSA subset, there were 36 patients 
in the CTRL and 35 in the TDM groups. The baseline 
characteristics of the patients with MRSA infections in 
the CTRL and the TDM group were similar (Table 2).

Dosing and monitoring data
More patients in the TDM group reached the initial tar-
get trough (Figure  2) 53 (80%) vs. 33 (42%) (P  <  0.001), 
and the median time to initial target trough was shorter 
in the TDM group 3 (Interquartile Range (IQR), 2–3) vs. 
5 (IQR, 2–7) days, p < 0.001). For the CTRL group there 
were 233 total troughs drawn with 47% being mistimed, 
and 185 drawn in the TDM with 32% being mistimed. 
There were significantly less total vancomycin troughs 
drawn, and less mistimed troughs drawn per patient in 
the TDM group (Table  3). Goal target troughs between 
the CTRL and TDM groups were similar: 15–20 μg/mL 
(33 vs. 52; p = 0.1), and 10–15 μg/mL (33 vs. 27; p = 0.1). 
The total vancomycin dose in grams per patient was 
similar between groups. Only 3 loading doses out of 66 
patients (5%) were noted in the TDM group and none in 
the CTRL group. The initial dosing regimen in the TDM 
had significantly fewer doses of 1 g q12 h and had a wider 
variety, the most common being 1 g q8 h.

Outcomes for all culture confirmed gram positive 
infections
Compared to the CTRL group, patients in the TDM 
group discharged from the hospital more rapidly, reached 
clinical stability faster, and had shorter courses of inpa-
tient vancomycin treatment (Table  4). The CTRL and 
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Table 1  Characteristics of patients who developed Acute Kidney Injury to determine Vancomycin Therapeutic Drug Mon-
itoring Program (TDM) safety compared to the historical control (CTRL)

TDM (n = 173) CTRL (n = 167) P-value

Patients with acute kidney injury, n (%) 23 (13.3) 20 (12) 0.715

Male, n (%) 15 (65) 16 (80) 0.32

Age, median (IQR) 65 (48,75) 66 (50,76) 0.11

Weight (kg), median (IQR) 84 (74,114) 85 (74,112) 0.26

Co-morbidity Score, median (IQR) 8 (4,9) 6 (3,10) 0.29

Co-morbidities

 Chronic kidney disease (Stage III and IV), n (%) 8 (34.8) 5 (25) 0.52

 Central nervous system, n (%) 7 (30.4) 9 (45) 0.36

 Cardiovascular, n (%) 18 (78) 18 (90) 0.42

 Pulmonary, n (%) 8 (35) 6 (30) 1.0

 Diabetes, n (%) 11 (48) 6 (30) 0.35

 Gastrointestinal, n (%) 8 (35) 4 (20) 0.33

 Malignancy, n (%) 8 (35) 8 (40) 0.76

 Rheumatologic, n (%) 5 (22) 3 (15) 0.7

 Immunosuppression, n (%) 3 (13) 2 (10) 1.0

Site of infection

 Respiratory, n (%) 12 (52) 13 (65) 0.54

 Bacteremia, n (%) 14 (61) 12 (60) 1.0

 Urinary Tract, n (%) 2 (9) 4 (20) 0.39

 Skin and Soft Tissue, n (%) 0 2 (10) 0.21

 Bone/Joint, n (%) 1 (4) 3 (15) 0.32

 Central Nervous System, n (%) 0 0

 Intra-abdominal, n (%) 1 (4) 0 1.0

Sepsis/septic shock, n (%) 12 (52) 14 (70) 0.35

Culture result

 MRSA, n (%) 10 (43) 4 (20) 0.12

 MSSA, n (%) 1 (4) 2 (10) 1.0

 Coagulase Negative Staphylococci, n (%) 5 (22) 4 (25) 1.0

 S. pyogenes, n (%) 0 1 (5) 1.0

 E. faecalis, n (%) 4 (17) 3 (15) 1.0

 Other gram positives, n (%) 4 (17) 5 (25) 1.0

 Gram negatives, n (%) 9 (39) 11(55) 0.37

 Cultures negative, n (%) 2 (9) 4 (20) 0.39

MRSA MIC (mg/L)

 2, n (%) 0 0

Site of admission

 ICU, n (%) 16 (70) 15 (75) 0.74

 Medical Floor, n (%) 3 (13) 5 (25) 0.45

 Surgical Floor, n (%) 4 (17) 0 0.11

Concurrent antibiotics

 β-Lactam, n (%) 22 (96) 18 (90) 0.59

  Piperacillin/tazobactam, n (%) 17 (74) 11(55) 0.22

  Cefepime, n (%) 2 (9) 6 (30) 0.12

  Carbapenem, n (%) 1 (4.3) 1 (5) 1.0

  Other, n (%) 2 (9) 0 0.49

 Fluoroquinolone, n (%) 13 (57) 9 (45) 0.55

 Aminoglycoside, n (%) 1 (4.3) 2 (10) 0.590

Patients with initial VAN trough >20 mg/L, n (%)* 6 (25) 7 (27) 0.74
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TDM group had similar all cause in-hospital mortality. 
Increased mortality was associated with age (OR 1.06; 
95% CI 1.03–1.09; p < 0.001), ICU site of admission (OR 
8.02; 95% CI 3.03–21.02; p  <  0.001), respiratory site of 
infection (OR 4.08; 95% CI 1.66–10.06; p =  0.002), and 
bacteremia (OR 2.64; 95% CI 1.08–6.48; p = 0.034). Mor-
tality was not associated with being in the CTRL or TDM 
groups. Vancomycin treatment failure was not signifi-
cantly different between the TDM and CTRL groups [1 
(1%) vs. 3 (4%); p = 0.62].

Outcomes for the MRSA Subset
For the MRSA subset analysis, compared to the CTRL 
group (n = 35), patients in the TDM group (n = 36) dis-
charged from the hospital more rapidly, reached clinical 
stability faster, and had shorter inpatient courses of van-
comycin treatment (Table 4). The CTRL and TDM group 
(2.9 vs. 2.8%, p =  1.0) had similar all cause in-hospital 
mortality. Vancomycin treatment failure was not signifi-
cantly different between the TDM and CTRL groups (0 
vs. 1 (3%); P = 0.5).

Determination of optimal time to initial target trough
A separate Cox regression model examined only those 
patients who reached a target trough in a stepwise man-
ner to determine the optimal time to initial target trough. 

Adjusted analysis revealed that attaining a target trough 
in less than 5 days versus greater than or equal to 5 days 
resulted in more rapid hospital discharge, patients reach-
ing clinical stability faster, more rapid normalization of 
the WBC count, and shorter courses of inpatient vanco-
mycin treatment (Table 5).

Discussion
We were able to demonstrate that a pharmacist-run TDM 
program can safely and effectively decrease the median 
time to reach the initial vancomycin target troughs. Van-
comycin TDM and target trough attainment in less than 
5 days were associated with decreased inpatient lengths 
of stay, decreased inpatient lengths of vancomycin treat-
ment, and decreased time to patient clinical stability. 
The TDM intervention was safe, as it was not associated 
increased rates of acute kidney injury, nor increased rates 
of vancomycin associated nephrotoxicity.

There are a number of studies similar to our patient 
population in the literature supporting vancomycin phar-
macist managed therapeutic drug monitoring programs. 
Our study corroborates these studies in that we demon-
strated that the TDM resulted in an increased percentage 
of patients reaching target trough, reduced the number 
of troughs per patient, and reduced the number of mis-
timed troughs. Morrison et  al. (2012) noted that 41.3% 

* Percentages based on the total cases in which vancomycin was implicated in each group.

Table 1  continued

TDM (n = 173) CTRL (n = 167) P-value

 Trough value, median (IQR) 22 (21,23) 31 (25,51) 0.05

RIFLE criteria

 Risk, n (%) 7 (30.4) 3 (15) 0.294

 Injury, n (%) 6 (26.1) 8 (40) 0.515

 Failure, n (%) 8 (34.8) 8 (40) 0.761

 Loss, n (%) 2 (8.7) 1 (5) 1.00

 ESRD, n (%) 0 0

Clinician identified etiology of AKI

 VAN implicated, n (%) 2 (8.7) 4 (19) 0.32

 Etiology identified as multifactorial, n (%)* 1 (50) 2 (50) 1.0

 VAN as the only cause, n (%)* 1 (50) 2 (50) 1.0

 Acute interstitial nephritis from other antimicrobial, n (%) 6 (26) 2 (10) 0.250

 Acute tubular necrosis, n (%) 14 (60.9) 14 (70) 0.75

 Contrast nephropathy, n (%) 1 (4.3) 1 (5) 1.00

 Other, n (%) 3 (13) 4 (20) 0.687

VAN implicated and initial trough >20 mg/L, n (%) 2 (100) 4 (100) 1.0

Concurrent nephrotoxins, n (%)

 Vasopressors, n (%) 6 (26.1) 11 (55) 0.07

 Diuretics, n (%) 13 (56.5) 12 (60) 1.00

 Amphotericin B, n (%) 0 1 (5) 0.465

 Angiotensin-converting-enzyme inhibitor or Angiotensin II receptor blocker, n (%) 6 (26.1) 3 (15) 0.467
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Table 2  Baseline patient characteristics of all culture confirmed gram positive infections and the MRSA infection subset

All Gram Positive Infections MRSA Infections P value

TDM N = 66 CTRL N = 79 P value TDM N = 36 CTRL N = 35

Male, n (%) 60 (90) 71 (91) 1.0 29 (81) 33 (94) 0.15

Age, median (IQR) 61 (44,72) 60 (47,70) 0.66 61 (45,73) 60 (48,67) 0.43

Weight (kg), median (IQR) 88 (70,101) 89 (68,115) 0.62 89.8 (76,99.8) 80 (61,109) 0.74

Co-morbidity Score, median (IQR) 3.5 (0,6) 4 (0,5) 0.23 4 (0,6) 3 (0,4) 0.07

Co-morbidities

 Central nervous system, n (%) 21 (32) 29 (37) 0.60 10 (28) 17 (49) 0.45

 Cardiovascular, n (%) 39 (59) 52 (66) 0.49 25 (69) 22 (63) 0.62

 Pulmonary, n (%) 23 (35) 19 (24) 0.20 13 (36) 6 (17) 0.11

 Diabetes, n (%) 20 (30) 31 (39) 0.30 15 (42) 13 (37) 0.81

 Gastrointestinal, n (%) 20 (30) 17 (22) 0.26 14 (39) 8 (23) 0.2

 Malignancy, n (%) 7 (11) 12 (15) 0.47 6 (17) 1 (3) 0.12

 Rheumatologic, n (%) 6 (9) 9 (11) 0.79 4 (11) 3 (9) 1.0

 Immunosuppression, n (%) 11 (17) 10 (13) 0.64 5 (14) 2 (6) 0.43

Site of infection

 Respiratory, n (%) 17 (26) 23 (29) 0.71 6 (17) 11 (31) 0.17

 Hospital associated pneumonia/hospital acquired 
pneumonia, n (%)

7 (11) 10 (13) 0.8 6 (17) 5 (7) 1.0

 Ventilator associated pneumonia, n (%) 1 (2) 3 (4) 0.6 0 1 (3) 1.0

 Bacteremiaa, n (%) 20 (30) 23 (29) 1.0 11 (31) 9 (26) 0.79

 Endocarditis, n (%) 1 (2) 2 (3) 1.0 1 (3) 1 (3) 1.0

 Catheter/device associated, n (%) 2 (3) 1 (1) 0.6 1 (3) 1 (3) 1.0

 Urinary tract, n (%) 12 (19) 10 (13) 0.36 2 (6) 5 (14) 0.26

 Skin and soft tissue, n (%) 40 (63) 38 (48) 0.10 25 (69) 20 (57) 0.33

 Cellulitis/subcutaneous abscess, n (%)b 39 (59) 37 (47) 0.14 23 (64) 20 (57) 0.63

 Necrotizing fasciitis, n (%) 1 (2) 1 (1) 1.0 1 (3) 1 (3) 1.0

 Bone/joint, n (%) 8 (12.1) 13 (17) 0.49 4 (11) 5 (14) 1.0

 Osteomyelitis, n (%) 6 (9) 5 (6) 0.76 6 (17) 2 (6) 0.26

 Septic arthritis, n (%) 4 (6) 3 (4) 0.7 2 (6) 1 (3) 1.0

 Central nervous system, n (%) 0 1 (1) 1.0 0 (0) 1 (3) 1.0

 Intra-abdominal, n (%) 1 (2) 1 (1) 1.0 0 (0) 0 (0) 1.0

Sepsis and septic shock, n (%) 13 (20) 21 (27) 0.43 4 (11) 9 (26) 0.13

Culture result

 MRSA, n (%) 36 (55) 35 (44) 0.25 – – –

 MSSA, n (%) 10 (15) 16 (20) 0.52 – – –

 Coagulase negative Staphylococci, n (%) 12 (18) 15 (19) 1.0 – – –

 S. pyogenes, n (%) 4 (6) 1 (1) 0.18 – – –

 E. faecalis, n (%) 10 (15) 19 (24) 0.21 – – –

 Other gram positives, n (%) 15 (23) 12 (15) 0.29 – – –

MRSA MIC (mg/L)

 2, n (%) 5 (14) 9 (11) 0.77 5 (13.5) 9 (11.4) 0.77

Site of admission

 ICU, n (%) 12 (18) 21 (27) 0.24 10 (28) 9 (26) 1.0

 Medical Floor, n (%) 33 (50) 36 (46) 0.62 12 (33) 15 (43) 0.47

 Surgical Floor, n (%) 21 (32) 22 (28) 0.72 14 (39) 11 (31) 0.62

 Sepsis and Septic Shock, n (%) 13 (20) 21 (27) 0.43 4 (11) 9 (26) 0.13

Concurrent antibiotics

 β-Lactam, n (%) 44 (67) 53 (68) 1.0 28 (78) 23 (66) 0.3

  Piperacillin/tazobactam, n (%) 30 (68) 34 (64) 0.82 19 (53) 17 (49) 0.81
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a  Majority of bacteremias were secondary from extravascular sources (pneumonia, skin/soft tissue infection, etc.).
b  Includes surgical site infections.

Table 2  continued

All Gram Positive Infections MRSA Infections P value

TDM N = 66 CTRL N = 79 P value TDM N = 36 CTRL N = 35

   Cefepime, n (%) 5 (12) 6 (11) 1.0 3 (8) 2 (6) 1.0

   Carbapenem, n (%) 4 (9) 3 (6) 0.7 1 (3) 2 (6) 0.61

   Other, n (%) 5 (12) 10 (19) 0.4 5 (14) 2 (6) 0.43

 Fluoroquinolone, n (%) 16 (24) 21 (27) 0.85 5 (14) 9 (26) 0.56

 Aminoglycoside, n (%) 6 (9) 2 (3) 0.14 2 (6) 2 (6) 1.0

 Other, n (%) 16 (24) 15 (19) 0.54 7 (19) 9 (26) 0.58

Figure 2  Unadjusted K-M plot demonstrating that those in the TDM group attained the target trough at an increased rate compared to the control 
group. P value generated via two sided Wilcoxon test.

Table 3  Vancomycin dosing and monitoring parameters for those with culture-confirmed gram positive infections

TDM (n = 66) CTRL (n = 79) P value

Reached Initial Target Trough, n (%) 53 (80) 33 (42) <0.001

Time to Initial Target Trough (days), median (IQR) 3 (2,3) 5 (2,7) <0.001

Initial target trough

 15–20 mg/L, n (%) 33 (50) 52 (66) 0.1

 10–15 mg/L, n (%) 33 (50) 27 (34) 0.1

 Loading dose, n (%) 3 (5) 0 0.54

Initial dose

 1.0 g q12hr, n (%) 28 (42) 63 (80) <0.001

 1.0 g q8hr, n (%) 12 (18) 1 (1) 0.001

 Other, n (%) 26 (40) 14 (19) 0.005

No dose adjustment, n (%) 21 (32) 37 (48) 0.06

Number of troughs drawn per patient, median (IQR) 1 (1,4) 2 (1,4) 0.02

Mistimed troughs drawn per patient, median (IQR) 0 (0,2) 1 (0,2.5) 0.002

Total VAN Dose (g), median (IQR) 10 (7,20) 11 (7,21) 0.29
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of the vancomycin levels drawn in their institution were 
mistimed. This is consistent with the CTRL group in this 
study with 47% of troughs being mistimed; however the 

TDM intervention was able to significantly reduce mis-
timed troughs by 15%. Aubron et al. (2011) implemented 
a pharmacokinetic program in the ICU and was able to 
attain the target trough in 42% of patients, and the initial 
target trough in 40% of patients. In our study with our 
TDM intervention we were able to reach the initial target 
trough in 80% of patients; however our population was 
not restricted to only ICU patients, and vancomycin dos-
ing is more challenging in the critical care setting. Similar 
to our study another study incorporated an educational 
intervention with a vancomycin dosing protocol, improv-
ing the proportion of patients who rapidly achieved opti-
mal vancomycin exposures, and reduced the number 
of patients prescribed the traditional 1 g initial dose (Li 
et  al. 2012). In our study, a 1  g q12hr dose was utilized 
significantly less in the TDM group and a wider variety 
of doses were utilized. This is an important point as it 
highlights the need for individualized dosing to achieve 
current guideline recommendations, rather than the tra-
ditional dogma of all patients receiving 1 g q12hr.

A number of authors have noted that a vancomycin 
TDM program was associated with a decreased inci-
dence of vancomycin-induced nephrotoxicity (Bond and 
Raehl 2005; Iwamoto et al. 2003; Welty and Copa 1994). 
In our study, the occurrence of vancomycin associated 
nephrotoxicity was no different between the TDM and 
CTRL groups. However, the previously cited studies were 
not utilizing high trough dosing as in the current study. 
Given that the development of vancomycin-induced 
nephrotoxicity is dose related, the fact that the TDM 
utilized high trough dosing strategies and did not result 
in increased nephrotoxicity rates, highlights the safety 
of the intervention. The patients who developed acute 
kidney injury in this study were similar to other studies 
as many of them had baseline renal insufficiency, were 

Table 4  Analysis of clinical outcomes for all culture confirmed gram positive infections and the MRSA infection subset

Outcome Univariate Multivariate

TDM CTRL P-value TDM vs. CTRL P-value

Median (IQR) Median (IQR) Hazard Ratio (95% CI)

All gram positive infections

 Inpatient length of stay (days) 7 (3,10) 14 (8,26) 0.03 1.41 (1.08–1.83) 0.01

 Inpatient length of VAN Treatment (days) 4 (2,4) 7 (5,10) <0.001 1.5 (1.15–1.95) 0.003

 Time to clinical stability (days) 4 (3,5) 8 (3,7) 0.004 1.51 (1.08–2.11) 0.02

 Time to normal WBC count (days) 4 (2,10) 6 (3,13) 0.14

MRSA Subset

 Inpatient length of stay (days) 7 (4,20) 16 (7,38) 0.035 1.89 (1.08–3.3) 0.03

 Inpatient length of VAN treatment (days) 5 (3,12) 8 (5,16) 0.034 2.52 (1.38–4.6) 0.003

 Time to clinical stability (days) 4 (3,4) 6 (4,10) 0.013 2.69 (1.27–5.7) 0.01

 Time to normal WBC count (days) 4 (2,5) 5 (2,6) 0.617

Table 5  Cox Proportional hazards regression model 
demonstrating that  reaching the initial target trough 
in  <5  days is associated with  improved study outcome 
measures

a  Analysis restricted to those who reached target trough.

Outcome Hazard Ratio (95% CI) P value

Inpatient length of staya

 Time to target trough

  <5 vs. ≥5 days 2.52 (1.54–4.14) <0.001

  1–<2 vs. ≥5 days 1.97 (1.09–3.56) 0.024

  2–<3 vs. ≥5 days 2.3 (1.35–3.92) 0.002

  3–<4 vs. ≥5 days 2.13 (1.27–3.56) 0.004

Time to clinical stabilitya

 Time to target trough

  <5 vs. ≥5 days 2.13 (1.16–3.93) 0.015

  1–<2 vs. ≥5 days 1.51 (0.75–3.04) 0.243

  2–<3 vs. ≥5 days 1.09 (0.56–2.13) 0.791

  3–<4 vs. ≥5 days 1.41 (0.76–2.62) 0.276

Inpatient length of VAN treatmenta

 Time to target trough

  <5 days vs. ≥5 days 2.95 (1.8–4.82) <0.001

  1–<2 vs. ≥5 days 3.44 (1.86–6.35) <0.001

  2– < 3 vs. ≥5 days 2.18 (1.27–3.74) 0.005

  3– < 4 vs. ≥5 days 4.67 (2.68–8.14) <0.001

Time to normal white blood cell counta

 Time to target trough:

  <5 days vs. ≥5 days 2.08 (1.06–4.08) 0.034

  1–<2 vs. ≥5 days 2.12 (0.86–5.21) 0.1

  2–<3 vs. ≥5 days 1.26 (0.57–2.77) 0.565

  3–<4 vs. ≥5 days 1.72 (0.84–3.53) 0.138
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ICU patients with changing hemodynamics, and were 
administered concomitant nephrotoxins (Hazlewood 
et al. 2010; Vandecasteele and De Vriese 2010). In addi-
tion, most patients in both groups were on concomitant 
piperacillin-tazobactam, which has recently been dem-
onstrated to increase the incidence of nephrotoxicity 
in patients receiving vancomycin therapy (Burgess and 
Drew 2014). The rate of nephrotoxicity observed in this 
study (13% in the TDM and 12% in the CTRL groups) was 
similar to the literature range of 5–25% (Hazlewood et al. 
2010; Iwamoto et al. 2003). The rate of nephrotoxicity in 
those with initial trough values >20  mg/L in the TDM 
(25%) and CTRL (27%) groups, was similar to another 
study that reported a rate of 33% (Lodise et  al. 2009). 
Interestingly, of those who had AKI and initial trough 
values >20 mg/L, those in the TDM group had a signifi-
cantly lower median vancomycin trough values, suggest-
ing that individualized dosing may help to decrease the 
occurrence of exceedingly high trough values.

A unique aspect to our study was that the TDM signifi-
cantly reduced the time interval to reaching target trough 
levels and this parameter was associated with improved 
outcomes. There is emerging evidence from the litera-
ture supporting vancomycin dosing recommendations 
for MRSA infections as put forth by the 2009 vancomycin 
consensus guidelines (Leu et al. 2012; Kullar et al. 2011b, 
2012; Hall et  al. 2012; Holmes et  al. 2013). Kullar et  al. 
(2011a) conducted a single-center retrospective analy-
sis of 320 patients with documented MRSA bacteremia 
and found that 52.5% experienced vancomycin failure. By 
using regression analysis, they were able to demonstrate 
that patients with vancomycin area under the curve at 
24 h (AUC24h) to MIC ratios <421 were found to have sig-
nificantly higher rates of failure compared with patients 
with AUC24hr to MIC ratios >421 (Kullar et  al. 2011a). 
The same study group published a retrospective quasi-
experimental study of 200 patients treated for confirmed, 
complicated MRSA bacteremia and compared patients 
prior to implementation of the vancomycin dosing guide-
lines to after (Kullar et al. 2012). Our results were similar 
to the most recent study by Kullar et al. (2012) in terms 
of reduced duration of vancomycin therapy, and not 
observing increased rates of nephrotoxicity. Most studies 
are now focusing on optimizing the AUC/MIC ratio and 
primarily in those with MRSA bacteremia, but few factor 
in the time interval to reach the goal AUC/MIC or target 
trough (Clemens et al. 2011; Hall et al. 2012; Holmes et al. 
2013; Kullar et  al. 2011a, 2012; Leu et  al. 2012; Li et  al. 
2012; Nunn et al. 2011). Therefore, we explored whether 
reaching initial target troughs faster can impact out-
comes and found that reaching an initial target trough in 
less than 5 days was associated with decreased length of 
hospital stay, decreased length of vancomycin treatment, 

decreased time to clinical stability, and decreased time to 
normalization of the WBC count. Holmes et  al. (2013) 
recently demonstrated that that obtaining a vancomycin 
AUC/MIC > 373 was associated with decreased mortal-
ity, but only when accomplished within 4 days. Another 
study would seem to contradict our findings, and con-
cluded that optimization of vancomycin pharmacokinetic 
indices to include time to target trough did not appear to 
correlate with clinical responses (Clemens et  al. 2011). 
However, the time to target trough in that study was no 
less than 5 days in all comparison groups, as opposed to 
our TDM group, which was 3 days (Clemens et al. 2011).

We were surprised that despite our TDM intervention, 
only 5% of patients received an initial loading dose. This 
is likely because loading doses were not mandated for 
specific indications and generally given at the discretion 
of the pharmacist and/or physician. In a survey study of 
163 hospitals in the Making Difference in Infectious Dis-
eases Pharmacotherapy (MAD-ID) Research Network, 
14% reported “never”, 43% reported “sometimes”, and 
42% reported “always” utilizing a loading dose, indicating 
widespread underutilization of this practice (Davis et al. 
2013). Reasons for this could include fears over admin-
istering large vancomycin doses or toxicity, delays in 
diagnosis and failure to recognize indications requiring a 
loading dose, lack of data suggesting improved outcomes, 
and years of habitually prescribing the “one-size-fits-all” 
1 g every 12 h without a loading dose (Davis et al. 2013). 
We believe that all of these factors were responsible for 
the underutilization of loading doses in our study. One 
solution is to incorporate the emergency department 
into vancomycin TDM programs, and it may be possible 
to further reduce the time to target trough, and in turn, 
potentially improve patient outcomes. In support of this 
concept, a recent randomized study evaluated the per-
centage of troughs reaching therapeutic levels at 12, 24, 
and 36  h following an initial vancomycin loading dose 
of 30  mg/kg compared with 15  mg/kg in an emergency 
department (Rosini et al. 2015). In this study, there were 
a significantly greater proportion of patients reaching 
target trough levels of 15 mg/L among the patients who 
received a loading dose as compared with a traditional 
dose, and this trend continued at 24  h but was not sta-
tistically significant (Rosini et  al. 2015). No statistically 
significant differences in nephrotoxicity or adverse events 
among were demonstrated, but no other clinical outcome 
measures were examined (Rosini et al. 2015).

Although we were unable to show an associated mortal-
ity benefit we demonstrated other important benefits to 
include expedited time to hospital discharge, and assist-
ing patients in reaching clinical stability faster. Shorter 
durations of vancomycin therapy can decrease hospital 
costs, the risk of drug-induced toxicity and minimize the 
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risks of nosocomial infection (Safdar and Maki 2002). 
Improved time to clinical stability may shorten lengths of 
stay in high acuity units, decrease overall hospital length 
of stay, and it has been demonstrated that once clinical 
stability has been achieved the risk of subsequent clini-
cal deterioration may decrease to 1% or less even among 
the sickest patients (Halm et al. 1998). The lack of mortal-
ity benefit may be related to sample size, as after exclu-
sions, the study was not adequately powered to detect a 
difference in mortality. In addition, the lack of mortality 
benefit may be due to the fact that we examined all-cause 
inpatient mortality rather than utilizing an alternate 
parameter such as infection-related or 30 day mortality. It 
has been estimated that the percentage of MRSA-related 
hospitalizations that resulted in death was approximately 
6.2% in a large study (Klein et al. 2007). In our study, for 
all patients who were admitted with a culture confirmed 
MRSA infection, the mortality rate was lower at 2.8%. 
The lower mortality rate in our data may be related to 
the fact that the vast majority of MRSA isolates causing 
infection in our studies had vancomycin MICs of one or 
less as higher vancomycin MICs have been associated 
with increased mortality (Jacob and DiazGranados 2013). 
However, the MRSA isolates in our study with MICs of 
2  mg/L or higher may have been under-represented as 
the Vitek 2 tends to under-call MICs of 2 mg/L in com-
parison to broth microdilution (Rybak et al. 2013).

Other limitations to our study include those inherent to 
the retrospective study design. Our study was at a single 
center, which has the advantage of eliminating potentially 
confounding site specific factors, but a potential disad-
vantage for generalization of the results to other facili-
ties. In Hawaii, for example, Pacific Islanders have tended 
to have high rates of MRSA colonization and infection 
(CDC 2004). During the study period, the prevalence of 
MRSA infection and colonization ranged from 46 to 50% 
in our facility. This is similar to national prevalence data 
in the United States from 2010 (Jarvis et al. 2012). Also, 
we did not examine the AUC/MIC ratios in our patients. 
Although monitoring and targeting this parameter has 
recently been associated with improved outcomes in 
MRSA infections, it is not practical for clinical use at this 
time for most hospitals (Rybak et al. 2009). As this was a 
retrospective study, not enough vancomycin levels were 
drawn daily to calculate an accurate AUC/MIC in our 
opinion. In addition, to accurately estimate AUC0–24hr 
with use of standard population parameters, a separate 
pharmacokinetic study would have to be conducted at 
our institution which was beyond the scope of the cur-
rent study.

Future applications for vancomycin TDM programs 
include integration into electronic medical records 
(EMRs). Such an application could conserve pharmacist 

time and may result in further cost savings (Traugott 
et al. 2011). Another use would be in clinical trials com-
paring vancomycin therapy to new anti-MRSA antibiot-
ics. For example, in the study claiming superiority for 
linezolid over vancomycin in hospital-acquired pneumo-
nia, vancomycin may not have been dosed optimally as 
the vancomycin trough did not reach the recommended 
15–20  mg/L range until day 9 of therapy (Wunderink 
et al. 2012). If target vancomycin troughs were achieved 
more rapidly, it may be more difficult for novel agents to 
demonstrate non-inferiority or superiority. Additionally, 
as AUC/MIC measurement methods become less cum-
bersome and in recent studies seem to correlate with 
outcomes more than trough values it will be important to 
examine if the time to reach the optimal AUC/MIC can 
further improve clinical outcomes.

Conclusions
We suggest that interventions designed to decrease 
the time to reach initial target vancomycin troughs can 
improve clinical outcomes in gram positive infections, 
and in particular MRSA infections. Based on our data we 
recommend that the target trough be achieved before five 
days to optimize clinical outcomes. Further study of simi-
lar interventions would be of value in prospective, multi-
center studies utilizing loading doses more frequently, 
and comparing intermittent versus continuous infusion 
regimens in conjunction with aggressive loading doses.
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