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Background
Analysis on the free convection in an electrically conducting and viscous incompressible 
fluid in the presence of an external magnetic field has received considerable attention in 
the literature due to the useful applications in various branches of science and technol-
ogy, such as fire engineering, nuclear science, combustion modeling, geophysics etc. The 
heat transfer and the skin-friction in such type of fluid motion can be reduced by apply-
ing a uniform external magnetic field. Depending on the complexity of the problem, the 
free convective studies have been carried out both theoretically and numerically. The first 
paper on the subject of hydromagnetic flows past a flat plate was presented by Rossow 
(1957). Denno (1972) investigated the effect of non uniform magnetic field on the mag-
netohydrodynamic channel flow between two parallel plates of infinite extent. Nanousis 
(1996) considered the two dimensional laminar flow of a viscous incompressible and 
electrically conducting fluid near an oscillating porous plate in the presence of uniform 
suction. Singha and Deka (2006), investigated the unsteady natural convection of an elec-
trically conducting fluid between two heated parallel plates in the presence of a uniform 
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magnetic field. The unsteady magnetohydrodynamic free convective flow and heat trans-
fer along a vertical porous plate with variable suction and internal heat generation was 
discussed by Sharma and Singh (2008). Further, Palani and Srikanth (2009), analysed the 
hydromagnetic flow past a semi-infinite vertical plate with mass transfer. Free convective 
flow of heat generating/absorbing fluid between vertical porous plates with periodic heat 
input has been studied by Jha and Ajibade (2009).

Ellahi and Hameed (2012) have studied numerically the effects of nonlinear partial 
slip on the walls for steady flow and heat transfer of an incompressible, thermodynami-
cally compatible third grade fluid in a channel. Series solutions of nonlinear partial dif-
ferential equations with slip boundary conditions for non-Newtonian MHD flow in the 
porous space has been investigated by Zeeshan and Ellahi (2013). Sheikholeslami and 
Ganji (2014) have presented ferrohydrodynamic and magnetohydrodynamic effects on 
ferrofluid flow and convective heat transfer. MHD free convection in an electric semi-
annulus field with nanofluid has been studied by Sheikholeslami et al. (2014). Effect of 
heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic 
field has been investigated by Khan et al. (2014). Sheikholeslami and Bandpy (2014) have 
presented free convection of ferrofluid in a cavity heated from below in the presence of 
an external magnetic field.

In the investigations concerned with the hydromagnetic free convective flows, the 
effect of induced magnetic field has been neglected in order to facilitate the mathemati-
cal analysis of the problem as simple. The induced magnetic field also generates its own 
magnetic field in the fluid and as a result of which it modifies the original magnetic field; 
at the same time their flow in the magnetic field produces mechanical forces which mod-
ify the motion of fluid. Therefore, in several physical situations it is required to include 
the effect of induced magnetic field in the hydromagnetic equations. Beg et  al. (2009) 
have studied the non-similar, laminar, steady, electrically-conducting forced convection 
liquid metal boundary layer flow with the induced magnetic. A study on hydromagnetic 
free convective flow has been presented by Ghosh et al. (2010) by taking into account the 
effect of induced magnetic field. Further, Singh et al. (2010) have performed numerical 
study on the hydromagnetic free convective flow in the presence of an induced mag-
netic field. Kwanza and Balakiyema (2012) has investigated the hydromagnetic free con-
vective flow past an infinite vertical porous plate with magnetic induction. Kumar and 
Singh (2013) have studied the unsteady magnetohydrodynamic free convective flow 
past a semi-infinite vertical wall by taking into account the induced magnetic field. Jha 
and Sani (2013) have presented the magnetohydrodynamic natural convective flow of 
an electrically conducting and viscous incompressible fluid in a vertical channel due to 
symmetric heating in the presence of induced magnetic field. Interaction of nano par-
ticles for the peristaltic flow in an asymmetric channel with the induced magnetic field 
has been studied by Akbar et al. (2014). Further, Akbar et al. (2015) have investigated the 
influence of induced magnetic field and heat flux with the suspension of carbon nano-
tubes for the peristaltic flow in a permeable channel.

In most of these studies, the boundaries are considered as the non-porous. The heat 
transfer and the skin-friction in such type of fluid motion can be reduced by consid-
ering the plates to be porous. Thus, in this paper, we have considered the hydromag-
netic free convective flow of an electrically conducting and viscous incompressible fluid 
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between parallel vertical porous plates with consideration of induced magnetic field. The 
governing equations corresponding to the velocity, induced magnetic and temperature 
fields have been solved analytically and further the expression for the induced current 
density have been also obtained. The effects of various parameters on the velocity, the 
induced magnetic field, the temperature and the induced current density profiles have 
been shown in the graphs.

Governing equations
We consider the steady, free convective flow of an electrically conducting, viscous incom-
pressible fluid between two infinite vertical porous plates with constant suction having 
suction velocity V ′

0. The x′-axis is taken vertically upward along the plates and the y′-axis 
normal to it as shown in the Figure 1. The distance between the plates is h. The one plate is 
kept at constant heat flux while the other is maintained at the constant temperature T ′

0. As 
the plates are of infinite extent, the variables describing the flow will depend only on the 
transverse coordinate y′ and so the fluid velocity will have only one non zero component 
in the x′-direction. A uniform magnetic field �B′

0 of strength B′
0 is applied perpendicular to 

the plates. The plate at y′ = 0 is taken to be non-conducting while the other plate at y′ = h 
is taken to be electrically conducting. For a fluid with significant electrical conductivity σ, 
this in turn induces a magnetic field B′

x′ along the x′-axis. Let u′ be the velocity of the fluid 
along x′-axis, then �v =

[

u′, V′
0, 0

]

 is the velocity vector and �B =
[

B′
x′ , B

′
0, 0

]

 is the mag-
netic field vector of the considered problem.

The governing equations of the system is given by

(1)ϑ
d2u′

dy′2
+ µeB

′
0

ρ

dB′
x′

dy′
+ gβ

(

T ′ − T ′
0

)

+ V ′
0

du′

dy′
= 0,

(2)
1

σµe

d2B′
x′

dy′2
+ B′

0

du′

dy′
+ V ′

0

dB′
x′

dy′
= 0,

dT q
dy k

′
= −

′
0T T ′′ =

0xB ′′ =
0xdB

dy
′′ =
′

h

u′

0T ′

xB ′′

0B′

x′

y′

z′

Figure 1  Physical model.
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with the boundary conditions

Using the following non-dimensional parameters

the governing equations in non-dimensional form have taken the form

with the boundary conditions in non dimensional form as

Method of solution
Equations (7), (8), (9) are coupled system of ordinary differential equations with constant 
coefficients. This system of linear ordinary differential equations has been solved analyti-
cally by the theory of simultaneous ordinary differential equations. The expressions for the 
velocity field, the induced magnetic field and the temperature field in non-dimensional 
form are given by

(3)
k

ρCp

d2T ′

dy′2
+ V ′

0

dT ′

dy′
= 0,

(4)u′ = 0, B′
x′ = 0,

dT ′

dy′
= −q

k
at y′ = 0,

(5)u′ = 0,
dB′

x′

dy′
= 0, T ′ = T ′

0 at y′ = h.

(6)

y = y′

h
, u = ϑu′

gβh2∆T ′ , B = ϑ

gβh2∆T ′

√

µe

ρ
B′
x′ , T = T ′ − T ′

0

∆T ′ ,

∆T ′ = hq

k
, Pr = µCp

k
, Pm = ϑσµe, Ha = B0h

ϑ

√

µe

ρ
, V0 =

V ′
0
h

ϑ
,

(7)
d2u

dy2
+ V0

du

dy
+Ha

dB

dy
+ T = 0,

(8)
d2B

dy2
+ V0Pm

dB

dy
+HaPm

du

dy
= 0,

(9)
d2T

dy2
+ V0 Pr

dT

dy
= 0,

(10)u = 0, B = 0,
dT

dy
= −1 at y = 0,

(11)u = 0,
dB

dy
= 0, T = 0 at y = 1.

(12)
u = exp(K4y)

[

K26 cosh
(

√

K5y
)

+ K27 sinh
(

√

K5y
)]

+ K28 exp(K1y)+ K29y+ K30,

(13)

B = exp(K4y)
[

K23 cosh
(

√

K5y
)

+ K22 sinh
(

√

K5y
)]

+ K6 exp(K1y)+ K7y+ K31,
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The induced current density is given by

The parameters K1, K2, . . . ,K31 used in the above equations are defined in the 
appendix.

Results and discussion
The present magnetohydrodynamic free convection model is described by a number of 
physical parameters such as the Prandtl number (Pr), the magnetic Prandtl number (Pm), 
the suction parameter (V0) and the Hartmann number (Ha). The effects of various param-
eters on the velocity profile, the induced magnetic field profile and the induced current 
density profile are shown using the graphs. The parameters affecting the temperature dis-
tribution are the Prandtl number (Pr) and the suction parameter (V0) only and the effect of 
these parameters on the temperature profiles are also shown in the graphs.

Figures  2, 3, 4, 5 show the variation of the velocity with the parameters occurring 
in the governing equations. Figure 2 shows the effect of the suction parameter on the 

(14)T = K2 exp(K1y)+ K3.

(15)
J = −dB

dy
= exp(K4y)

[

K32 cosh
(

√

K5y
)

+ K33 sinh
(

√

K5y
)]

− K1K6 exp(K1y)− K7.

Figure 2  Variation of velocity with suction parameter (V0).

Figure 3  Variation of velocity with magnetic Prandtl number (Pm).
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velocity distribution for Pr = 0.7, Pm = 0.5 and Ha = 5. It is found that the increase 
in the suction parameter leads to a decrease in the velocity profiles. Figure  3 shows 
the effect of the magnetic Prandtl number on the velocity profile for suction param-
eter V0 = 1, the Prandtl number Pr = 0.7, and the Hartmann number Ha = 5. This 
figure clearly shows that the velocity of the fluid decreases as the magnetic Prandtl 
number increases. Figures  4 and 5 respectively show the variation of velocity with 
the Prandtl number (for V0 = 1, Pm = 0.5, and Ha = 5) and the Hartmann number 
(for V0 = 1, Pm = 0.5, and Pr = 0.7).

It is seen that the velocity profile is found to decrease with the increase in the Prandtl 
number and the Hartmann number also. The velocity profiles are found to be almost 
parabolic type having their maximum value near the middle region but with increase 
in the magnetic Prandtl number and for large value of the Hartmann number its shape 
changes from the parabolic type to the flattered type. Thus, the fluid velocity can be 
reduced by application of strong external magnetic field.

Figures 6, 7, 8, 9 show the variation of induced magnetic field with the suction param-
eter, the Prandtl number, the Hartmann number and the magnetic Prandtl number. Fig-
ure 6 depicts the distribution of the induced magnetic with the suction parameter for 
Pr = 0.7, Pm = 0.5, and Ha = 5. It is observed that the induced magnetic field increases 
with increase in the suction parameter.

Figure 4  Variation of velocity with Prandtl number (Pr).

Figure 5  Variation of velocity with Hartmann number (Ha).
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The induced magnetic field distribution plotted in Figure 7 with various values of Pm
(for Pr = 0.7, V0 = 1, and Ha = 5), shows that the increase in the magnetic Prandtl 
number causes the decrease in the induced magnetic profile. In the Figures. 8 and 9 the 
profile of induced magnetic field shows the similar behavior of increasing with increase 
in the value of the Prandtl number Pr (for Pm = 0.5, V0 = 1, and Ha = 5) and with the 

Figure 6  Variation of induced magnetic field with suction parameter (V0).

Figure 7  Variation of induced magnetic field with magnetic Prandtl number (Pm).

Figure 8  Variation of induced magnetic field with Prandtl number (Pr).
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increase in the value of the Hartmann number Ha (for Pm = 0.5, V0 = 1, and Pr = 0.7) 
respectively.

Figures 10, 11, 12, 13 illustrates the effect of the parameters V0, Pm, Pr and Ha on the 
induced current density profiles respectively. Figure 10 presenting the variation of induced 
current density with the suction parameter V0 ( for Pr = 0.7, Pm = 0.5, and Ha = 5), 

Figure 9  Variation of induced magnetic field with Hartmann number (Ha).

Figure 10  Variation of induced current density with suction parameter (V0).

Figure 11  Variation of induced current density with magnetic Prandtl number (Pm).
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shows that the induced current density profile decreases with the increase in the value of 
suction parameter. The variation of the induced current density with the Prandtl num-
ber Pr (for Pm = 0.5, V0 = 1, and Ha = 5), is shown in the Figure 12 and its variation 
with the Hartmann number Ha(for Pm = 0.5, V0 = 1, and Pr = 0.7), is shown in the 
Figure 13. It is clear from the graphs that effect of the Prandtl number and the Hartmann 
number on the induced current density profile is found to have a decreasing nature. The 
induced current density increases with the increase in the value of the magnetic Prandtl 
number Pm (for Pr = 0.7, V0 = 1, and Ha = 5) as shown in the Figure 11.

The temperature variation are shown in the Figure 14 with various values of the suc-
tion parameter (V0) at Pr = 1.0 and in the Figure 15 with different values of the Prandtl 
number (Pr) at V0 = 1.0. The temperature field distribution is found to have the decreas-
ing nature with increase in the both parameters.

Knowing the expression of the velocity, the other physical quantity of interest is the 
skin friction. Using the Eq. (12), the skin friction on both the walls in non-dimensional 
form are given by

(16)τ0 =
(

du

dy

)

y=0

= K1K23 + K4K26 + K27

√

K5 + K29,

Figure 12  Variation of induced current density with Prandtl number (Pr).

Figure 13  Variation of induced current density with Hartmann number (Ha).
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The effects of suction parameter and the magnetic Prandtl number on the skin friction 
on the two plates are shown in the Table 1. This table clearly shows the skin friction on 
both the plates decreases with increase in the value of the suction velocity. Further, with 
increase in the value of the magnetic Prandtl number, the skin friction decreases on the 
plate at y = 0 while increases on the other plate at y = 1. The effects of the Prandtl num-
ber and the Hartmann number on the skin friction are shown in the Table 2. It is seen 
that as the value of the Prandtl number increases the skin friction decreases on both 
the plates while with increase in the value of the Hartmann number, the skin friction 
decreases on the plate at y = 0 and increases on the plate at y = 1.

(17)
τ1 = −

(

du

dy

)

y=1

= eK4

[(

K4K26 + K27

√

K5

)

cosh
√

K5

+
(

K4K27 + K26

√

K5

)

sinh
√

K5

]

+ K1K23e
K1 + K29.

Figure 14  Variation of temperature field with suction parameter (V0).

Figure 15  Variation of temperature field with Prandtl number (Pr).
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Conclusion
The hydromagnetic free convective flow between two vertical parallel porous plates has 
been studied by taking into account the effect of induced magnetic field. It is observed that 
the increase in the suction parameter, the Prandtl number, the magnetic Prandtl number 
and the Hartmann number leads to a decrease in the velocity profiles. It is also observed 
that with increase in the suction parameter, the Prandtl number and the Hartmann num-
ber the induced magnetic field increases while decreases with increase in the magnetic 
Prandtl number. The induced current density profile increases with increase in the mag-
netic Prandtl number while it decreases with increase in the suction parameter, the Hart-
mann number and the Prandtl number. The velocity and induced magnetic field can be 
controlled by adjusting suction/injection velocity on the porous plates while making engi-
neering designs.

List of symbols
u′: velocity of the fluid along the x′-direction; u: velocity of the fluid along the x′-direction in non-dimensional form; �V ′

: velocity vector; V ′
0
: suction velocity; V0: Suction parameter; �B′: Magnetic field vector; B′

0
: Applied external magnetic field; 

B′x′: Induced magnetic field in x′-direction; B: Non-dimensional induced magnetic field in x′-direction; Ha: Hartmann num-
ber; T ′

0
: Initial temperature of the fluid; T ′: Temperature of the fluid; T : Temperature of the fluid in non-dimensional form; g

: Acceleration due to gravity; h: Characteristic length; k: Thermal conductivity; q: Heat flux; J : Induced current density; Pr: 
Prandtl number; Pm: Magnetic Prandtl number; Cp: Specific heat at constant pressure; β: Coefficient of thermal expansion; 
µ: Coefficient of viscosity; µe: Magnetic permeability; η: Magnetic diffusivity; ϑ: Kinematic viscosity of the fluid; ρ: Density 
of the fluid; σ: Conductivity of fluid.
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Table 1  Effect of suction velocity and magnetic Prandtl number on skin friction

V0 Pr = 0.7, Pm = 0.5, Ha = 5.0 Pm V0 = 1.0, Pr = 0.7, Ha = 5.0

τ0 τ1 τ0 τ1

0.50 0.201282 0.016061 0.05 0.942302 −0.288576

0.75 0.189208 0.010222 0.10 0.579872 −0.123172

1.00 0.177648 0.006543 0.30 0.268411 −0.011856

1.50 0.156469 0.002602 0.50 0.177648 0.006543

2.00 0.138151 0.000717 1.00 0.078089 0.0182087

Table 2  Effect of Prandtl number and Hartmann number on skin friction

Pr V0 = 1.0, Pm = 0.5, Ha = 5.0 Ha V0 = 1.0, Pm = 0.5, Pr = 0.7

τ0 τ1 τ0 τ1

0.015 2.49099 2.69599 2.00 0.496807 −0.088505

0.20 −0.062465 0.135359 3.00 0.304076 −0.009525

0.50 −0.165730 0.023090 5.00 0.177665 0.006543

0.70 −0.177648 0.006543 10.0 0.085344 0.003380

1.00 −0.181191 −0.002208 15.0 0.055678 0.001650
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Appendix

K1 = −V0 Pr, K2 = − 1

K1
, K3 =

exp(K1)

K1
, K4 = −V0(1+ Pm)

2
,

K5 =
V 2
0
(1− Pm)2 + 4PmHa2

4
, K6 =

HaPmK2

K1

{

K 2
1
+ V0K1(1+ Pm)+ Pm(V 2

0
−Ha2)

} ,

K7 =
HaK3

(V 2
0 −Ha2)

, K8 =
V0

Pm(V 2
0 −Ha2)

, K9 = − Ha

(V 2
0 −Ha2)

,

K10 = −V0HaK3(1+ Pm)

Pm(V 2
0 −Ha2)2

, K11 = V0PmK9, K12 = (V0PmK8 − 1),

K13 = (V0Pm+ K4), K14 = −[(K1 + V0Pm)K6 + V0PmK10 + K7],

K15 = exp(K4)

[

(V0Pm+ K4) cosh(
√

K5)+
√

K5 sinh(
√

K5)

]

,

K16 = exp(K4)

[

(V0Pm+ K4) sinh(
√

K5)+
√

K5 cosh(
√

K5)

]

,

K17 = −[(V0Pm+ K1)K6 exp(K1)+ (V0Pm+ 1)K7 + V0PmK10],

K18 = −(K6 + K10), K19 = exp(K4)

[

K4 cosh(
√

K5)+
√

K5 sinh(
√

K5)

]

,

K20 = exp(K4)

[

K4 sinh(
√

K5)+
√

K5 cosh(
√

K5)

]

, K21 = −[K1K6 exp(K1)+ K7],

K22 =
K19(K14 − K17)− K21(K13 − K15)

K19(
√
K5 − K16)− K20(K13 − K15)

, K23 =
K14 − K17 − K22(

√
K5 − K16)

(K13 − K15)
,

K24 = K9K11 − K11K18 − K23(K9K13 − K11)− K9K22

√
K5

K9K12 − K8K11

,

K25 =
K14 − K12K24 − K13K23 − K22

√
K5

K11

,

K26 = −
(

V0PmK23 + K4K23 + K22

√
K5

)

HaPm
, K27 = −

(

V0PmK22 + K4K22 + K23

√
K5

)

HaPm
,

K28 = − (K1 + V0Pm)K6

HaPm
, K29 = −V0K7

Ha
,

K30 =
K24 − K7 − V0PmK10 − V0PmK8K24 − V0PmK9K25

HaPm
,

K31 = K8K24 + K9K25 + K10, K32 = −(K4K23 + K22

√

K5), K33 = −(K4K22 + K23

√

K5).
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