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Introduction
The estimation of the model parameters of a non-Gaussian stationary signal in the pres-
ence of additive Gaussian noise is conveniently carried out by a higher-order cumulant-
based technique (Swami and Mendel 1991). Note that the non-Gaussian signals are 
frequently encountered in active sonar (Wegman et al. 1989). It is known that the cumu-
lants of order greater than two of Gaussian processes are zero, whereas the cumulants 
of non-Gaussian processes carry higher order statistical information. As a consequence, 
the cumulant-based techniques are particularly suitable when the noise is colored 
Gaussian with unknown power spectral density (PSD).

A transient signal is traditionally represented by the parametric model consisting of 
a sum of complex exponentials, and the model parameters are estimated by Prony’s 
method (Henderson 1981; Kumaresan and Tufts 1982). Parameter estimation of the sum 
of complex exponential signals is closely related to the problem of system identification, 
because the impulse response of a linear time-invariant (LTI) system with distinct poles 
has the similar parametric form. Moreover, the sum of complex exponential signals pro-
vides a more general model than the sum of complex sinusoidal signals. In this way, the 
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parametric representation can be extended from a stationary signal to a non-stationary 
signal, as explained in the sequel. When the signal derived from a multicomponent com-
plex exponential random process is corrupted with white noise, an extension of Prony’s 
method to the second-order statistics domain can provide better accuracy of estimation 
of model parameters (Cadzow and Wu 1987; Sircar and Mukhopadhyay 1995). It should 
be mentioned, however, that special care is to be taken in the extension of the estima-
tion technique to the higher order statistics domain because the signal being modeled is 
non-stationary in nature (Sircar and Mukhopadhyay 1995), and the cumulants of a non-
stationary process are, in general, time-dependent.

In the presence of additive noise which is colored Gaussian with unknown autocor-
relation sequence, an estimation technique utilizing the fourth order moment/ cumu-
lant sequence of the modeled signal will be desirable. In this paper, several new concepts 
related to higher order statistics, which can be implemented for estimating the param-
eters of a transient signal in noise are presented. It is demonstrated how the concept of 
accumulated moment can be introduced in the context of the non-stationarity of the 
modeled signal (Sircar and Mukhopadhyay 1995). The case where a single data record is 
available is studied separately because a replacement of the ensemble average by a tem-
poral average will alter the result for this type of signal.

While forming the higher order moments and cumulants, the selection of the defi-
nition to be used and the choice of the lag-parameters in the definition are crucial 
(Swami and Mendel 1991). It is demonstrated that the moments and cumulants defined 
and used in the proposed methods will have many desirable properties. Moreover, it is 
shown by Monte Carlo simulation that the method presented here will perform better 
than another method (Papadopoulos and Nikias 1990), even though both of the methods 
utilize the fourth order statistics (FOS) of the sampled signal.

In the present work, we consider fourth order moment/ cumulant of a non-station-
ary signal for parameter estimation. The FOS has been used for parameter estimation 
with multiplicative noise model (Swami 1994), for detection of transient acoustic signals 
(Ravier and Amblard 1998), and for blind identification of non-minimum phase finite 
impulse response (FIR) system (Belouchrani and Derras 2000). In recent time, the FOS 
has been applied for blind source identification where number of sources exceeds num-
ber of sensors (Ferréol et al. 2005), for underdetermined independent component analy-
sis (ICA) (Zarzoso et al. 2006; Lathauwer et al. 2007), and for ICA with multiplicative 
noise (Blanco et  al. 2007). Lately, it has been shown that the FOS-based direction-of-
arrival (DOA) estimation of non-Gaussian source has many advantages compared to the 
subspace based methods (Zeng et al. 2009).

In the continuation work, the method based on fourth-order moment/ cumulant, as 
developed in this paper, has been applied for parameter estimation of non-stationary 
signals in multiplicative and additive noise (Gaikwad et al. 2015). We assume that the 
additive noise is Gaussian and the signal component comprising of the multiplicative 
noise is non-Gaussian. It has been demonstrated in the accompanying paper that the 
concept of accumulated moment, as presented here, can be extended to the concept of 
accumulated cumulant while estimating parameters of some non-stationary signals in 
multiplicative noise (Gaikwad et al. 2015).
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The paper is organized in the following way: The accumulated fourth order moment 
for a non-stationary signal is defined in "Accumulated fourth order moments". The case 
of signal corrupted with noise is considered in "Noise-corrupted signal case", where the 
fourth order cumulant of the signal is derived. In "Deterministic signal case", the case of 
deterministic signal is considered, and the fourth order time cumulant of the signal is 
defined. The simulation study is presented in "Simulation study", and the conclusion is 
drawn in "Conclusion".

Accumulated fourth order moments
The discrete-time random signal model X[n] consisting of M complex exponential sig-
nals with the circular frequencies ωi, damping factors αi (negative), amplitudes Ai and 
phase φi is expressed as

where Aci = Ai exp(jφi) are the complex amplitudes, and z = exp(αi + jωi) are the 
modes of the signal. For real signals, zi and Aci must occur in complex conjugate pairs. It 
is assumed that the phase φi are independent and identically distributed (i.i.d.) with the 
uniform probability density function (PDF) over [0, 2π).

By utilizing the linear prediction (LP) model, the optimal forward predictor is

and the optimal backward predictor is given by

where (⋆) denotes complex conjugation (Kumaresan and Tufts 1982). The coefficients aℓ 
of the predictor error filter (PEF) A(z) are related to the modes zi as follows

The forward and backward prediction errors, Ef [n] and Eb[n] respectively, are expressed 
as

(1)X[n] =

M
∑

i=1

Ai exp(jφi) exp [(αi + jωi)n]

(2)X̂[n] = −

M
∑

ℓ=1

aℓX[n− ℓ]

(3)X̂[n] = −

M
∑

ℓ=1

a⋆ℓX[n+ ℓ]

(4)A(z) = 1+

M
∑

ℓ=1

aℓz
−ℓ =

M
∏

i=1

(1− ziz
−1)

(5)Ef [n] =

M
∑

ℓ=0

aℓX[n− ℓ]

(6)Eb[n] =

M
∑

ℓ=0

a⋆ℓX[n+ ℓ]
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with a0 = 1. By minimizing the forward prediction error power estimated over a fixed 
frame between properly selected n1 and n2,

where E denotes the expectation operator, one obtains the covariance method as follows 
(Kumaresan and Tufts 1982; Sircar and Mukhopadhyay 1995),

As a better alternative, the forward prediction error estimated over a moving frame with 
fixed length,

can be minimized, and this procedure leads to the improved covariance method (Sircar 
and Mukhopadhyay 1995),

which is computationally efficient due to the Toeplitz structure of the system matrix.
In a similar fashion, the minimization of the estimate of backward prediction error 

power,

leads to the backward covariance method given by

and for computational efficiency, the minimization of the estimate of error power

(7)Pf =

n2
∑

n=n1

E

{

E2
f [n]

}

(8)

∂Pf

∂am
= 0 =⇒

M
∑

ℓ=0

aℓ

n2
∑

n=n1

E
{

X⋆[n−m]X[n− ℓ]
}

= 0 for m = 0, 1, . . . ,M

(9)Pfm =

n2+m
∑

n=n1+m

E

{

E2
f [n]

}

(10)

M
∑

ℓ=0

aℓ

n2+m
∑

n=n1+m

E
{

X⋆[n−m]X[n− ℓ]
}

= 0 or,

M
∑

ℓ=0

aℓ

n2
∑

n=n1

E
{

X⋆[n]X[n+ (m− ℓ)]
}

= 0 for m = 0, 1, . . . ,M

(11)Pb =

n2
∑

n=n1

E

{

E2
b[n]

}

(12)
M
∑

ℓ=0

a⋆ℓ

n2
∑

n=n1

E
{

X⋆[n+m]X[n+ ℓ]
}

= 0 for m = 0, 1, . . . ,M

(13)Pbm =

−n2−m
∑

n=−n1−m

E

{

E2
b[n]

}
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results in the improved backward covariance method as shown below (Sircar and Muk-
hopadhyay 1995),

or interchanging ℓ and m it becomes,

where the system matrix once again gets the Toeplitz structure.
To understand the effect of summation over n between properly selected n1 and n2 

used in (10) and (15), we compute the time-varying autocorrelation functions (ACFs) of 
X[n] considered to be a random sequence due to its random phase φi (1),

where it is assumed that the phase {φi; i = 1, . . . ,M} are i.i.d. with PDF U [0, 2π).
The accumulated ACFs Q+

xx[k] and Q−
xx[k] can then be computed by taking summation 

over n as shown below,

where Bi = A2
i

∑n2
n=n1

exp(2αin) and, Di = A2
i

∑n2
n=n1

exp(−2αin).
It should be noted that the accumulated ACFs are functions of lag k in a similar way as 

the discrete-time random process X[n] is function of time n. Consequently, the accumu-
lated ACFs will satisfy the linear prediction equations in lag k(= m− ℓ) (10, 15). Note 
here that for a wide-sense stationary (WSS) process the ACF is time-invariant, and it 
satisfies the prediction equation in lag k. Apparently, the role of accumulated second-
order moment for the non-stationary process is quite similar to the role of second-order 
moment for a WSS process (Sircar and Mukhopadhyay 1995).

We now extend the concept of accumulated moment to higher-order statistics domain. 
We define the symmetric fourth order moment R4X [n, k] of the sequence X[n] as follows,

(14)
M
∑

ℓ=0

a⋆ℓ

n2
∑

n=n1

E
{

X⋆[−n]X[−n+ (ℓ−m)]
}

= 0 for m = 0, 1, . . . ,M

(15)
M
∑

m=0

a⋆m

n2
∑

n=n1

E
{

X⋆[−n]X[−n+ (m− ℓ)]
}

= 0 for ℓ = 0, 1, . . . ,M

(16)Rxx[n, k] = E
{

X⋆[n]X[n+ k]
}

=

M
∑

i=1

A2
i exp(2αin)z

k
i

(17)Rxx[−n, k] = E
{

X⋆[−n]X[−n+ k]
}

=

M
∑

i=1

A2
i exp(−2αin)z

k
i

(18)Q+
xx[k] =

n=n2
∑

n=n1

Rxx[n, k] =

M
∑

i=1

Biz
k
i

(19)Q−
xx[k] =

n=n2
∑

n=n1

Rxx[−n, k] =

M
∑

i=1

Diz
k
i

(20)R4X [n, k] = E
{

X⋆[n]X[n+ k]X⋆[−n]X[−n+ k]
}
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Substituting for X⋆[n], X[n+ k], X⋆[−n] and X[−n+ k] from (1), and evaluating the 
expectation we get,

where the complex parameter si = αi + jωi is related to the mode zi as zi = esi , and the 
following result of expectation is used :

Note that in (21), the third case (i = u = l = v) is included twice in the first two summa-
tions, and that is why the last summation is subtracted and not added as desired. It is to 
be pointed out that the symmetric fourth order moment as it is defined here becomes 
independent of time for the case of a single-component signal even when the signal is 
non-stationary in nature.

Further simplification of (21) yields

Note that the fourth order moment R4X [n, k] is a function of both time and lag variables. 
At this point we introduce the concept of accumulated moment (Sircar and Mukhopad-
hyay 1995), and compute the accumulated fourth order moment Q4X by taking summa-
tion over n between properly selected n1 and n2 as shown below,

(21)

R4X [n, k] = E

{ M
∑

i=1

Aie
s⋆i ne−jφi

M
∑

u=1

Aue
su(n+k)ejφu

M
∑

l=1

Ale
−s⋆l ne−jφl

M
∑

v=1

Ave
sv(−n+k)ejφv

}

=

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

(s⋆u+su−s⋆v−sv)ne(su+sv)k

+

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

(s⋆v+su−s⋆u−sv)ne(su+sv)k

−

M
∑

u=1

A4
ue

(s⋆u+su−s⋆u−su)ne2suk

(22)

E

{

ej(φi+φu−φl+φv)
}

= 1 when i = u, l = v, andu�=v

= 1 when i = v, l = u, andu�=v

= 1 when i = u = l = v

= 0 otherwise

(23)

R4X [n, k] =

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

2(αu−αv)ne(su+sv)k

+

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

2j(ωu−ωv)ne(su+sv)k −

M
∑

u=1

A4
ue

2suk

(24)

Q4X [k] =

n2
∑

n=n1

R4X [n, k] =

M
∑

u=1

M
∑

v=1

Euve
(su+sv)k

+

M
∑

u=1

M
∑

v=1

Fuve
(su+sv)k −

M
∑

u=1

Gue
2suk
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where Euv = A2
uA

2
v

∑n2
n=n1

e2(αu−αv)n, Fuv = A2
uA

2
v

∑n2
n=n1

e2j(ωu−ωv)n, and 
Gu = A4

u(n2 − n1 + 1). Written in compact form (24) becomes

and zu = esu , zv = esv.
It is apparent from (25) that the accumulated fourth order moment (AFOM) is 

time-invariant as desired. Remember that the underlying process is non-stationary in 
nature. Moreover, it is to be noted that the AFOM sequence will satisfy the linear pre-
diction equations in lag k (Sircar and Mukhopadhyay 1995). However, the modes of 
the AFOM sequence Q4X [k] are not the same modes as those of the discrete-time sig-
nal X[n]. The modes of AFOM sequence are, indeed, the square and product modes. 
For every mode z = |z|∠θ in X[n], the square mode z2 = |z|2∠2θ is included in Q4X [k].  
Again, for every pair of modes z1 = |z1|∠θ1 and z2 = |z2|∠θ2 in the signal, the prod-
uct mode z1z2 = |z1||z2|∠(θ1 + θ2) is also included in the AFOM sequence. Clearly, 
if there are M modes in the original signal, the AFOM sequence will contain a total 
L = M + MC2 = M(M + 1)/2 modes. Accordingly, the sequence will satisfy the linear 
prediction equations of order L or higher (Deprettere 1988); and once the modes of the 
AFOM sequence are extracted, there will be redundancy of information for computing 
the modes of the underlying signal.

Noise‑corrupted signal case
When the signal is corrupted with additive noise, the observed sequence Y[n] is repre-
sented as

where W[n] is the random noise whose statistics may not be completely known. In gen-
eral, the moments of X[n] and Y[n] will be different. In all cases, it is assumed that the 
noise sequence is zero-mean, and the signal and noise sequences are uncorrelated.

It is easy to show that the symmetric fourth order moments of the noisy and noise-
less signals are same, that is, R4Y [n, k] = R4X [n, k], with an additional condition that 
the noise sequence is white. This case together with the complementary case where the 
noise correlation is known, however, can be adequately dealt with in the second-order 
statistics domain (Cadzow and Wu 1987; Sircar and Mukhopadhyay 1995). Therefore, 
these situations are not considered here any further.

Instead, we consider the case with an additional condition that the noise sequence is 
colored Gaussian of unknown PSD. It is not difficult to show that the fourth order cumu-
lant C4Z[n, k] of the sequence Z[n] which may be either X[n] or Y[n], does not change 

(25)

Q4X [k] =

M
∑

u=1

M
∑

v=1

Huve
(su+sv)k

=

M
∑

u=1

M
∑

v=1

Huv(zuzv)
k

where Huv = Euv + Fuv when u�=v

= Euu + Fuu − Gu otherwise

(26)Y [n] = X[n] +W [n]
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when the noiseless signal becomes noisy, that is, C4X [n, k] = C4Y [n, k], where we define 
the symmetric fourth-order cumulant as

for the zero-mean complex process Z[n] (Swami and Mendel 1991).
Therefore, it suffices to investigate the noiseless signal case, because the same result 

can be used when the signal becomes noise-corrupted. The fourth order cumulant 
C4X [n, k] for the noiseless case and for the choice of collection of arguments as proposed 
here is represented as

Note that the fourth order moment R4X [n, k] is computed earlier, and

where we use the result

On observation that the third term in (28) is identically zero, and that

(27)

C4Z[n, k] = E
{

Z⋆[n]Z[n+ k]Z⋆[−n]Z[−n+ k]
}

− E
{

Z⋆[n]Z[n+ k]
}

E
{

Z⋆[−n]Z[−n+ k]
}

− E
{

Z⋆[n]Z⋆[−n]
}

E
{

Z[n+ k]Z[−n+ k]
}

− E
{

Z⋆[n]Z[−n+ k]
}

E
{

Z⋆[−n]Z[n+ k]
}

(28)

C4X [n, k] = R4X [n, k]

− E

{

M
∑

i=1

Aie
s⋆i ne−jφi

M
∑

u=1

Aue
su(n+k)ejφu

}

× E

{

M
∑

l=1

Ale
−s⋆l ne−jφl

M
∑

v=1

Ave
sv(−n+k)ejφv

}

− E

{

M
∑

i=1

Aie
s⋆i ne−jφi

M
∑

l=1

Ale
−s⋆l ne−jφl

}

× E

{

M
∑

u=1

Aue
su(n+k)ejφu

M
∑

v=1

Ave
sv(−n+k)ejφv

}

− E

{

M
∑

i=1

Aie
s⋆i ne−jφi

M
∑

v=1

Ave
sv(−n+k)ejφv

}

× E

{

M
∑

l=1

Ale
−s⋆l ne−jφl

M
∑

u=1

Aue
su(n+k)ejφu

}

(29)the second term = −

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

(s⋆u+su−s⋆v−sv)ne(su+sv)k

(30)

E

{

ej(−φi+φu)
}

=1 for i = u

=0 otherwise

(31)the fourth term = −

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

(s⋆u−su−s⋆v+sv)ne(su+sv)k



Page 9 of 16Sircar et al. SpringerPlus  (2015) 4:360 

the expression for the fourth order cumulant can be rewritten as,

after simplification. Substituting R4x[n, k] from (23) and canceling terms, (32) reduces to

This result is remarkable, because it tells us that for the particular choice of arguments 
as presented in this paper, the symmetric fourth order cumulant is independent of time, 
that is, C4X [n, k] = C4X [k], although the underlying transient signal is non-stationary in 
nature.

Note that the fourth order cumulant will satisfy the M-order linear prediction equa-
tions in lag exactly in the same way as the signal does that in time (Sircar and Mukho-
padhyay 1995; Deprettere 1988). Moreover, the modes of the cumulant are the square 
modes of the signal, and the product modes as defined earlier are missing.

Deterministic signal case
In last two sections we considered the case of random signal in some detail. In this sec-
tion, a treatise is presented for the non-random signal. Although the observed sequence 
can be thought of as a sample of some discrete-time random process, any replacement 
of ensemble average by temporal average will likely produce a different set of results 
because the underlying signal is non-stationary in nature.

We consider a finite-length sampled set of the signal, and compute the C̃-sequence 
which is defined as follows,

where X̄[n] = X[n] − X0, X0 being the mean of the finite-length data record. Note that 
X0 is usually small but may not be identically zero. It is to be pointed out that (34) is very 
similar to (27), except that the time-averaging over properly selected n1 and n2 replaces 
the expectation operation. The choice of n1 and n2 should be such that there is no run-
ning off the ends of data record (Sircar and Mukhopadhyay 1995).

(32)

C4X [n, k] = R4X [n, k] −

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

2(αu−αv)ne(su+sv)k

−

M
∑

u=1

M
∑

v=1

A2
uA

2
ve

2j(ωu−ωv)ne(su+sv)k

(33)C4X [n, k] = −

M
∑

u=1

A4
ue

2suk = C4X [k]

(34)

C̃[k] =
1

n2 − n1 + 1

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]X̄⋆[−n]X̄[−n+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[−m+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄⋆[−n]

n2
∑

m=n1

X̄[m+ k]X̄[−m+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[−n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[m+ k]
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On substitution of (1) and simplification, the terms of (34) reduce to the general form 
as shown below :

where each coefficient tℓ1 is made independent of time n (and m), indices i and l [see 
(28)] by taking summation over respective variables. Similarly, each of tℓ2 is independent 
of all variables except u, and every tℓ3 is made independent of all six variables by sum-
mation. It is to be pointed out that if the mean X0 = 0, the coefficients tℓ2 and tℓ3 will be 
identically zero. In this case, each of tℓ1 will again be a non-zero factor.

Combining all four terms of (35), (34) is rewritten as

where T1 = t11 − t21 − t31 − t41, etc., and T2, T3 are non-zero only when X0 is not equal 
to zero. Note that the forms of (25) and (36) will be similar when X0 = 0. Another point 
worth mentioning here is that T2 will have X0 (or X⋆

0) as a factor, whereas T3 will involve 
higher power terms of X0 (or X⋆

0). As a consequence, when X0 is small, as will be the case 
here, T3 can be dropped from (36) retaining T2 for small but significant value. Rewriting 
(36) for small X0, one obtains

Note that even if T3 is not negligible, the mode corresponding to the dropped term from 
(37) is real unity, which can be easily identified and discarded.

Comparing (25) and (37), it can be observed that the C̃-sequence consists of the 
square and product modes of the signal, together with the original signal modes. If there 
are M modes in the sampled signal, the number of modes in the C̃-sequence will be 
L = M +M(M + 1)/2 = M(M + 3)/2. Consequently, the sequence will satisfy the lin-
ear prediction equations of order more than L. Remember that the unity mode may also 
be present.

When the signal is corrupted with noise, the C̃-sequence which may be termed as the 
fourth order time cumulant (FOTC), will deviate. However, it is likely that this deviation 

(35)

1

n2 − n1 + 1

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]X̄⋆[−n]X̄[−n+ k]

=

M
∑

u=1

M
∑

v=1

t11[u, v]e
(su+sv)k +

M
∑

u=1

t12[u]e
suk + t13

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[−m+ k]

= −

M
∑

u=1

M
∑

v=1

t21[u, v]e
(su+sv)k −

M
∑

u=1

t22[u]e
suk − t23

...

(36)C̃[k] =

M
∑

u=1

M
∑

v=1

T1[u, v]e
(su+sv)k +

M
∑

u=1

T2[u]e
suk + T3

(37)C̃[k] =

M
∑

u=1

M
∑

v=1

T1[u, v]e
(su+sv)k +

M
∑

u=1

T2[u]e
suk



Page 11 of 16Sircar et al. SpringerPlus  (2015) 4:360 

will be small when the superimposed noise is zero-mean Gaussian and uncorrelated 
with the signal. Remember that we are computing the time-average here.

Simulation study
The discrete-time signal X[ñ] of (1) is sampled at ñ = 0, 1, . . . , 2N + 1 with N = 50 utilis-
ing the following parameters, M = 2, A1 = 1.0, α1 = −0.02, ω1 = 0.3, φ1 = 0, A2 = 1.0,  
α2 = −0.01, ω2 = 0.5, φ2 = π/4. The time-origin is then shifted by making n = ñ− N  
such that the sequence {X[n]; n = −N , . . . , 0, . . . ,N } is now available for processing. The 
shifting does not change the modes of the signal, only the complex amplitudes of the 
components change to new values [refer to (1)].

Next, the zero-mean complex colored Gaussian noise is added to the signal setting 
the signal-to-noise ratio (SNR) at various designated levels. The colored noise is gen-
erated by passing a complex white Gaussian process through a coloring filter as men-
tioned in (Papadopoulos and Nikias 1990). The fourth order time cumulants C̃[k] are 
then computed by (34) for the lags k = −K , . . . , 0, . . . ,K  with K = 25, that is a total of 
51 points. The time-frame is chosen with n1 = 8 and n2 = 25. The corresponding frame-
length (n2 − n1 + 1) lies between N / 3 and 2N / 5 ensuring optimal performance (Hua 
and Sarkar 1990).

There are L = 5 modes in the C̃-sequence. We use backward linear prediction model 
with the extended model order J = 17 and the singular value decomposition based total 
least squares (SVD-TLS) technique for extraction of the L signal (1/z⋆i ) and (J − L) noise 
modes (Kumaresan and Tufts 1982; Cadzow and Wu 1987; Deprettere 1988). Remem-
ber that the modes of the C̃-sequence are the square, product and original modes of the 
sampled sequence X[n].

For the purpose of comparison, the same noise-corrupted data record is processed 
employing the fourth order cumulant (FOC) method as proposed in (Papadopoulos and 
Nikias 1990). The extended model order used is same in each of the cases, which ensures 
that the computational efforts for extracting modes are roughly equal for the methods.

Setting the SNR level at 10 dB in each trial, the modes are computed and plotted for 
40 independent noise sequences employing the FOTC method as proposed in this paper 
and the FOC method as presented in (Papadopoulos and Nikias 1990). The plots are 
shown in Figures 1 and 2 where the actual modes (1/z⋆i ) of the respective sequences are 
shown by circles.

It is seen in Figure 1 that for the C̃-sequence, the square and product modes are accu-
rately determined, whereas the original signal modes are often undetected at this SNR 
level. Moreover, it is found that the square modes are estimated with better accuracy 
than the product modes. Note that it is easy to identify and utilize the square modes 
of the signal for estimating the modes of the underlying signal. First the square-roots 
of all the estimated modes of the C̃-sequence are to be computed, then the complex 
amplitudes are to be estimated for all these computed modes utilizing the original sig-
nal sequence (Cadzow and Wu 1987). Selecting the original signal modes for M larger 
amplitudes will then be relatively straightforward. Note that in this way, the signal 
modes will be determined utilizing the square modes of the C̃-sequence. Thus, it should 
be the strategy that the modes of the underlying signal are to be determined utilizing 
the accurate estimates of the square modes of the C̃-sequence, because the estimates of 
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the signal modes of the C̃-sequence may be inaccurate when the signal samples are cor-
rupted with noise.

In Figure  2, the estimates of the signal modes are shown for 40 independent tri-
als when the FOC method is employed. The effort here is directed towards finding the 
fourth-order cumulant which will have the same modes (1/z⋆i ) as those of the signal. In 
Figures 3 and 4, the estimated modes of the C̃-sequence and those of the signal are plot-
ted for 40 independent trials when the noise sequence is complex Gaussian, zero mean 
and white. The comparisons between Figures 1, 3 and Figures 2, 4 reveal how the per-
formance of a particular method changes when the noise sequence becomes white or 
colored.

The comparison of performances of the two methods is then demonstrated by the 
Monte Carlo simulation. The zero-mean colored Gaussian noise is mixed with the signal 
samples setting the SNR levels at 10, 20, 30 and 40 dB. The estimates of the si-parameters 
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Figure 1  Estimated poles of the FOTC sequence in colored noise (SNR = 10 dB).
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Figure 2  Estimated poles of the FOC sequence in colored noise (SNR = 10 dB).
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are obtained for 500 independent runs employing the two methods for various SNRs. 
The error-variances and bias-magnitudes are computed for the estimates of αi and ωi

-values for each SNR level. The computed values are plotted in Figures 5a–d and 6a–d. 
The SNR versus error-variance plots also include the Cramer-Rao (CR) bounds for the 
estimated parameters for comparison (Hua and Sarkar 1990), see Figure 5a–d.

It can be observed from Figure  5a–d that the performance of the proposed FOTC 
method in regard to the variance of estimate is either comparable or somewhat bet-
ter than the performance of the FOC method developed in (Papadopoulos and Nikias 
1990). However when we extend the comparison to the bias of estimate, it is seen from 
Figure 6a–d that the performance of the proposed method is much better than the per-
formance of the FOC method. The comparisons of Figures  5 and 6 clearly show the 
advantage of the proposed FOTC method over the existing FOC method for better accu-
racy of estimation.
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Figure 3  Estimated poles of the FOTC sequence in white noise (SNR = 10 dB).
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Figure 4  Estimated poles of the FOC sequence in white noise (SNR = 10 dB).
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Conclusion
In this paper, a new method based on utilizing the computed fourth order time cumu-
lants of a transient signal is presented for estimating the parameters of the modeled 
signal. The proposed method performs better than the FOC method developed in (Pap-
adopoulos and Nikias 1990), even though the latter is another method based on the 
fourth order statistics.

It is known that the fourth order moments and cumulants can be defined and eval-
uated in a variety of ways (Swami and Mendel 1991). It is note-worthy that when the 
fourth order moments/ cumulants are utilized in the problem of model parameter esti-
mation of a transient signal in noise, the methods which employ the cumulants defined 
and evaluated in different ways do produce results with different accuracies.

Our investigation shows that the proposed method based on a new definition of the 
fourth order cumulants does satisfy some optimality criteria. In particular, it is demon-
strated that the symmetric fourth order cumulant sequence as defined here is independ-
ent of time, even though the underlying signal is non-stationary in nature.

In the accompanying paper, it is demonstrated that the method based on symmetric 
fourth-order moment/ cumulant can be applied for parameter estimation of signals in 
multiplicative and additive noise (Gaikwad et  al. 2015). The concept of accumulated 
fourth-order moment has been extended to the concept of accumulated fourth-order 
cumulant for parameter estimation of non-stationary signals.
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Figure 5  Error-variance of estimation for α and ω parameters in colored noise (circle-FOTC method, plus-FOC 
method, star-CR bound). a α1-variance, b ω1-variance, c α2-variance, d ω2-variance.
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