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Background
Time series models play an important role in the financial market by describing the under-
lying structure of an economics variable. With available data for financial market analy-
ses in recent times, there has been an increase in the studies concerning persistent shocks 
both in the mean as well as the variance of the returns of financial instruments in the mar-
ket. Many time series especially those occurring in natural sciences and engineering can-
not be modeled by linear processes. These kinds of time series can have trends which can 
be modeled by nonlinear processes.

The particular type of non-linear model that is used in finance is known as the autore-
gressive conditional heteroscedastic—ARCH model (Engle 1982). In the application of 
financial time series where the variance of the error term is very unlikely to be constant 
over time, ARCH models are used to describe the behavior of the volatility structure 
of the error term. They are employed commonly in modeling the volatility structure of 
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financial data and financial indices in order to identify similarities and differences in the 
structure of the variance of the error term of the observed series.

The basic underlying assumption of the least squares model is that the expected value 
of all error terms, when squared, is the same at any given point. This assumption is 
called homoscedasticity (Engle 2001). In volatility analysis however, the variance of the 
residuals depends on past history and we face heteroscedasticity because the variance is 
changing over time. A basic means of dealing with heteroscedasticity is to have the vari-
ance depending on the lagged period of the squared error terms. ARCH models allows 
the conditional variance to be dependent upon its own previous lags. In the GARCH 
(p, q) model (Bollerslev 1986), the conditional variance is dependent upon q lags of the 
squared error term and p lags of the conditional variance which is very effective to cap-
ture the volatility nature of data in financial time series. ARCH and GARCH models 
treat heteroscedasticity as a variance to be modeled and are most often used in financial 
theory and practice.

In this article, the authors’ main idea is to use the ARCH/GARCH Specification for 
modeling the volatility structure of the monthly exchange rate of the Cedi and the US dol-
lar by explaining the volatility structure of the residuals obtained under the best suited 
mean model for the observed series. This study is significant since the exchange rate of a 
currency is essential in determining: the level of imports and exports as companies/institu-
tions that rely on import/export can estimate the cost of these import/export with respect 
to variations in the exchange rate; the country’s level of business activities, Gross Domestic 
Product (GDP) and employment level and the purchasing power of a local currency i.e. to 
see whether the currency is appreciating or depreciating against other foreign currencies.

Analysis of results and discussion
Exchange rate distribution

It was observed in Figure  1 that mean of exchange rate changes over time, which sug-
gests that the series is non-stationary. By performing the unit root test on the series, it 
was observed that the ADF test statistic (−2.3232) is higher than the critical value at a 
5% significance level (−2.86431), indicating that we fail to reject the null hypoth-
esis that there is a unit root in the series which is supported by a p value of 0.4414. 
In order to eliminate the unit root, we found the first differences in In(Rate), thus 
return = In (Rate)t − In (Rate)t−1, and did the test again. ADF test statistic for the 
rate return is (−8.0057), with a p value of 0.01 which indicate that we now reject the null 
hypothesis of unit root in the series. Hence we conclude that the rate return series is sta-
tionary (see Figure 2).

Determining order of dependency of returns series

From Figure 3, the autocorrelation and partial autocorrelation functions showed depend-
ency in the return series which required correlation structure in conditional mean. It can 
also be observed that the model for the conditional mean is ARMA (1, 1) which is given by:

 as shown in Table 1.

rt = 0.999851rt−1 + 0.518176 εt−1 + εt ,
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Test for ARCH effect

We continue the analysis with a test for an ARCH effect present in the specified model 
ARMA (1, 1). We first looked at the ACFs of the squared residual and squared returns. 
Figure 4 presents the AFC of the squared residuals of the fitted model and squared returns 
respectively. The ACF showed dependency in both the squared residuals and squared 
returns. We notice that the residuals are not normally distributed which suggest the pres-
ence of ARCH effect in the series. This is confirmed by the Box–Ljung test statistics, 
1476.338 with 0.000 p value for the squared returns and 16.9183 and a p value of 0.00153 
for the squared residuals. Hence the null hypothesis of no ARCH effect is rejected and 
concluded that there is an ARCH effect in the series.

To eliminate the ARCH effect, GARCH (1, 1) was found to be the most suitable model 
for the conditional variance, with standardized residual test showing no serial correla-
tion in standardized squared residual at different lags indicating that it is adequate in 
describing the dynamic volatility of the return series.

From Table 2, the assumed conditional volatility model for the return series is given 
by;

rt = 0.001923+ εt

Figure 1  Time plot of monthly exchange rate, distribution and normal Q–Q plot for the dollar/cedi from 
January, 2000 to December, 2013.



Page 4 of 18Techie Quaicoe et al. SpringerPlus  (2015) 4:329 

Figure 2  First difference of rate return series.

Figure 3  ACF and PACF of returns.
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Table 1  ARMA (1, 1) model parameter estimates

Source: result from analysis of data, 2014. σ 2 = 0.0002664, conditional sum of squares = 0.04, AIC = −899.97.

Variable Coefficient Standard error T-statistics Probability

AR (1) 0.999851 0.004673 213.985 2.00E−16

MA (1) 0.518176 0.077013 6.728 1.72E−11

Figure 4  ACF and PACF of the squared residuals and squared returns.

Table 2  GARCH (1, 1) model’s parameter estimates

Source: result from analysis of data, 2014.

Variable Coefficients Standard error T-statistic Probability

Mean 0.001923 0.0004442 4.329 0.000015

Omega 0.00001427 0.000004939 2.89 0.003843

Alpha 1 0.2271 4.403 0.0000107

Beta 0.2711 0.02162 3.785 0.000154
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The variance equation is given by

Standardized residual test for GARCH (1, 1)

The Jarque–Bera test for normality in Table 3 was 152.9664 and the ARCH LM of 4.663342 
with p value <0.001 and 0.96829 respectively which shows that there is no ARCH effect 
in the standardized squared residuals. The Ljung–Box statistics of standardized residu-
als for autocorrelation for lags 10, 15 and 20 are 23.50554, 27.92452 and 31.84835 with p 
value of 0.00903, 0.02205 and 0.04494 respectively. Standardized squared residuals at lags 
10, 15 and 20 are 5.1266332, 9.760762 and 11.83056 with respective p value of 0.88256, 
0.83451 and 0.92178. These values showed that there is no serial correlation in standard-
ized squared residual indicating that the model is adequate in describing the dynamic vola-
tility of the return series.

Model diagnostics of GARCH (1, 1)

The time plot of the standardized residuals in Figure 5 shows no obvious patterns but we 
notice a spike around the 148th observation. The ACF of the standardized residuals and 
squared standardized residuals also show no apparent departure from the model assump-
tions. The histogram and generalized q-norm q–q plot of the standardized residuals show 
no departure from model assumptions (i.e. the assumed conditional distribution captured 
the high kurtosis and the heavy tails of the residuals). This suggests the residuals are inde-
pendent generalized error distribution hence the model is adequate to describe the chang-
ing volatility of the returns.

Returns and variance equation

The conditional mean with conditional variance equation is given by

 (see Table 4). 

εt ≈ N (0, σ 2
t )

σ 2
t = wt + α1ε

2
t−1 + β1σ

2
t−1

σ 2
t = 0.00001427+ ε2t−1 + 0.2711σ 2

t−1

rt = 0.8097rt−1 − 0.5749εt−1 + εt + 0.00002507ε2t−1 + 0.1984σ 2
t−1

Table 3  Standardized residual test of GARCH (1, 1)

Source: result from analysis of data, 2014.

Residual test Variable Test statistic Test value Probability

Jarque–Bera R χ2 152.9664 0

Shapiro–Wilk R W 0.8465621 5.965E−12

Ljung–Box R Q(10) 23.50554 0.009026764

Ljung–Box R Q(15) 27.92452 0.022046764

Ljung–Box R Q(20) 31.84835 0.0449413

Ljung–Box R Q(10) 5.126632 0.8825598

Ljung–Box R Q(15) 9.760762 0.8345127

Ljung–Box R Q(20) 11.83056 0.9217843

LM Arch R TR2 4.663342 0.9682894
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Standardized residual test of ARMA (1, 1) + GARCH (1, 1)

The Jarque–Bera test for normality was 170.0431 and the ARCH LM of 9.613653 with 
p value <0.001 and 0.6498134 respectively which shows that there is no ARCH effect in 
the standardized squared residuals. The Ljung–Box statistics of standardized residuals for 
autocorrelation for lags 10, 15 and 20 are 8.937746, 16.65662 and 20.21719 with p value of 
0.5380217, 0.3398028 and 0.4444191 respectively. Standardized squared residuals at lags 

Figure 5  Time plot of standardized residuals, ACF and distribution of standard residual.

Table 4  ARMA (1, 1) + GARCH (1, 1) model’s parameter estimates

Source: result from analysis of data, 2014.

Variable Coefficients Standard error T-statistic Probability

AR (1) 0.8097 0.03542 22.862 2.00E−16

MA (1) −0.5749 0.107 −5.194 2.06E−07

Omega 0.00002507 0.000006437 3.894 9.85E−05

Alpha 1.00000 0.12798 3.574 0.000352

Beta 1 0.1984 0.09501 2.088 0.03688
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10, 15 and 20 are 6.394848, 8.093766 and 10.61964 with respective p-value of 0.7810711, 
0.9199685 and 0.9554965. These showed that there is no serial correlation standardized 
squared residual indicating that the model is adequate in describing the dynamic volatility 
of the return series as shown in Tables 5, 6.

Model validation

Model validation was conducted to check the validity of the findings made from the analy-
sis. ARMA (1, 1) with GARCH (1, 1) variance model for the return was used to predict the 
last 12 and next 12 observations by constructing a model each with one-step-ahead predic-
tion of the next observations. The fitted model was used to predict mean actual exchange 
rates for the next 2 years. That is data up to December, 2012 were used to predict the mean 
actual rates for 2013 and up to December, 2013 for 2014 mean exchange rates respectively. 
It can be observed from Table 7 that the mean exchange rates forecasted are very close to 

Table 5  Standardized residual test of ARMA (1, 1) + GARCH (1, 1)

Source: result from analysis of data, 2014.

Residual test Variable Test statistic Test value Probability

Jarque–Bera R χ2 170.0431 0

Shapiro–Wilk R W 0.8750428 1.368657E−10

Ljung–Box R Q(10) 8.937746 0.5380217

Ljung–Box R Q(15) 16.65662 0.3398028

Ljung–Box R Q(20) 20.21719 0.4444191

Ljung–Box R2
Q(10) 6.394848 0.7810711

Ljung–Box R2
Q(15) 8.093766 0.9199685

Ljung–Box R2
Q(20) 10.61964 0.9554965

LM ARCH R TR2 9.613653 0.6498134

Table 6  Information criteria statistics of ARMA (1,1) +GARCH (1,1)

Source: result from analysis of data, 2014.

AIC BIC SIC HQIC

−6.319293 −6.225940 −6.321017 −6.281403

Table 7  Mean forecast of actual exchange rates for 2013/2014

Year (2013) Actual  
rates

Forecasted  
rates

Year (2014) Actual  
rates

Forecasted 
rates

January 1.88 1.89 January 2.40 2.00

February 1.88 1.90 February 2.52 2.00

March 1.89 1.90 March 2.68 2.00

April 1.90 1.90 April 2.80 2.00

May 1.92 1.90 May 2.90 2.00

June 1.95 1.95 June 3.00 2.00

July 1.95 1.95 July 3.03 2.00

August 1.95 1.98 August – 2.10

September 1.96 1.98 September – 2.35

October 1.99 1.99 October – 3.00

November 2.06 2.01 November – 3.08

December 2.00 1.99 December – 3.42
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the mean actual rates for the forecasted period suggesting that the fitted model is appro-
priated for the data. 

Model diagnostic of conditional returns with conditional variance

The time plot of the standardized residuals in Figure 5 shows no obvious patterns but we 
notice a spike around the 148th observation. The ACF of the standardized residuals and 
squared standardized residuals show no apparent departure from the model assumptions 
as shown in Figure 6. The histogram and generalized q-norm q–q plot of the standardized 
residuals in Figure 7 show no departure from model assumptions (i.e. the assumed condi-
tional distribution captured the high kurtosis and the heavy tails of the residuals). This sug-
gests the residuals are independent generalized error distribution hence the model seems 
to be adequate for the data.

Prediction of next 24 observations of mean returns

The fitted model was again employed to predict the mean returns for the next 2  years. 
That is data from January, 2000 to December, 2013 was used to forecast 2014/2015 
mean returns. The time plot for the forecasted mean returns is shown in Figure 8. It was 
observed that the actual mean returns and the predicted mean returns values for the fore-
casted period lies within the 95% confidence intervals, indicating that the model fitted 
is adequate in describing the volatility nature of the observed series. The negative values 
obtained for the mean forecast of returns shows that the Ghana cedi is going to depreciate 
against the US dollar for the whole period forecasted (see Table 8).

Conclusions
The observed series does not change over time, thus showing that the series is station-
ary; hence the probability law that governs the behavior of the process does not change 

Figure 6  Conditional standard deviation and standardized residuals of ARMA (1, 1) + GARCH (1, 1).
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over time. The distribution of the return series is not normal with non-constant variance 
skewed to the right. The model that explains the stochastic mechanism of the observed 
series is ARMA (1, 1) + GARCH (1, 1). That is the optimum model for the dollar/cedi 
exchange rate returns (conditional mean with non-constant variance). The time series 
components found in the model were trend and random variation. It was also observed 
that, the ARMA (1, 1) + GARCH (1, 1) fitted is adequate for treating the series’ heterosce-
dasticity by modeling the variations in the series which is the main objective of this study. 
The forecasts were found to have upward trend for the 2 years (2014/2015) period, indicat-
ing that the cedi will continue to depreciate against the dollar for the forecasted period.

Recommendations
Based on the findings, it is recommended that; there should be an increase in the sup-
ply of foreign currencies into the local market and absorbing some of the excess liquidity 
from the economy. The government should consider the volatility of other macroeconomic 
variables in making both policy and investment decision. The fiscal and monetary policies 
adopted should be revised to help address the depreciation of the cedi.

Figure 7  Standardized residual distribution of ARMA (1, 1) + GARCH (1, 1).
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Methods
This paper employs a model based on information and real data obtained from the Bank of 
Ghana and the Ghana Stock Exchange. The samples include monthly data excluding week-
ends and holidays, of the average nominal exchange rate of the Ghana cedi/the US dollar, 
for the period January, 2000 to December 2013, comprising 168 data points. ARCH type 
models of Time Series Analysis and the statistical computing package R were used for the 
modeling. The stationarity of data is usually described by the time plots and the corre-
logram. The unit root test determines whether a time series is stable around its level or 
stable around the difference in its level (Dickey–Fuller or the Augmented Dickey–Fuller 
root test).
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Figure 8  Time plot of forecasted mean returns.
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ARMA (p, q) model

The general ARMA (p, q) model is given by

where at a white noise series and p and q are nonnegative integers. The Autoregressive 
(AR) and Moving average (MA) models are special cases of the ARMA (p, q) model. Using 
the back-shift operator, the model can be written as

The polynomial 1− φ1β − · · · − φpβ
p is the AR polynomial of the model. Similarly, 

1− θ1β · · · − θβq is the MA polynomial. It is required that there are no common factors 
between the AR and MA polynomials; otherwise the order of the model can be reduced 
(Noh, Engle and Kane 1994; DeLurgio 1998; Keller and Warrack 2003).

(1)rt = φo +

p
∑

i=1

φirt−1 + at −

q
∑

i=1

φiat−1

(2)
(1− φ1β − · · · − φpβ

p)rt

= φo + (1− θ1β · · · − θβq)a

Table 8  Mean forecast of returns for 2014/2015

Source: result from analysis of data, 2014.

Mean forecast Mean error Stand. dev. 95% confidence interval

Lower limit Lower limit

−0.00036229 0.00545061 0.00545061 −0.01032071 0.01104529

−0.00030768 0.0066149 0.00646497 −0.0126573 0.01327265

−0.0002613 0.00753796 0.00725586 −0.01451283 0.01503543

−0.00022191 0.00829912 0.00789875 −0.01604408 0.01648789

−0.00018845 0.00894054 0.0084343 −0.01733467 0.01771158

−0.00016005 0.00948834 0.00888767 −0.01843694 0.01875703

−0.00013592 0.00996082 0.00927586 −0.01938693 0.01965877

−0.00011343 0.01037087 0.00961104 −0.0202111 0.02044196

−0.00009803 0.01072863 0.0099023 −0.02092969 0.02112575

−0.00008325 0.01104203 0.01015669 −0.02155874 0.02172524

−0.0000707 0.01131748 0.01037977 −0.02211116 0.02225256

−0.00006004 0.01156023 0.01057605 −0.02259758 0.02271767

−0.00005099 0.01177463 0.01074922 −0.02302686 0.02312885

−0.00004331 0.01196438 0.01090236 −0.02340644 0.02349305

−0.00003678 0.01213257 0.01103803 −0.02374262 0.02381618

−0.00003423 0.01228188 0.01115844 −0.02404081 0.02410327

−0.00002653 0.01241459 0.01126544 −0.02430562 0.02435867

−0.00002253 0.01253267 0.01136065 −0.02454106 0.02458611

−0.00001913 0.01263785 0.01144546 −0.02475059 0.02478885

−0.00001625 0.0127316 0.01152107 −0.02493724 0.02496973

−0.0000138 0.01281524 0.01158854 −0.02510362 0.02513121

−0.00001172 0.01288991 0.01164878 −0.02525204 0.02527547

−0.00000995 0.0129566 0.0117026 −0.02538453 0.02540443

−0.00000845 0.01301621 0.0117507 −0.02550285 0.02551976
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ARCH (1) model

The first and simplest heteroscedastic model we will look at is the ARCH model, which 
stands for Autoregressive Conditional Heteroscedasticity. The AR comes from the fact 
that these models are autoregressive models in squared returns. The conditional comes 
from the fact that in these models, next period’s volatility is conditional on information 
this period. Heteroscedasticity means non constant volatility. In a standard linear regres-
sion where yi = α + βxi + εi, when the variance of the residuals, εi is constant, we call that 
homoscedastic and use ordinary least squares to estimate α and β. If, on the other hand, 
the variance of the residuals is not constant, we call that heteroscedastic and we can use 
weighted least squares to estimate the regression coefficients (Noh et al. 1994; DeLurgio 
1998; Keller and Warrack 2003).

Let us assume that the return on an asset is rt = µ+ σtεt where εt is a sequence of 
N (0, 1) i.i.d. random variables. We will define the residual return at time t, rt − µ, as 
at = σtεt . In an ARCH (1) model, first developed by Engle (1982), αt = α0 + α1a

2
t−1, 

where α0 >0 and α1 ≥ 0 to ensure positive variance and 1 < 1 for stationarity.
Under an ARCH (1) model, if the residual return, at is large in magnitude, our forecast 

for next period’s conditional volatility, σt+1 will be large. We say that in this model, the 
returns are conditionally normal (conditional on all information up to time t − 1, the 
one period returns are normally distributed). Also, note that the returns; rt are uncorre-
lated but are not identically independent distributed (Engle 1982, 2001).

The unconditional variance of at is;

Since at is a stationary process, the var(at) = var(at−1) = E
[

a2t−1

]

, then,

An ARCH (1) is like an AR (1) model on squared residuals a2t . To see this, we define 
the conditional forecast error, or the difference between the squared residual return and 
our conditional expectation of the squared residual return is given as;

where It−1 is the information at time t − 1, note that vt is a zero mean, uncorrelated 
series. The ARCH (1) equation becomes

(3)

var(at) = E
[

a2t

]

− (E[at ])
2

= E
[

a2t

]

= E
[

σ 2
t ε

2
t

]

= E
[

a2t

]

= α0 + α1E
[

a2t−1

]

(4)var(at) =
α0

1− α1

(5)
vt = a2t − E

〈

a2t ||It−1

〉

vt = a2t − σ 2
t
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This is an AR (1) process on squared residuals.

GARCH (1, 1) model

In an ARCH (1) model, next period’s variance only depends on last period’s squared resid-
ual so a crisis that caused a large residual would not have the sort of persistence that we 
observe after actual crises. This has led to an extension of the ARCH model to a GARCH, 
or Generalized ARCH model, first developed by Bollerslev (1986), which is similar in spirit 
to an ARMA model (Noh et al. 1994; DeLurgio 1998; Keller and Warrack 2003).

where α0 >0, α1 >0, β1 >0, and α1 + β1 <1, so that our next period forecast of variance is 
a blend of our last period forecast and last period’s squared return. We can see that just 
as an ARCH (1) model is an AR (1) model on squared residuals, an ARCH (1, 1) model is 
an ARMA (1, 1) model on squared residuals by making the same substitutions as before 
vt = a2t − σ 2

t .

This is an ARMA (1, 1) on the squared residuals. The unconditional variance of at is

And since at is a stationary process,

at = σtεt, the unconditional variance of returns, E
[

σ 2
t

]

= E
[

a2t
]

.

(6)

σ 2
t = α0 + α1a

2
t−1

a2t − vt = α0 + α1a
2
t−1

a2t = α0 + α1a
2
t−1 + vt

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

a2t − vt = α0 + α1a
2
t−1 + β1

(

a2t−1 − vt−i

)

a2t = α0 + (α1β1)a
2
t−1 + vt − β1vt−1

(7)

var(at) = E
[

a2t

]

− (E[at ])
2

= E
[

a2t

]

= E
[

σ 2
t ε

2
t

]

= E
[

σ 2
t

]

= α0 + α1E
[

a2t−1

]

+ β1σ
2
t−1

= α0 + (α1 + β1)E
[

a2t−1

]

(8)var(at) =
α0

1− α1 − β1
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ARMA (1, 1) can be written as an AR (∞), and GARCH (1, 1) can be written as an AR 
(∞) which yield the following

So that the conditional variance at time t is the weighted sum of past squared residuals 
and the weights decrease as you go further back in time. Since the unconditional vari-
ance of returns is

We can write the GARCH (1, 1) equation yet another way

In this way, it is easy to see that next period’s conditional variance is a weighted com-
bination of the unconditional variance of returns, E

[

σ 2
]

 last period’s squared residuals 
a2t−1, and last period’s conditional variance, σ 2

t−1, with weights (1− α1 − β1), α1, β1 which 
sum to one. It is often useful not only to forecast next period’s variance of returns, but 
also to make an l-step ahead forecast, especially if our goal is to price an option with l 
steps to expiration using our volatility model (Noh et al. 1994; DeLurgio 1998; Keller and 
Warrack 2003).

The integrated GARCH model

In the case where α1 + β1 = 1, the GARCH (1, 1) model becomes

This model, first developed by Engle and Bollerslev (1986), is referred to an Integrated 
GARCH model, or an IGARCH model. Squared shocks are persistent, so the variance 
follows a random walk with a drift. Since we generally do not observe a drift in variance, 
we will assume α0 = 0. Just as a GARCH model is analogous to an ARMA model, the 
IGARCH model where the variance process has a unit root is analogous to an ARIMA 
model (Noh et al. 1994; DeLurgio 1998; Keller and Warrack 2003).

When α1 + β1 = 1 and α0 = 0, the l − step ahead forecast that we derived for a 
GARCH (1, 1) model becomes

(9)

a2t = α0 + α1a
2
t−1 + β1σ

2
t−1

= α0 + α1a
2
t−1 + β1

(

α0 + α1a
2
t−2 + β1σ

2
t−2

)

= α0 + α1a
2
t−1 + α0β1 + α1β1a

2
t−2 + β2

1σ
2
t−2

= α0 + α1a
2
t−1 + α0β1 + α1β1a

2
t−2 + β2

1

(

α0 + α1a
2
t−3 + β1σ

2
t−3

)

...

=
α0

1− β1
+ α1

∞
∑

i=0

a2t−1−iβ
i
1

(10)E
[

α2
]

=
α0

(1− α1 − β1)

(11)
σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

= (1− α1 − β1)E
[

σ 2
]

+ α1a
2
t−1 + β1σ

2
t−1

(12)σ 2
t = α0 + (1− β1)a

2
t−1 + β1σ

2
t−1.
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Thus the forecast for future variance is the current variance, just as in a random walk. 
Also, if we now write the model as an ARCH (∞) as we did before with a GARCH (1, 1) 
model, after repeated substitutions we get

This is an exponential smoothing of past squared residuals. The 
“weights” on the squared residuals, The ‘weights’ on the squared residuals, 
(1− β1),β1(1− β1),β

2
1 (1− β1), . . . sum to one, so exponentially weighting can be used 

as an alternative to historical variance (Noh et al. 1994; DeLurgio 1998; Keller and War-
rack 2003).

The GARCH‑M model

Another variation of a GARCH model tests whether variance can impact the mean of 
future returns. These models are referred to as GARCH in the mean or GARCH-M mod-
els (Noh et al. 1994; DeLurgio 1998; Keller and Warrack 2003).

A GARCH (1, 1)-M is represented as

In some specifications, the volatility, rather than the variance, affects returns a, 
rt = µ+ σtεt + �σt.

If � = 0, these models imply a serial correlation of returns since variance is serially cor-
related and the returns depend on the variance. Many studies have tried to determine 
whether � is significantly different from zero, usually with mixed conclusions.

The EGARCH model

Another variant on GARCH to account for the asymmetry between up and down move-
ment of volatility of financial data is the Exponential Generalized Autoregressive Condi-
tional Heteroscedastic (EGARCH) model of Nelson (1990). In an EGARCH (1, 1),

(13)

σ̂ 2
t+1 = α0 + (α1 + β1)σ̂

2
t+l−1

= σ̂ 2
t+l−1

= σ 2
t

(14)

σ 2
t =

α0

1− β1
+ α1

∞
∑

i=1

a2t−1−iβ
i
1

= (1− β1)

∞
∑

i=1

a2t−1−iβ
i
1

= (1− β1)

(

a2t−1 + β1a
2
t−2 + β2

1a
2
t−3 + · · ·

)

(15)
σ 2
t = (1/N )

N
∑

i=1

(rt−1 − r)2

(16)σ 2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

(17)rt = µ+ σtεt + �σ 2
t .

(18)In
(

σ 2
t

)

= α0 +
α1at−1 + γ |at−1|

σt−1

+ β1In
(

σ 2
t−i

)
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Here there is an asymmetric effect between positive and negative return. Also to avoid 
the possibility of a negative variance, the model is an AR (1) on In

(

σ 2
t

)

 rather than σ 2
t .

An alternative representation of an EGARCH model which often found in literature 
is to write the EGARCH as an AR (1) process on In

(

σ 2
t

)

 with zero mean, independent 
identically distributed residuals

where

 

There are many other models that try to capture the asymmetry between up 
and down on future volatility. For example, a slight variation on a GARCH (1, 1) is 
σ 2
t = α0 + α1(at−1 − x)2 + β1σ

2
t−1 so that the next period’s variance is not necessarily 

minimized when the squared residual are zero.

ARCH effects

ARCH effects can be tested in pre-estimation or post-estimation analysis. In post-estima-
tion, it test the remaining ARCH effect, thus whether or not the conditional heterosce-
dasticity has been removed. For the purpose of this research, it is applied on standardized 
residual of the fitted model which is an L M test for the ARCH effect in the residual. An 
indication of ARCH effects is that the residuals are uncorrelated, but the squared residuals 
are correlated. Normality test are used to test the behavior of ARCH effect if the normality 
can be described by the conditional error distribution. Another way is to inspect the auto-
correlation structure of the residual and squared residuals using portmanteau tests. These 
tests are used for diagnostic checking of fitted time series model (Bollerslev 1986; Engle 
1982; DeLurgio 1998).

Estimation of GARCH models is done with the normal distribution. Pre-estimation 
analysis is performed on the return and squared return, which includes important test 
applied to the two time series to ensure that conditional volatility modeling is appropri-
ate. The main tests before actually estimating the conditional volatility are Engle’s ARCH 
test and Portmanteau (Bollerslev 1986; Engle 1982).

Forecast evaluation methods

The selected model for the time series is used to make prediction into the future. After 
making forecast and choosing a proxy for actual volatility, next step is to choose statistical 
loss function to see how close the forecast to their target and compare forecast perfor-
mance of model. Evaluation of performance of different volatility model is built on statisti-
cal loss function present in literature. These are based on moment of forecast error such 

g(εt), In
(

σ 2
t

)

= α + β

[

In
(

σ 2
t−1

)

− α

]

+ g(εt−1)

g(εt) = (θεt + γ |εt | − E[|εt |])and if

εt ∼ N (0, 1),E[|εt |] =

√

2

π
.

(19)α = E
[

In
(

σ 2
t

)]
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as root mean squared error (RMSE), mean absolute error (MAE), adjusted mean absolute 
percentage error (AMAPE). The model would be the one that minimize such a function 
of the forecast errors. Autoregressive forecasting will be used. Here the observed series 
depends linearly on its own previous values plus a combination of currents and previous 
values of a white noise error term. Predictions are made by constructing a model each with 
one-step-ahead prediction of the next observations (Noh et al. 1994; DeLurgio 1998; Keller 
and Warrack 2003).
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