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Background
For some configurations of N material points, there exist exact solutions to the prob-
lem of the Newtonian gravitational interaction of the material points. For instance, for 
N bodies axisymmetrically arranged along a circumference, a complete solution to the 
problem was previously obtained in (Smulsky 1999, 2004; Smul’skii 2003). In this prob-
lem, a central body can be located at the center of the circumference. Depending on 
their initial velocities, the peripheral bodies can move along an ellipse, a parabola, or 
a hyperbola. Apart from such single-layer configurations, in a number of studies the 
matter of exact solutions for configurations involving several layers was addressed (Silu-
shik 2003; Grebenikov et  al. 2006; Diarova et  al. 2006; Gutsu et  al. 2007; Grebenikov 
2010). Traditionally, the configurations of interest were treated as systems formed by 
mutually embedded polygons rotating, as an entity, at angular velocity ω. At polygon 
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vertices, material points interacting among themselves by the Newton law of gravitation 
are placed. Within the context of the problem under consideration, example solutions 
for embedded triangles, rhombs, squares, pentagons, and hexagons were reported in a 
generalizing study by Grebenikov (Grebenikov 2010). The vertices in neighbor polygons 
can lie either in one radius or in radii passing through the middle points of the sides of 
neighbor polygons.

The above problem was solved for several layers of such polygons: for triangles, up to 
four layers; for squares, up to three layers, and for pentagons and hexagons, up to two 
layers (Grebenikov 2010). The largest number of the interacting bodies located at poly-
gon vertices amounted to 12 bodies. Within the Hamiltonian dynamics, the problem can 
be reduced to a system of algebraic equations that can be solved by computer-algebra 
methods (Grebenikov 2010; Grebenikov et al. 2002). Each particular problem requires 
special consideration, and much effort has to be spent on its solution. Earlier, such prob-
lems for interacting material points were treated as homographic-dynamics problems 
(Grebenikov 2010) or problems of planar central configurations (Saari 1980; Perko and 
Walter 1985; Diacu 1990; Xia 1991; Albouy 1996; Bang and Elmabsout 2001; Moeckel 
1990; Hampton and Moeckel 2006; Albouy et al. 2008; Shi and Xie 2010). In turn, homo-
graphic dynamics itself has emerged as a new field in space dynamics (Grebenikov 2010).

In the present publication, we consider a somewhat different approach to solv-
ing the problems described above. This approach presents further development of the 
method that was previously used in tackling the axisymmetric problem (Smulsky 1999, 
2004; Smul’skii 2003) and in treating multi-layered ring structures (Smul’skii 2011). The 
motion of the bodies is investigated considering the forces acting between the bodies. 
Instead of polygons, whose imaginary sides connect the bodies, in the present study we 
deal with the circumferences along which the bodies are located. The authors of all the 
above-mentioned publications mainly studied theoretical aspects of the Hamiltonian 
dynamics of the systems of interest such as, for instance, the solution existence problem 
for a specific form of central configurations. Finding stable central configurations is very 
difficult a problem (Yu and Zhang 2015). The present work is devoted to obtaining all 
exact solutions, calculation of structures, and possible use of results obtained.

Statement of the problem
Consider a multi-layer axisymmetric structure comprising several material points whose 
interaction is governed by the Newton law of gravitation (see Figure 1). The structure 
involves N2 circumferences with N3 bodies located in each circumference. We will call 
the system of bodies whose centers are arranged along a circumference a body ring, or a 
body layer. The rings are enumerated with numbers j = 1, 2 … N2, and the bodies in each 
ring, with numbers l = 1, 2 … N3. In the plane xoyo, in which the bodies are disposed, for 
a body of mass mj,l we introduce a polar radius rj,l and a polar angle ϕj,l. For simplicity, 
in what follows the symbol mj,l will also be used to denote the body itself. All bodies in 
a ring have identical radii rj,l = rj, where rj is the radius of the ring, and their masses are 
also identical, i.e. mj,l = mj. The polar angle that defines the angular position of the first 
body in each ring, ϕj,1, specifies the particular form of the structure. In what follows, 
this angle will be assumed a specified parameter. The polar angles of all other peripheral 
bodies are given by the formula
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where Δϕ0 = 2π/N3 is the angular separation between the bodies in each ring.
To summarize, the geometry of a multi-layered axisymmetric structure is defined by 

the total number of the involved rings N2, by the number of the bodies in each ring N3, 
by the ring radii rj, and by the angles defining the angular position of the first body in 
each ring ϕj,1. The mass of each body in the j-th ring is mj and, in the presence of a cen-
tral body of mass m0, the mass of the whole system is

The whole system revolves at angular velocity ω. A multi-layer structure is specified 
by the set quantities N2, N3, ϕj,1, m0 and ω, while the ring radii rj and the body masses mj 
present unknown quantities.

The forces acting between the bodies
Consider the forces that act on the first body in the j-th ring, whose mass is mj,1, from 
the side of all other bodies (see Figure 1). To the body mj,1, we attach a natural coordi-
nate system (n,τ) in which n and τ are the normal and tangent lines to the trajectory. 
The gravity force Fj,1,i,l due to the body mi,l in the i-th ring that acts on the body mj,1 is 
Fj,1,i,l = G·mj,1·mi,l/r2j,1,i,l, where G is the gravitation constant and rj,1,i,l is the distance from 
body mj,1 to body mi,l. Then, the projections of the force Fj,1,i,l onto the axes �n and �τ are

(1)ϕj,l = ϕj,1 + (l − 1) ·�ϕ0,

(2)mSS = m0 + N3 ·

N2
∑

j=1

mj

(3)
Fn,j,1,i,l =

G ·mj,1 ·mi,l · nj,1,i,l

r3j,1,i,l
;

Figure 1  Geometric characteristics of the multi-layer axisymmetric structure with N2 = 5 and N3 = 8 in 
which the angles of the first body in neighbor rings ϕj,1 alternate one another. For clarity, the bodies are 
shown as full circles whose radii vary in proportion to the bodies’ masses, and the line segments at the circles 
show the velocity vectors of the bodies.
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with nj,1,i,l and τj,1,i,l being the projections of the distance rj,1,i,l, respectively onto the n- 
and τ-axis.

In the triangle Omi,lmj,1 (see Figure 1), the angle between the body radii ri and rj is

By the cosine theorem, the distance between the bodies is

Then, the projections of the latter distance onto the n- and τ-axis are respectively

Apart from the peripheral bodies, the body mj is additionally acted upon by the central 
body of mass m0 located at the point O (see Figure 1). The projection of the force due to 
the latter body onto the τ-axis is zero, and the projection of that force onto the n–axis 
can be expressed by analogy with formula (3):

In view of formula (7), in which we assume ri = 0, for the central body the latter for-
mula yields nj = rj.

After substitution of (6) and (7) into expressions (3) and (4), and after summation of 
the forces over all bodies in the system, for the projections of the forces acting on the 
body mj,1 from the side of the rest bodies we obtain:

(4)Fτ ,j,1,i,l =
G ·mj,1 ·mi,l · τj,1,i,l

r3j,1,i,l
,

(5)�ϕj,1,i,l = ϕi,l − ϕj,1.

(6)r2j,1,i,l = r2j + r2i − 2rirj · cos�ϕj,1,i,l .

(7)nj,1,i,l = −(ri · cos�ϕj,1,i,l − rj); τj,1,i,l = ri · sin�ϕj,1,i,l .

Fn,j,1,0 =
G ·mj,1 ·m0 · nj

r3j
.

(8)

Fn,j,1 = G ·mj







m0

r2j
+

N2
�

i �=j






mi ·

N3
�

l=1

rj − ri · cos�ϕj,1,i,l
�

r2j + r2i − 2rj · ri · cos�ϕj,1,i,l

�3/2







+
mj

r2j

N3
�

l=2

0.5
�

2− 2 · cos�ϕj,1,j,l
�1/2






;

(9)

Fτ ,j,1 = G ·mj







N2
�

i �=j






mi ·

N3
�

l=1

ri · sin�ϕj,1,i,l
�

r2j + r2i − 2rj · ri · cos�ϕj,1,i,l

�3/2







+
mj

r2j

N3
�

l=2

sin�ϕj,1,i,l
�

2− 2 · cos�ϕj,1,j,l
�3/2






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In (8) and (9), mj is mass of each of the bodies mj,1, and mi is the mass of each of the 
bodies mi,l.

For excluding the self-action force of the body mj,1, in formulas (8) and (9) the action 
due to all other bodies in the j-th ring is separated out from the total sum, and that 
action is then written as a last term. This action readily results if we replace the subscript 
i in the previous term with the subscript j. The exclusion of the j-th ring from the expres-
sion under the summation sign 

∑

 is denoted as i ≠ j.
We consider such configurations of rotating structures for which expressions (8) and 

(9) yield one and the same force value for each body in the j-th ring. The latter is only 
possible if, as the n-axis passes through any body in the j-th ring, the geometric posi-
tions of all other bodies acting on this body remain unchanged. The latter condition is 
satisfied providing that the initial angle of ring bodies assumes either a value ϕj,1 = 0 or 
a value ϕj,1 =  0.5·Δϕ0. The arrangement of a structure in which the initial angles ϕj,1 
assume sequentially alternating values in neighbor rings is shown in Figure 1. Structures 
with arbitrary alternation pattern of initial angles ϕj,1 also satisfy the above condition.

Note that it is the above conditions that define the term «axisymmetric» as used in the 
present article. Some structure presents an axisymmetric structure if its geometric and 
dynamic characteristics remain unchanged as the structure revolves through the angle 
Δϕ0.

For the configurations considered above, the normal n presents a symmetry axis (see 
Figure 1). That is why, in view of (5), the angles of deflection of the interacting bodies 
from the n-axis, Δϕj,1,i,l, have values pairwise equal in magnitude and opposite in sign. 
Hence, the sines in the nominators of formula (9) are also pairwise equal in magnitude 
and opposite in sign. The cosines of those angles in the denominators being identical, the 
tangential forces vanish. With the total number of the bodies N3 being an even number, 
another body can be found in the n-axis, this body being located symmetrically about 
the center O. Since the angle Δϕj,1,i,l of the latter body is π, then the interaction force 
due to this body in (9) is also zero. Thus, the projections of all the forces onto the tan-
gent axis are zero, Fτ ,j,1 = 0. That is why the force acting on each body in the ring with 
number j from the side of all other bodies in the multi-layer axisymmetric structure is 
directed along the normal n to the trajectory, i.e. towards the center O, and this force is 
defined by expression (8).

According to (1), the difference between the angles (5) in the j-th ring is

Then, the expression in the denominator of the last term in formula (8) can be written 
as

After substitution of (11) into (8), for the force acting on arbitrary body in the j-th ring 
from the side of all other bodies we obtain the expression

(10)�ϕj,1,j,l = ϕj,l − ϕj,1 = 2π(l − 1)/N3.

(11)2 · [1− cos(2π(l − 1)/N3)] = 4 · sin2(π(l − 1)/N3).

(12)Fn,j =
G ·mj

r2j






m0 +

N2
�

i �=j






mi ·

N3
�

l=1

1− ri,j · cos�φj,1,i,l
�

1+ r2i,j − 2ri,j · cos�φj,1,i,l

�3/2






+mj · fn3






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where

ri,,j = ri/rj is the ratio between the radii of the rings with numbers i and j; and the angle 
difference Δϕj,1,j,l is given by formula (10).

Force (12) is directed towards the center O.

Motion equations of the rotating structure
By the force (12), the body mj,1, whose mass is mj, executes an accelerated motion (see 
Figure  1). In the natural coordinate system (n, τ), the force (12) acts along the n-axis; 
along the same axis, the normal acceleration wn = v2/ρ is directed (here, v is the tan-
gential velocity of the body mj,1, and ρ is the radius of curvature of the body’s trajectory. 
Hence, the differential equation of motion for the body can be written as

We consider a rotating structure revolving with angular velocity ω at fixed orbital 
radii. Hence, for the body mj,1 the radius of curvature of its trajectory is ρ = rj, and the 
velocity of the body is v = ω·rj. After substitution of the above quantities and force (12) 
into Eq. (14), the differential motion equation of the body mj,1 acquires the form

where j = 1, 2, … N2.
Thus, the motion of the bodies making up a rotating structure is governed by N2 

Eq.  (15). This system of equations is an algebraic system. As it was noted above, the 
unknown quantities here are the ring radii rj and the body masses mj. With the ring radii 
rj specified, the body masses mj are defined by Eq. (15). If necessary, it is the body masses 
mj that can be specified; then, the ring radii rj can be found from Eq. (15).

For generating a uniform algorithm for solving the problem for multi-layer structures 
with and without a central body, we introduce an initial total mass min of the central 
body and all the peripheral bodies forming the first ring. We denote the mass fraction 
due to the central body in this structure as pm0. Then, the mass of the central body is 
m0 = min∙pm0. A structure without a central body is defined by the equality pm0 = 0.

An analysis of potential applications of this problem shows that a good strategy 
towards solving the problem consists in specification of the geometry of the multi-layer 
axisymmetric structure, including the ring radii rj, followed by the determination of the 
masses mj (via solving system (15)). We therefore rewrite Eq. (15) in a different form. We 
isolate in the second term the non-dimensional acceleration of the body mj,1 due to the 
action of a unit mass contained in the body mi,1 of the i-th ring:

(13)fn3 = 0.25

N3
∑

l=2

1

sin [π(l − 1)/N3]
;

(14)mj ·
v2

ρ
= Fn,j .

(15)ω2 =
G

r3j






m0 +

N2
�

i �=j






mi ·

N3
�

l=1

1− ri,j · cos�ϕj,1,i,l
�

1+ r2i,j − 2ri,j · cos�ϕj,1,i,l

�3/2






+mj · fn3






,
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where ri,,j = ri/rj is the non-dimensional ratio of the radii.
Then, the non-dimensional acceleration of the body mj,1 due to the interaction of that 

body with all the bodies in the i-th ring is

Since the bodies forming the ring impart each body in the same ring with a non-
dimensional acceleration fn3, we introduce a designation

We normalize the masses of all the bodies by the initial mass min, and denote the non-
dimensional masses of the bodies as

Then, using formulas (16)–(19), we can rewrite Eq. (15) as the following system of lin-
ear algebraic equations:

where

In the system of linear algebraic Eq. (20), the specified parameters are N2, N3, ϕj,1, min, 
pm0, ω, and rj, and the unknown quantities are the non-dimensional masses mud,i of the 
peripheral bodies. The mass of the central body remains unchanged, i.e. m0 = const. On 
the other hand, the non-dimensional masses of all the peripheral bodies mud,j result from 
the solution of Eq. (20).

Solution of the equations
The solution of linear algebraic equation system (20) is given (Korn and Korn 1968) by

where D is the determinant of the matrix aj,I,

and Di is the determinant of the matrix aj,i in which the i-th column is replaced with the 
free-term column bi.

(16)
Qj,1,i,l =

1− ri,j · cos�ϕj,1,i,l
(

1+ r2i,j − 2ri,j · cos�ϕj,1,i,l

)3/2
,

(17)aj,i =

N3
∑

l=1

Qj,1,i,l .

(18)aj,j = fn3.

(19)mud,j = mj/min; mud,0 = m0/min.

(20)
N2
∑

i=1

aj,i ·mud,i = bj , j = 1, 2 . . .N2,

(21)bj = ci · r
3
ud,j −mud,0; rud,j = rj/r1; ci = r31ω

2/(min · G).

(22)mud,i = Di/D,

(23)D = det
[

aj,i
]

,
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In the case of two rings, we have D =

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a21a12 and, also, 

D1 =

∣

∣

∣

∣

b1 a12
b2 a22

∣

∣

∣

∣

= b1a22 − b2a12 and D2 =

∣

∣

∣

∣

a11 b1
a22 b2

∣

∣

∣

∣

= a11b2 − a22b1. Then, in view of 

(22), we can write the solutions of Eq. (20) for the masses of one body in the first and 
second layer as

Solutions (24) define a rotating structure formed by two layers. In each layer, there are 
N3 bodies, where N3 is an arbitrary integer number. The total number of the bodies in 
such a two-layer structure is N = 2N3 + 1.

In the case of three or a greater number of layers, the solutions of system (20) emerge 
as too cumbersome expressions hard to be used for calculating the non-dimensional 
masses mud,i. Specification of a large number of initial parameters also becomes difficult. 
Moreover, the solution of the linear system of Eq. (20) may yield negative masses mud,i. 
That is why variation of initial parameters of the rotating system has to be applied to 
obtain positive values for all masses. For a greater number of rings N2 and for a greater 
number of bodies in the rings N3 the latter leads to a greater amount of computations. 
For executing the computations, several computers programs have been developed. It 
was found that the above problems can be solved most easily via numerical solution of 
the algebraic equation system (15) or (20). The computer programs were written in the 
FORTRAN language (Smulsky 2013a). In the first solution version of the problem in 
the program RtCrcStr.for, the equation system (15) was solved by the iteration method. 
In the second solution version of the problem in the program RtCrcSt2.for, for solving 
the equation system (20) the Gauss method was used. The latter version being simpler, 
below we consider this version. Nevertheless, it should be noted here that, at certain 
N2-to-N3 ratios, it is easier to get a solution of equations using RtCrcStr.for.

The initial data for a particular rotating structure are specified in the file RtCrcSt2.
dat. Instead of the angular velocity ω, we deal with the structure’s rotational period 
Prd = 2π/ω. In the program, the distances and the times are used as relative quantities. 
That is why the period Prd is specified in sidereal years. The ring radii are specified in the 
data file RtCrcSt2.dat with the help of a new parameter okr defined by the relation

where r1 is the radius of the first ring. The value of okr cannot be smaller than 0.5.
The radius of the first ring can be determined from the existence condition of this ring 

at some specified mass of the central body m0 and at some initial body mass m1 in the 
first ring (Smulsky 1999, 2004; Smul’skii 2003). The latter condition results from motion 
Eq. (15) on disregard of other rings:

The angles that define the position of the first bodies ϕj,1 can be specified in two ways: 
(1) all angles ϕj,1 = 0 and (2) the angle ϕj,1 = 0 alternates with the angle ϕj,1 = 0.5∙Δϕ0. 

(24)mud,1 = (b1a22 − b2a12)/(a11a22 − a21a12); mud,2 = (a11b2 − a21b1)/(a11a22 − a21a12)

(25)rj = j · okr · r1,

(26)r1 =

[

G(m0 +m1 · fn3)

ω2

]1/3

.
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Other patterns of the radii rj and angles ϕj,1 can be specified in additional files that can 
be included in the data file RtCrcSt2.dat.

The executable module of the program RtCrcSt2.exe generates several output data files, 
including a special file with specified values of all kinematic parameters of the structure. 
That file contains initial data and conditions for the program Galactica (Smulsky 2012a). 
In Galactica, a high-precision method for numerical integration of differential motion 
equations for material points interacting with one another by the Newton law of gravita-
tion is implemented. The system Galactica is available in free access (Smulsky 2012b, c). 
This system computes the dynamics of the structures made up by interacting material 
points, and it allows one to investigate the evolution of such structures in time.

All structures obtained with the help of the program RtCrcSt2.exe were verified using 
the program Galactica. It should be noted here that Galactica integrates non-simplified 
equations, not Eqs.  (15) or (20). The program Galactica contains an option allowing 
graphical representation of treated systems. Below, we reproduce the displayed images 
of several structures obtained after the first step in integration of their differential 
motion equations.

A description of the program RtCrcSt2.for and its functioning algorithm, and also the 
listing of the program, can be found elsewhere (Smulsky 2013a). The executable files are 
available at http://www.ikz.ru/~smulski/Data/RtCrcStr/.

Examples of rotating structures
In the present study, multi-layer rotating structures involving 1, 2, 3, 4, 5, 15, 30, 100, 103 
and 1,000 rings have been calculated. In the rings, the numbers of the bodies, 2, 5, 8, 10, 
29, 30 and 999, were specified parameters. The total number of the bodies reached one 
million. Configurations with various values of the angle of the first body ϕj,1 in the rings, 
and also with various alternation patterns of the angles in neighbor rings, were treated. 
Structures with different starting masses were calculated. As the initial masses, the Sun’s 
and Earth’s masses were set. Structures with and without a central body were considered.

A structure involving five rings with each of the rings comprising eight bodies (N2 = 5 
and N3 = 8) with rotational period Prd = 1 year is shown in Figure 1. The numbers of 
the rings are counted from the center O, and the numbers of the bodies, from the xO-
axis. The angles ϕj,1 of the first bodies in the rings sequentially assume values 0, Δϕ0/2, 
0, Δϕ0/2 and 0. The initial mass min =  1.98912 ×  1030  kg was specified to be some-
what heavier than the Sun’s mass. For the ring radii and for the masses of one body 
in the rings normalized, respectively by the radius of the first ring and by the mass 
of one body in the first ring, the values rud,j = 0, 1, 2.005, 2.985, 4.082, and 4.980, and 
mud1,j = mj/m1 = 1.256, 1, 2.957, 2.250, 7.712 and 2.973 were obtained. Here, the ring 
with radius rud,0 = 0 represents the central body. In the calculated structure, the radius 
of the first ring and the mass of one body in this ring are respectively r1 = 1.481 × 1011 m 
and m1 = 1.568 × 1030 kg. The mass of the whole structure is mSS = 2.138 × 1032 kg, this 
mass being 108 times greater than the Sun’s mass.

Consider now three structures comprising fifteen rings (N2 = 15) with thirty bodies 
contained in each of the rings (N3 = 30); those structures have different alternation pat-
terns of the angles ϕj,1 of the first body in the rings. The rotating structure with zero 
angles of the first body in all rings, ϕj,1 = 0, is shown in Figure 2. The line segments at the 
peripheral bodies indicate their velocity vectors.

http://www.ikz.ru/%7esmulski/Data/RtCrcStr/
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As it is seen from Figure 2, the structure possesses a radial-beam configuration. In hom-
ographic dynamics (Grebenikov 2010), that structure would be termed the configuration 
comprising 15 concentrically embedded equilateral 30-gons. From the second number 
column in Figure 2, we see that the least masses belong to bodies in the first ring. Provid-
ing that the mass of the central body m0 is equal to the Sun’s mass, the mass m1 appears to 
be 2.27 times lighter than the mass m0. On going from the first to tenth ring, the masses 
of the bodies show almost a monotonic increase and, afterwards, they decrease in value. 
In that structure, the heaviest mass of the central body is m10 = 12.3·m1.

In the structure shown in Figure  2 and in two subsequent structures, the ring radii 
increase in value due to the addition of the radius of the first ring r1 (see Eq. (25)). In the 
structure shown in Figure 1, the ring radii show a different variation pattern. The latter 
can be attributed to the fact that, in the latter case, a proportional increase of ring radii 
results in an emergence of negative masses in the solution of Eq. (20). It should be noted 
that the structure shown in Figure 1 was obtained using the program RtCrcStr.for.

Figure  3 shows a multi-layer rotating structure with sequential alternation of the 
angles ϕj,1 of the first body in the rings. In homographic dynamics (Grebenikov 2010), 
this structure would be termed a configuration formed by 15 mutually embedded equi-
lateral 30-gons rotated with respect to each other through the angle π/15. In comparison 
with the structure shown in Figure 2, the total mass of this structure has increased by a 
factor of 1.236. Here, the masses of the bodies in the rings also increase in value starting 
from the center. Nonetheless, the monotonic increase of the masses is violated after the 
tenth ring, and the heaviest bodies occur in the last ring.

In the structure shown in Figure  4, the angle ϕj,1 = Δϕ0/2 recurs each three layers. 
Here, the total mass of the system has also increased in comparison with the radial-beam 
structure of Figure 2; yet, this mass proved to be lighter than the mass of the structure 
shown in Figure 3. The mass of the bodies in the rings also increases with increasing ring 

Figure 2  Image of a multi-layer axisymmetric rotating structure as seen on PC display. The characteristics 
of the structure were obtained by integration of differential motion equations performed by the program 
Galactica during one time step: N2 = 15, N3 = 30, ϕj,1 = 0, Prd = 1 year; the mass of the central body is equal 
to the Sun’s mass. Additionally, the number columns in the figure show the ring radii and the masses of 
one body in the rings normalized, respectively by the radius of the first ring r1 = 1.493837 × 1011 m and 
by the mass of one body in the first ring m1 = 8.684966 × 1029 kg. The total mass of the whole structure is 
mSS = 3.218489 × 1033 kg.
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radius. In the rings with ϕj,1 = Δϕ0/2, the body masses are normally heavier than in the 
neighbor rings. The heaviest mass is in the ring with number 12. Among the three exam-
ples considered above, this mass is the heaviest one, being twenty times greater than the 
mass of the bodies in the first ring.

The majority of homographic problems are represented by mutually embedded regular 
polygons (Grebenikov 2010). On the other hand, irregular polygons such as, for instance, 
mutually embedded rhombs, are also met (Grebenikov 2010; Diarova and Zemtsova 
2006). Such a rhombic multi-layer structure [see Figure  20 in (Grebenikov 2010)] can 
be constructed as a structure comprising several rings. In Figure  5a, this structure is 
shown as a structure comprising four rings with two bodies contained in each of the 
rings (N2 = 4 and N3 = 2). Here, the ring radii and the masses of one body in the rings 
normalized respectively by the radius of the first ring and by the mass of one body in 

Figure 3  Multi-layer axisymmetric structure with N2 = 15 and N3 = 30; the angle ϕj,1 = 0 alternates 
with the angle ϕj,1 = 0.5·Δϕ0; Prd = 1 year; r1 = 1.493837 × 1011 m; m1 = 9.172058 × 1029 kg and 
mSS = 3.977302 × 1033 kg. The rest designations are the same as in Figure 2.

Figure 4  Multi-layer axisymmetric structure with N2 = 15 and N3 = 30; the angles ϕj,1 = 0 and 
ϕj,1 = 0.5·Δϕ0 recur each three layers; Prd = 1 year; r1 = 1.493837 × 1011 m, m1 = 8.889051 × 1029 kg and 
mSS = 3.570164 × 1033 kg. For the rest designations, see Figure 2.
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this ring are rud,j = 0, 1, 1.697, 1.703 and 2.40, and mud1,j = 1,161, 1, 193.47, 490.54 and 
23.76. Unlike in the previous structures, the angle of the first body in the first ring is 
ϕ1,1 = 0.5·Δϕ0 = π/2 (see Figure 5a). That is why this body occupies position at the ordi-
nate axis. That structure, comprising two rhombs, one rhomb being embedded into the 
other, is identical to the structure shown in Figure 20 of monograph (Grebenikov 2010).

As it was shown above, in the four-layer ring structure of Figure 5a the dimensionless 
radii of the second and third rings are roughly identical, rud,3 = 1.697 and rud,4 = 1.703. 
Nonetheless, the angles of the first body in those rings are shifted with respect to each 
other by the angle 0.5∙Δϕ0. It follows from here that axisymmetric rotating structures hav-
ing 2·N3 bodies in their separate rings can be constructed. For creating such structures, it 
is required that the radii of neighbor rings in them be identical while the angles of the first 
body in those rings, different. As an example, Figure 5b shows a three-layer structure with 
identical radii of the second and third layers. Here, the non-dimensional radii and the 
non-dimensional masses are respectively rud,j = 0, 1, 1.375 and 1.375, and mud1,j = 21,844, 
1, 175.8 and 193.8. Evidently, here the radii of the second and third rings are identical 
while the masses of the bodies forming the rings are different. The latter structure is iden-
tical to the homographic configuration involving a regular hexagon which in turn con-
tains a concentric equilateral triangle [see Figure 26 in monograph (Grebenikov 2010)].

The example in Figure 5b exhibits an interesting feature. Mathematically, this structure 
is defined as a structure that comprises three rings (N2 = 3), whereas, physically, here 
we have two rings, or two layers. Yet, the bodies in the second layer exhibit two possible 
mass patterns. Thus, the presented examples prove that a wide set of homographic con-
figurations (Grebenikov 2010), or planar central configurations (Perko and Walter 1985), 
can be represented by multi-layer axisymmetric rotating structures.

As it was noted above, a structure comprising 103 rings and 29 bodies in each ring 
(N2  =  103 and N3  =  29) and a structure comprising 1,000 rings and 999 bodies in 
each ring (N2 =  1,000 and N3 =  999) were constructed. In the former structure, the 
total number of the bodies was N = 2,988, and in the latter structure this number was 
N = 999,001. In addition, structures with the starting mass min equal to the Earth’s mass 
were calculated. The total number of the rings in such structures was N2 = 6, 15, and 
103. The generated files with input data and initial conditions for the program Galactica 
proved to be identical to the files obtained for an initial mass min somewhat heavier than 
the Sun’s mass. This means that the results obtained for the Sun’s mass (those results are 

Figure 5  a The four-layer axisymmetric structure with N2 = 4 and N3 = 2; the angle ϕj,1 = 0.5·Δϕ0 
alternates with the angle ϕj,1 = 0; Prd = 2 year; r1 = 1.491651 × 1011 m, m1 = 1.695854 × 1027 kg and 
mSS = 4.373151 × 1030 kg. b The three-layer axisymmetric structure with N2 = 3 and N3 = 3; ϕj,1 = 0, 0.5·Δϕ0, 
and 0; Prd = 1.5 year; r1 = 1.491990 × 1011 m, m1 = 9.018554 × 1026 kg and mSS = 2.971883 × 1030 kg. The 
rest designations are the same as in Figure 2.
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shown in Figures 1, 2, 3, 4, 5) simultaneously present results for the structures whose 
central mass is equal to the Earth’s mass.

Stability problems for examined structures and their applications
Despite the fact that the characteristics of examined structures were obtained as an 
exact solution of the problem, the solution results are inevitably expressed with numbers 
having a finite length of their representation with digits. As a result, the obtained char-
acteristics of a structure obviously differ from the exact characteristics. The mentioned 
difference presents one factor that makes the structure change its configuration during 
numerical integration of the equations. The second factor is the precision of the integra-
tion method. If the structure is a stable one, then, with running time, the bodies making 
up the structure start executing low-amplitude oscillations being, as a rule, azimuthal 
oscillations. If the structure is unstable, then this structure finally suffers disintegration.

In the above-mentioned homographic-dynamics studies, especially in publication 
(Grebenikov 2010), problems on the stability of rotating structures were treated analyti-
cally within the framework of Hamiltonian dynamics. As it was noted in (Grebenikov 
2010), there exist more than 100 definitions of the notion “stability”, and in space dynam-
ics one can encounter up to thirty such definitions. Unfortunately, such methods fail to 
produce direct predictions for the evolution of particular structures. That is why, for pre-
dicting the dynamic evolution of a structure, it is required to perform numerical integra-
tion of differential motion equations for involved bodies. Here, the integration accuracy 
should be high enough, and the inaccuracy, small, so that to not distort the predicted 
behavior of the structure. All those requirements are met in the program Galactica.

From the standpoint of the force interaction, all multi-layer rotating structures present 
unstable structures. Yet, the lifetime of such structures can vary over a wide range. Fig-
ure 6 shows the structure of Figure 1 after 1.6 revolutions. The changes in the structure 

Figure 6  The onset of decomposition of the axisymmetric structure with N2 = 5, N3 = 8, and Prd = 1 year in 
which the angle ϕj,1 = 0 alternates with the angle ϕj,1 = 0.5·Δϕ0. The structure has executed 1.6 revolutions; 
the starting configuration of the structure is shown in Figure 1.
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have emerged because of the disintegration of the first, inner, ring. In this ring, the eight 
bodies have combined in pairs. Further motion of the paired bodies leads to a collapse of 
the whole structure.

The program Galactica was used to investigate the dynamics of axisymmetric struc-
tures in studies (Smulsky 2008, 2011, 2013b, 2014; Mel’nikov et al. 2008; Smul’skii 2011). 
Those studies have revealed a broad range of possible behaviors that could be displayed 
by axisymmetric structures. Of primary interest is the lifetime of investigated structures. 
This time is longer the lower is the non-dimensional rotational velocity of the system. If 
an axisymmetric structure presents a substructure of some greater structure, then the 
lifetime of the axisymmetric structure can increase in value. In the latter case, the bod-
ies forming the structure execute oscillations as they move along their trajectories. Such 
oscillations act to prevent the bodies from approaching each other, and those oscilla-
tions may therefore infinitely prolong the lifetime of the structure (Mel’nikov et al. 2008).

Of special interest is using the program Galactica for performing studies of the 
dynamic properties of axisymmetric rotating structures. Such studies may lead to appli-
cation of examined structures in various problems of celestial and space dynamics. For 
instance, single-layer axisymmetric structures were used in developing compound mod-
els for Earth and Sun’s rotation in (Smulsky 2008, 2011; Mel’nikov et al. 2008). In such 
studies, a qualitative picture for the evolution of Earth’s axis was revealed. In addition, 
the oscillations of peripheral bodies in such a model have suggested an idea of possible 
oscillating motion of Earth’s continents in latitude direction (Mel’nikov et al. 2008). The 
compound model for Sun’s rotation proved helpful in revealing the Mercury-perihelion 
excess rotation required for the development of a description of Solar-system dynamics 
based on the Newton law of gravitation.

Using the investigated structures for modeling planetary disks and disk galaxies also 
attracts interest. With body trajectories uniformly expanded in space, an axisymmet-
ric structure becomes a spheroidal structure. Of special interest are the construction of 
such structures and the study of their dynamics. Very probably, new ideas in this field 
will prove helpful in gaining a better insight into the nature of globular star clusters and 
into the processes proceeding in such clusters.

Conclusions
An exact solution to the problem of N bodies arranged in an in-plane multi-layer 
axisymmetric rotating structure has been obtained. The axial symmetry of such a struc-
ture consists in that the geometric and dynamic characteristics of the structure remain 
unchanged on its rotation through an angle Δϕ0. Characteristics of particular structures 
with various numbers of involved layers and bodies (up to one million bodies) have been 
determined. The obtained characteristics were verified by numerical integration of the 
differential motion equations of the bodies forming the structures. Examination of the 
dynamic properties of the rotating structures with the help of the program Galactica will 
enable application of obtained data in various celestial- and space-mechanics models. 
The multi-layer rotating structures involve all the planar central configurations presently 
known in homographic dynamics.
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