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Background
In many applications, such as Doppler radar signal processing (Besson and Castanie 1993), 
synthetic aperture radar image processing (Frost et al. 1982; Lee and Jurkevich 1994), opti-
cal imaging under speckle or scintillation condition (Frankot and Chellappa 1987; Jain 
2002), transmission of signals over fading channels (Makrakis and Mathiopoulos 1990a, b; 
Proakis 2001), speech processing in signal-dependent noise (Kajita and Itakura 1995; Qua-
tieri 2002), and more, we need to consider the noise component to be both multiplicative 
and additive to the signal component.

In literature, signal parameter estimation in multiplicative and additive noise has been 
reported employing the non-linear least squares (NLLS) techniques (Besson and Stoica 
1995; Besson and Stoica 1998; Ghogho et al. 2001; Besson et al. 1999), the cyclostationary 
approaches (Shamsunder et al. 1995; Zhou and Giannakis 1995; Giannakis and Zhou 1995; 
Ghogho et  al. 1999a, 1999b), and the methods based on higher order statistics (Dwyer 
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1991; Swami 1994; Zhou and Giannakis 1994). In the NLLS techniques, a random ampli-
tude observed signal is matched with a constant amplitude modelled signal in the least 
squares sense. When the random amplitude process is zero mean, we match the squared 
observed signal with the squared modelled signal. The NLLS estimators lead to an optimi-
zation problem which needs to be solved by an iterative technique. For a linear chirp signal, 
we need to perform a two-dimensional search where the initial guess, global convergence, 
convergence rate, and more are crucial issues (Besson et al. 1999). In the approaches based 
on cyclic statistics, we utilize the properties of the underlying signal. For a random ampli-
tude polynomial phase signal, if the polynomial order is (p+ 1), then the process will be 2p

-order cyclostationary, i.e., the signal moments and cumulants of order 2p will be (almost) 
periodic. Using the cyclic moments/cumulants of order 2p, the (p+ 1)th order coefficient 
in the phase polynomial can be estimated. Having estimated the highest order polynomial 
coefficient, the signal can be demodulated to reduce the polynomial order, and the process 
can be repeated to estimate the next highest order polynomial coefficient. For the cyclic 
estimator to work, it is necessary that the random amplitude process be bandlimited, and 
higher the polynomial order, the more stringent the requirement on the bandlimitedness 
of the amplitude process. Some other issues are: (1) When finite data samples are used, the 
peaks in the cyclic moments/cumulants may be difficult to discern; (2) Due to the sequen-
tial procedure, there is cumulative effect that significantly degrades the accuracy of lower 
order polynomial coefficients (Shamsunder et al. 1995).

In the present work, our focus is on higher order statistics. We do not consider any 
other approaches for comparison or otherwise. In the methods based on higher order 
statistics, our concern is to develop a way to reduce the higher dimensionality of higher 
order moments and cumulants. Another issue is to tackle the non-stationarity of the 
observed signal, which makes the moments and cumulants time-varying in nature. In 
the paper, we address these issues and find some solutions.

It is known that the cumulants of order greater than two of Gaussian processes are 
zero, whereas the cumulants of non-Gaussian processes carry higher order statistical 
information. Therefore, when the additive noise process is Gaussian and the signal pro-
cess modulated by the multiplicative noise is non-Gaussian, one may use the methods 
based on third or fourth order cumulants of the signal for estimating signal parameters 
(Swami and Mendel 1991; Swami 1994).

Different slices of higher order cumulants are utilized for parameter estimation of various 
harmonic and modulated signals. Higher dimensionality of higher order cumulants are con-
ventionally tackled by taking appropriate slices of cumulants such that the slices retain the 
pertinent information about the signal (Swami and Mendel 1991; Swami 1994). However, the 
selection of appropriate slices for various signals of interest may be a complicated task. More-
over, when the signal is non-stationary in nature, the moments and cumulants of the signal 
may depend on both time and lag (Sircar and Mukhopadhyay 1995; Sircar and Syali 1996; Sir-
car and Sharma 1997; Sircar and Saini 2007). Therefore, the utilization of such time-varying 
moments and cumulants for parameter estimation of signals may be quite challenging.

In the accompanying paper, a new definition for calculating the symmetric fourth 
order moment and cumulant of a transient signal has been proposed (Sircar et al. 2015). 
It has been demonstrated that with the choice of the lag-parameters in the definition, the 
computed moment and cumulant of the non-stationary signal will have some desirable 
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properties. In the present work, we use the same definition for computing the symmetric 
fourth order moments and cumulants of some stationary and non-stationary signals in 
multiplicative and additive noise.

The multi-component signals considered in this paper for parameter estimation are 
complex sinusoidal signal, complex frequency modulated (FM) sinusoidal signal, and 
complex linear chirp signal. The complex amplitude modulated (AM) sinusoidal sig-
nal case can be treated as an extension of the complex sinusoidal signal case with main 
and side lobes. Thus, this case is not considered separately. The concept of accumulated 
fourth order moment, as developed in the accompanying paper (Sircar et al. 2015), has 
been extended to the concept of accumulated fourth order cumulant while estimating 
parameters of the complex FM sinusoidal signal in multiplicative noise.

The paper is organized as follows: In "Symmetric fourth order cumulant", we give the 
definition of fourth order moment and cumulant used in this work, and derive the ana-
lytical expressions for the symmetric fourth order cumulant or accumulated cumulant of 
the above multi-component signals in multiplicative and additive noise. We analyze the 
"Deterministic signal case" and discuss the effects of replacing the ensemble average by 
the time average. In the next section "Simulation study" is presented, and the "Conclu-
sion" is given in last section. The Cramer-Rao (CR) bound expressions for the simulated 
examples are derived in Appendices A–C.

Symmetric fourth order cumulant
Consider the complex-valued discrete-time signal Y[n] comprising of the sum of M signals 
in presence of multiplicative and additive noise,

where Ai[n] is the ith multiplicative noise process, Si[n] is the ith signal process, W[n] is 
the additive noise process, and X[n] is the composite signal component comprising of 
multi-component signal and multiplicative noise.

It is assumed that W[n] is the zero-mean complex Gaussian noise process independent 
of the multiplicative noise processes. Since the fourth order moment and cumulant of 
the Gaussian process are zero, we need to study the fourth order statistics of X[n], which 
will be same as that of Y[n].

We define the symmetric fourth order moment (FOM) R4X [n, k] of the sequence X[n] 
as follows (Sircar et al. 2015),

where E is the expectation operator and ⋆ denotes complex conjugation.
The symmetric fourth-order cumulant of X[n] is defined as

(1)

Y [n] =

M
∑

i=1

Ai[n]Si[n] +W [n]

= X[n] +W [n]

(2)R4X [n, k] = E
{

X⋆[n]X[n+ k]X⋆[−n]X[−n+ k]
}

(3)

C4X [n, k] = E
{

X⋆[n]X[n+ k]X⋆[−n]X[−n+ k]
}

− E
{

X⋆[n]X[n+ k]
}

E
{

X⋆[−n]X[−n+ k]
}

− E
{

X⋆[n]X⋆[−n]
}

E
{

X[n+ k]X[−n+ k]
}

− E
{

X⋆[n]X[−n+ k]
}

E
{

X⋆[−n]X[n+ k]
}
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We will compute the symmetric fourth order cumulants of different signal models con-
sidered in the sequel, and if the fourth order cumulant is a function of both time n and 
lag k, we will use the concept of accumulated fourth order cumulant (AFOC) (Sircar and 
Mukhopadhyay 1995; Sircar et al. 2015). The resulting AFOC sequence will be a function 
of lag only.

Complex sinusoidal signals

The discrete-time signal X[n] consisting of M complex sinusoids of angular frequencies ωi’s  
in multiplicative noise can be expressed as

where αi’s are assumed to be independent and identically distributed (i.i.d.) random vari-
ables, and φi’s are assumed to be i.i.d. and U [0, 2π).

By using the definition of the FOM R4X [n, k] of X[n] as given by (2), we compute

where the following results of expectation are used:

Note that in (5), the third case (i = u = l = v) is added twice in the first two summations 
and subtracted once in the last summation, which leaves an overall inclusion of one term 
of this case.

On further simplification of (5), we get

(4)X[n] =

M
∑

i=1

αie
j(ωin+φi)

(5)

R4X [n, k] = E

{ M
∑

i=1

αie
−j(ωin+φi)

M
∑

u=1

αue
j[ωu(n+k)+φu]

×

M
∑

l=1

αle
−j(−ωln+φl)

M
∑

v=1

αve
j[ωv(−n+k)+φv]

}

=
∑

u

∑

v

E
{

α2
u

}

E
{

α2
v

}

ej(ωu+ωv)k

+
∑

u

∑

v

E
{

α2
u

}

E
{

α2
v

}

ej2(ωu−ωv)nej(ωu+ωv)k

−
∑

u

E
{

α4
u

}

ej2ωuk

(6)

E

{

ej(−φi+φu−φl+φv)
}

= 1 when i = u, l = v, and u�=v

= 1 when i = v, l = u, and u�=v

= 1 when i = u = l = v

= 0 otherwise

(7)

R4X [n, k] =
∑

u

∑

v

r22αe
j(ωu+ωv)k +

∑

u

∑

v

r22αe
j2(ωu−ωv)nej(ωu+ωv)k

−
∑

u

r4αe
j2ωuk
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where r2α = E
{

α2
}

 and r4α = E
{

α4
}

 are the second and fourth order moments, respec-
tively, of αi’s.

We now compute the fourth-order cumulant C4X [n, k] of X[n] as defined by (3),

Note that the first term R4X [n, k] of (8) has already been computed, and

where we use the expectation

Moreover, the third term of (8) is found to be identically zero, and

where again we use the expectations (10) and

Substituting the evaluated results of all terms in (8), we get

Note that the fourth-order cumulant C4X is time-invariant as expected, because the sig-
nal X[n] of (4) is a stationary signal. Once the FOC sequence is computed, it is easy to 
extract its frequencies which are set at twice the frequencies of the signal.

(8)

C4X [n, k] = R4X [n, k] − E

{

M
∑

i=1

αie
−j(ωin+φi)

M
∑

u=1

αue
j[ωu(n+k)+φu]

}

× E

{

M
∑

l=1

αle
−j(−ωln+φl)

M
∑

v=1

αve
j[ωv(−n+k)+φv]

}

− E

{

M
∑

i=1

αie
−j(ωin+φi)

M
∑

l=1

αle
−j(−ωln+φl)

}

× E

{

M
∑

u=1

αue
j[ωu(n+k)+φu]

M
∑

v=1

αve
j[ωv(−n+k)+φv]

}

− E

{

M
∑

i=1

αie
−j(ωin+φi)

M
∑

v=1

αve
j[ωv(−n+k)+φv]

}

× E

{

M
∑

l=1

αle
−j(−ωln+φl)

M
∑

u=1

αue
j[ωu(n+k)+φu]

}

(9)the second term = −
∑

u

∑

v

r22αe
j(ωu+ωv)k

(10)

E

{

ej(−φi+φu)
}

= 1 when i = u

= 0 otherwise

(11)the fourth term = −
∑

u

∑

v

r22αe
j2(ωu−ωv)nej(ωu+ωv)k

(12)E

{

ejφi
}

= 0

(13)C4X [k] = −
∑

u

r4αe
j2ωuk



Page 6 of 26Gaikwad et al. SpringerPlus  (2015) 4:291 

Complex FM sinusoidal signals

The discrete-time signal X[n] consisting of M complex frequency modulated (FM) sinu-
soids of carrier angular frequencies ωi’s, modulating angular frequencies ξi’s and modula-
tion indices βi’s in multiplicative noise can be expressed as

where we assume that αi’s are i.i.d. random variables, and φi’s are i.i.d. and U [0, 2π)

By using the notation

and the definition of the fourth-order moment R4X [n, k] of X[n] as given by (2), we 
calculate

where the expectations (6) are used, and the second and fourth order moments of αi’s are 
substituted.

Next, we compute the fourth-order cumulant C4X [n, k] of X[n] as given by (3),

(14)X[n] =

M
∑

i=1

αie
j[ωin+βi sin (ξin)+φi]

(15)ρi,n = ωin+ βi sin (ξin)

(16)

R4X [n, k] = E

{

M
∑

i=1

αie
−j(ρi,n+φi)

M
∑

u=1

αue
j(ρu,n+k+φu)

×

M
∑

l=1

αle
−j(ρl,−n+φl)

M
∑

v=1

αve
j(ρv,−n+k+φv)

}

=
∑

u

∑

v

r22αe
j(−ρu,n+ρu,n+k−ρv,−n+ρv,−n+k)

+
∑

u

∑

v

r22αe
j(−ρv,n+ρv,−n+k−ρu,−n+ρu,n+k)

−
∑

u

r4αe
j(−ρu,n+ρu,n+k−ρu,−n+ρu,−n+k)

(17)

C4X [n, k] = R4X [n, k] − E

{

M
∑

i=1

αie
−j(ρi,n+φi)

M
∑

u=1

αue
j(ρu,n+k+φu)

}

× E

{

M
∑

l=1

αle
−j(ρl,−n+φl)

M
∑

v=1

αve
j(ρv,−n+k+φv)

}

− E

{

M
∑

i=1

αie
−j(ρi,n+φi)

M
∑

l=1

αle
−j(ρl,−n+φl)

}

× E

{

M
∑

u=1

αue
j(ρu,n+k+φu)

M
∑

v=1

αve
j(ρv,−n+k+φv)

}

− E

{

M
∑

i=1

αie
−j(ρi,n+φi)

M
∑

v=1

αve
j(ρv,−n+k+φv)

}

× E

{

M
∑

l=1

αle
−j(ρl,−n+φl)

M
∑

u=1

αue
j(ρu,n+k+φu)

}
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The first term R4X [n, k] of (17) has been computed, and

where the expectation (10) is used. The third term of (17) is identically zero, and

where the expectations (10) and (12) are used.
Substituting all terms in (17), we find

and using (15) for ρu,n’s, we get after simplification

which can be further simplified to yield

under the assumption that the signal X[n] comprises of narrow-band FM sinusoids with 
small values of βu’s.

Note that the FOC C4X [n, k] is now a function of both time n and lag k. This is not 
unexpected because the signal X[n] of (14) is a non-stationary signal (Sircar and Sharma 
1997; Sircar and Saini 2007). We compute the accumulated FOC (AFOC) Q4X by sum-
ming C4X over an appropriately selected time frame [n1, n2] (Sircar and Mukhopadhyay 
1995; Sircar et al. 2015),

where E = −r4α(n2 − n1 + 1) and Fu = −r4αβu
∑n2

n=n1
cos (ξun).

Once the AFOC sequence is computed, we extract its frequencies which are set at 
twice the carrier frequencies of the signal X[n], together with the side-frequencies at 2 
times carrier plus/minus modulating frequencies.

Complex linear chirp signals

The discrete time signal X[n] consisting of M complex linear chirps of on-set angular fre-
quencies ωi’s and rates of increase of angular frequencies or chirp rates γi’s in multiplicative 
noise can be expressed as

(18)the second term = −
∑

u

∑

v

r22αe
j(−ρu,n+ρu,n+k−ρv,−n+ρv,−n+k)

(19)the fourth term = −
∑

u

∑

v

r22αe
j(−ρv,n+ρv,−n+k−ρu,−n+ρu,n+k)

(20)C4X [n, k] = −
∑

u

r4αe
j(−ρu,n+ρu,n+k−ρu,−n+ρu,−n+k)

(21)C4X [n, k] = −
∑

u

r4αe
j[2ωuk+2βu cos (ξun) sin (ξuk)]

(22)

C4X [n, k] = −
∑

u

r4αe
j2ωuk −

∑

u

r4αβu cos (ξun)e
j(2ωu+ξu)k

+
∑

u

r4αβu cos (ξun)e
j(2ωu−ξu)k

(23)

Q4X [k] =

n2
∑

n=n1

C4X [n, k]

=
∑

u

Eej2ωuk +
∑

u

Fue
j(2ωu+ξu)k −

∑

u

Fue
(2ωu−ξu)k
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where αi’s are assumed to be i.i.d random variables, and φi’s are assumed to be i.i.d and 
U [0, 2π). The fourth-order moment R4X [n, k] of X[n] is computed by (2) as follows

where we use the expectations (6) and substitute the second and fourth order moments 
of αi’s.

The fourth-order cumulant C4X [n, k] of X[n] as given by (3), is computed as

The first term R4X [n, k] of (26) has already been computed, and

where the expectation (10) is used. The third term of (26) is identically zero, and

(24)
X[n] =

M
∑

i=1

αie
j(ωin+γin

2/2+φi)

(25)

R4X [n, k] = E

{ M
∑

i=1

αie
−j

(

ωin+γin
2/2+φi

)

M
∑

u=1

αue
j[ωu(n+k)+γu(n+k)2/2+φu]

×

M
∑

l=1

αle
−j

(

−ωln+γln
2/2+φl

)

M
∑

v=1

αve
j[ωv(−n+k)+γv(−n+k)2/2+φv]

}

=
∑

u

∑

v

r22αe
j[(ωu+ωv)k+(γu+γv)k

2/2]

+
∑

u

∑

v

r22αe
j[2(ωu−ωv)n+(γu−γv)nk]ej[(ωu+ωv)k+(γu+γv)k

2/2]

−
∑

u

r4αe
j(2ωuk+γuk

2)

(26)

C4X [n, k] = R4X [n, k]

− E

{

M
∑

i=1

αie
−j

(

ωin+γin
2/2+φi

)

M
∑

u=1

αue
j[ωu(n+k)+γu(n+k)2/2+φu]

}

× E

{

M
∑

l=1

αle
−j

(

−ωln+γln
2/2+φl

)

M
∑

v=1

αve
j[ωv(−n+k)+γv(−n+k)2/2+φv]

}

− E

{

M
∑

i=1

αie
−j

(

ωin+γin
2/2+φi

)

M
∑

l=1

αle
−j

(

−ωln+γln
2/2+φl

)

}

× E

{

M
∑

u=1

αue
j[ωu(n+k)+γu(n+k)2/2+φu]

M
∑

v=1

αve
j[ωv(−n+k)+γv(−n+k)2/2+φv]

}

− E

{

M
∑

i=1

αie
−j

(

ωin+γin
2/2+φi

)

M
∑

v=1

αve
j[ωv(−n+k)+γv(−n+k)2/2+φv]

}

× E

{

M
∑

l=1

αle
−j

(

−ωln+γln
2/2+φl

)

M
∑

u=1

αue
j[ωu(n+k)+γu(n+k)2/2+φu]

}

(27)the second term = −
∑

u

∑

v

r22αe
j[(ωu+ωv)k+(γu+γv)k

2/2]

(28)the fourth term = −
∑

u

∑

v

r22αe
j[2(ωu−ωv)n+(γu−γv)nk]ej[(ωu+ωv)k+(γu+γv)k

2/2]
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where the expectations (10) and (12) are used. Substituting all the terms in (26), we get

This result is remarkable, because it shows that the symmetric FOC sequence is time-
invariant. Note that the chirp signal of (24) is a non-stationary signal. However, for the 
choice of arguments proposed in this paper, the symmetric FOC sequence depends only 
on time lag and not on absolute time.

Deterministic signal case
In this section, we discuss the non-random signal case. Although the observed sequence 
can be thought of as a sample of some discrete-time random process, any replacement of 
ensemble average by temporal average will not likely produce the same result when the 
underlying signal may not necessarily be stationary and ergodic.

Given a finite length sequence X[n], we compute the C̃-sequence as follows (Sircar 
et al. (2015))

where X̄[n] = X[n] − X0, X0 being the mean of the finite-length data record. We call C̃[k] as 
the fourth order time cumulant (FOTC). The choice of n1 and n2 should be such that there 
is no running off the ends of the data record (Sircar and Mukhopadhyay 1995; Sircar et al. 
2015). We now compute the C̃-sequence for the complex sinusoidal signal. On substitution 
of (4) and simplification, the terms of (30) reduce to the general form as shown below:

(29)C4X [k] = −
∑

u

r4αe
j(2ωuk+γuk

2)

(30)

C̃[k] =
1

n2 − n1 + 1

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]X̄⋆[−n]X̄[−n+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[−m+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄⋆[−n]

n2
∑

m=n1

X̄[m+ k]X̄[−m+ k]

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[−n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[m+ k]

(31)

1

n2 − n1 + 1

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]X̄⋆[−n]X̄[−n+ k]

=

M
∑

u=1

M
∑

v=1

t11[u, v]e
j(ωu+ωv)k +

M
∑

u=1

t12[u]e
j(ωuk) + t13 ;

−
1

(n2 − n1 + 1)2

n2
∑

n=n1

X̄⋆[n]X̄[n+ k]

n2
∑

m=n1

X̄⋆[−m]X̄[−m+ k]

= −

M
∑

u=1

M
∑

v=1

t21[u, v]e
j(ωu+ωv)k −

M
∑

u=1

t22[u]e
j(ωuk) − t23 ;

.

.

.
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where each coefficient tℓ1 is made independent of time n (and m), indices i and l (see 8) 
by taking summation over respective variables. Similarly, each of tℓ2 is independent of all 
variables except u, and every tℓ3 is made independent of all six variables by summation. 
Note that if the mean X0 = 0, the coefficients tℓ2 and tℓ3 will be identically zero. In this 
case, each of tℓ1 will again be a non-zero factor.

Combining all four terms of (31), (30) is rewritten as

where T1 = t11 − t21 − t31 − t41, etc., and T2, T3 are non-zero only when X0 �= 0.
Note that T2 will have X0 (or X⋆

0) as a factor, whereas T3 will involve higher power 
terms of X0 (or X⋆

0). As a consequence, when X0 is small, as will be the case here, T3 can 
be dropped from (32) retaining T2 for small value (Sircar et al. 2015)). Rewriting (32) for 
small X0, one obtains

Note that even if T3 is not negligible, the mode corresponding to the dropped term from 
(32) is real unity, which can be easily identified and discarded.

Comparing (13) and (33), it can be observed that the C̃-sequence consists of the square 
and product modes of the signal, together with the low amplitude original signal modes. 
If there are M modes in the sampled signal, the number of modes in the C̃-sequence will 
be L = M +M(M + 1)/2 = M(M + 3)/2. Consequently, the sequence will satisfy the 
linear prediction equations of order more than L. Remember that the unity mode may 
also be present.

In the complex FM sinusoidal signal case, the C̃-sequence will have the form

under the assumption that the signal X[n] comprises of narrow-band FM sinusoids with 
small values of βu’s. Note that T6, T7, T8 are non-zero only when X0 �= 0.

In the complex linear chirp signal case, the C̃-sequence will have the form

under the assumption that the chirp rates are comparable, i.e., (γu − γv) is very small. 
Note that T2 is non-zero only when X0 �= 0.

(32)C̃[k] =

M
∑

u=1

M
∑

v=1

T1[u, v]e
j(ωu+ωv)k +

M
∑

u=1

T2[u]e
jωuk + T3

(33)C̃[k] =

M
∑

u=1

M
∑

v=1

T1[u, v]e
j(ωu+ωv)k +

M
∑

u=1

T2[u]e
jωuk

(34)

C̃[k] =

M
∑

u=1

M
∑

v=1

{

T1[u, v]e
j(ωu+ωv)k + T2[u, v]e

j(ωu+ωv+ξu)k

+ T3[u, v]e
j(ωu+ωv−ξu)k + T4[u, v]e

j(ωu+ωv+ξv)k + T5[u, v]e
j(ωu+ωv−ξv)k

}

+

M
∑

u=1

{

T6[u]e
jωuk + T7[u]e

j(ωu+ξu)k + T8[u]e
j(ωu−ξu)k

}

(35)C̃[k] =

M
∑

u=1

M
∑

v=1

T1[u, v]e
j((ωu+ωv)k+(γu+γv)k

2/2) +

M
∑

u=1

T2[u]e
j(ωuk+γuk

2/2)
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In the presence of additive noise, the C̃-sequence may deviate, but it is likely that this 
deviation will be small when the superimposed noise is zero-mean Gaussian and uncor-
related with the signal. Remember that we are doing time averaging here.

Simulation study
Simulation study is carried out for the complex sinusoidal signals, complex FM sinusoidal 
signals, and complex linear chirp signals. The common simulation parameters used for all 
the signals are the number of realizations equal to 500, the multiplicative noise amplitude 
αi to be i.i.d. and Rician distributed, and its phase φi to be i.i.d. and U [0, 2π), and the addi-
tive noise W[n] to be complex zero-mean white circular Gaussian process.

Complex sinusoidal signals

The signal Y[n] taken for simulation consists of M complex sinusoidal signals in multiplica-
tive and additive noise.

where M = 2, the angular frequencies ωi = 2π
(

fi/fs
)

 with f1 = 70 Hz and f2 = 150 Hz, 
the sampling rate fs = 800 Hz, and the number of data points N = 513. The amplitude 
αi and the phase φi of the multiplicative noise and the additive noise W[n] are as stated 
above.

The sequence Ȳ [n] is computed by subtracting the mean of Y[n] from each value of the 
data sequence. The new sequence Ȳ [n] is used to compute the FOTC as given by (30).

The resulting FOTC C̃[k], being the sum of L complex sinusoids, satisfies the Lth order 
prediction equation. The order L becomes L = M(M + 3)/2 = 5. We use the extended 
order modelling for noise immunity and form forward prediction error filter (PEF) DJ (z) 
as

for an arbitrary (J − L) degree polynomial BJ−L(z), J > L. The corresponding linear pre-
diction equation in the C̃-values can be written as

where the extended model order J = 10, di’s are the prediction coefficients, and the 
sequence C̃[k] is available for 

{

k = −K , . . . , 0, . . . ,K
}

.
We can write (38) in matrix form as,

(36)Y [n] =

M
∑

i=1

αie
 (ωin+φi) +W [n]

(37)

DJ (z) = AL(z)BJ−L(z)

=

L
∏

i=1

(

1− z−1zi

)[

1+ b1z
−1 + · · · + bJ−Lz

−(J−L)
]

= 1+ d1z
−1 + d2z

−2 + · · · + dJ z
−J

(38)C̃[k] = −

J
∑

m=1

dmC̃[k −m], for− K + J ≤ k ≤ K

(39)Cd = 0
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where [C]ℓm = C̃[−K + J + ℓ−m]; ℓ = 0, 1, . . . , 2K − J ; m = 0, 1, . . . , J , and

d = [1 d1 d2 . . . dJ ]
T .

Once the prediction coefficient vector is known, we can calculate the power spectral 
density (PSD) as

where D(f ) = DJ

(

ej2π f /fs
)

. The computed PSD is shown in Figure 1 with σ 2 = 1, and 
the pole-zero plot is shown in Figure 2. It can be seen that the noise poles are lying away 
from the unit circle, whereas the signal poles are located on the unit circle.

For M > 1, the signal-to-noise ratio (SNR) in all the models is defined as

where µ denotes the mean and σ 2 stands for the variance.
We compare our results with the results obtained by the method developed in (Swami 

1994). The FOC values defined in (Swami 1994) are used to get the alternative set of esti-
mates, whereas the proposed method uses the FOTC values defined in (30). The bias and 
variance versus SNR plots for f1 and f2 are shown in Figure 3a–d. The CR bound is also 
shown for comparison with the variance plot. The rate of decay of variance in each of 
the methods is similar to that of the CR bound. The variance computed for the proposed 
method is closer to the CR bound than the variance computed for the method described 
in (Swami 1994). The bias of f1 at SNR = 0 dB for the method of (Swami 1994) is large 
indicating that the method is inaccurate at this noise level. It is clearly visible in both the 
bias and variance plots that the method proposed in this paper performs better than the 
method of (Swami 1994) at all SNR levels. 

Complex FM sinusoidal signals

The complex FM sinusoidal signal Y[n] taken for simulation is

where M = 2, the carrier angular frequencies ωi = 2π
(

fc,i/fs
)

 with fc,1 = 180 Hz and 
fc,2 = 80 Hz, the modulating angular frequencies ξi = 2π

(

fm,i/fs
)

 with fm,1 = 20 Hz and 
fm,2 = 15 Hz, the modulation indices β1 = β2 = 0.25, fs = 1000 Hz, N = 513, and αi, φi, 
and W[n] are same as stated earlier.

The sequence Ȳ [n] is computed by subtracting the mean of Y[n] from each value of the 
data sequence. The new sequence Ȳ [n] is used to compute the FOTC as given by (30). 

(40)SC̃(f ) =
σ 2

∣

∣D(f )
∣

∣

2

(41)
SNR =

E

{

∣

∣

∣

∣

M
∑

i=1

Ai

∣

∣

∣

∣

2
}

E
{

|W [n]|2
} =

M
∑

i=1

M
∑

j=1
j �=i

(σ 2
Ai

+ µ2
Ai

+ µAiµAj )

σ 2
W

(42)Y [n] =

M
∑

i=1

αie
j[ωin+βi sin (ξin)+φi] +W [n]
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The FM signal will contain modes corresponding to the carrier frequency fc, and two 
side bands fc + fm and fc − fm, and consequently, the resulting signal will have 6 modes. 
Thus, the FOTC will contain L = M(M + 3)/2 = 27 modes.

We use the extended model order J = 40 to form the PEF, and the prediction coef-
ficients are computed. The PSD computed using (40) is shown in Figure 4. The three 
clusters are centered at 2fc,1, 2fc,2, and fc,1 + fc,2. The pole-zero plot is shown in Figure 5. 
It can be seen that the noise poles are lying away from the unit circle, whereas the signal 
poles are located on the unit circle. Figure 6a–d and 7a–d show the bias and variance 
versus SNR plots of estimation of modulating and carrier frequencies. The variance of 
estimate is compared with the CR bound.

Note that the variance versus SNR plots for fm,1 and fm,2 decay in the same rate as that 
of the corresponding CR bounds in Figure 6. The maximum bias for fm,1 is 7.5 percent 
and that for fm,2 is 8 percent in the range of SNR = [10, 25] dB. Below SNR = 10 dB, the 
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Figure 1 PSD of FOTC of complex sinusoidal signal.
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Figure 2 Pole-zero plots of FOTC with PEF order 10.
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bias for fm,1 or fm,2 is large, which indicates that the estimation is inaccurate below this 
SNR.

In Figure 7, we observe that the variance versus SNR plots for fc,1 and fc,2 do not fol-
low the same rate of decay as that of the corresponding CR bounds. Note that the fre-
quency estimation here is done with 27 modes, which lead to an ill-conditioned problem 
(Sircar and Sarkar 1988). In this case, the accuracy of estimation depends on both of the 
noise level and the conditioning of the estimation procedure at the particular noise level. 
The bias of fc,1 or fc,2 is found to be very small.

Complex linear chirp signals

The complex linear chirp signal taken for simulation is

where M = 2, the on-set angular frequencies ωi = 2π
(

fo,i/fs
)

 with fo,1 = 50 Hz and 
fo,2 = 130 Hz, the chirp rates γi = 2π

(

fr,i/f
2
s

)

 with fr,1 = 15 and fr,2 = 30, fs = 800 Hz, 
N = 1025, and αi, φi, and W[n] are same as stated earlier.

The sequence Ȳ [n] is computed by subtracting the mean of Y[n] from each value of the 
data sequence. The new sequence Ȳ [n] is used to compute the FOTC as given by (30). 
The magnitude spectrum of the computed FOTC is shown in Figure 8.

We compute the discrete ambiguity function (DAF) of the FOTC as given by (Peleg 
and Porat 1991)

(43)Y [n] =

M
∑

i=1

αie
j(ωin+

γi
2 n

2+φi) +W [n]

(44)DAF(ω, ℓ) =

N−ℓ
∑

k=1

C̃[k + ℓ]C̃⋆[k]e−jωk
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Figure 3 Sinusoidal frequency estimation (FOTC diamond, FOC plus, CRB star) a Variance, f1 b Bias, f1 c Vari-
ance, f2 d Bias, f2.



Page 15 of 26Gaikwad et al. SpringerPlus  (2015) 4:291 

We use the lag parameter ℓ = (N − 1)/2 and compute the DAF of the FOTC. For M = 2,  
when the mean of the finite data record is set to zero as discussed in "Deterministic sig-
nal case", the C̃-sequence will contain the following terms (35)

for negligible T2 terms. Using (45) in (44), we get

where B0,i and Bm, m = 1, 2, 3 are the complex coefficients. The DAF expression of (46) 
contains 6 complex chirps and 3 complex sinusoids in frequency domain. The chirps are

(45)C̃[k] = T11e
j(2ω1k+γ1k

2) + T12e
j(2ω2k+γ2k

2) + T13e
j((ω1+ω2)k+(γ1+γ2)k

2/2)

(46)
DAF(ω, ℓ) =

N−ℓ
∑

k=1

[

6
∑

i=1

B0,ie
j(2ωd,ik+γd,ik

2)

+B1e
j(2γ1ℓ)k + B2e

j(2γ2ℓ)k + B3e
j((γ1+γ2)ℓ)k

]

e−jωk
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Figure 4 PSD of FOTC of complex FM signal.
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Figure 5 Pole-Zero plot of FOTC with PEF order 40.
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ωd,1 = (2(ω1 − ω2)+ 2γ1ℓ) with γd,1 = ((γ1 − γ2)ℓ),
ωd,2 = ((ω1 − ω2)+ (γ1 + γ2)ℓ) with γd,2 = ((γ1 − γ2)ℓ/2),
ωd,3 = ((ω1 − ω2)+ 2γ1ℓ) with γd,3 = ((γ1 − γ2)ℓ/2),
ωd,4 = ((ω2 − ω1)+ (γ1 + γ2)ℓ) with γd,4 = ((γ1 − γ2)ℓ/2),
ωd,5 = ((ω2 − ω1)+ 2γ1ℓ) with γd,5 = ((γ2 − γ1)ℓ/2), and
ωd,6 = (2(ω2 − ω1)+ 2γ2ℓ) with γd,6 = ((γ2 − γ1)ℓ).
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Figure 6 FM signal modulating frequency estimation (FOTC diamond, CRB star) a Variance, fm,1 b Bias, fm,1 c 
Variance, fm,2 d Bias, fm,2.
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The cross-terms due to multiple chirps can be attenuated/ eliminated by using the 
product high-order ambiguity function (Peleg and Porat 1991). The high-order ambigu-
ity function of the FOTC is shown in Figure 9.

To compute the chirp rates, we find the peaks at 2γ1ℓ, 2γ2ℓ, and (γ1 + γ2)ℓ. In Fig-
ure 9, the three peaks near origin correspond to these frequencies. Since lag ℓ is known, 
the chirp rates can be estimated by detecting the above peaks. Once the chirp rates are 
known, by de-chirping the C̃-sequence, other parameters of chirps can be found (Peleg 
and Porat 1991; Barbarossa et al. 1998). Here, we show the results of estimation of the 
chirp rates. The bias and variance versus SNR plots of the chirp rates are shown in Fig-
ure 10a–d. The CR bound plots are shown together with the variance plots.

The plots show that the estimates of chirp rates are quite accurate for the SNR level 
above 12 dB. The variance of estimate is 3–5 dB higher than the CR bound in each case. 
The bias for fr,1 or fr,2 is very small. Thus, the parameters of the chirp signals in pres-
ence of additive and multiplicative noise can be estimated accurately by using the FOTC 
values of the signal and the method described in (Peleg and Porat 1991; Barbarossa et al. 
1998).

Conclusion
In this paper, the parameter estimation approach based on the symmetric fourth-order 
cumulant (FOC) or accumulated FOC (AFOC) is proposed for some stationary or non-
stationary signals in multiplicative and additive noise. The derivations of the symmetric 
FOC are carried out for the multi-component complex sinusoidal, complex FM sinusoidal 
and complex linear chirp signals.

In case of parameter estimation of complex sinusoidal signal, the proposed method 
performs better than the method presented in (Swami 1994) at all SNR levels, even 
though the latter is also another method based on the fourth order statistics.

The simulation results show that using the method based on the new definition of 
the FOC or AFOC as developed in this paper, the parameters of various stationary and 
non-stationary signals can be estimated accurately in multiplicative and additive noise 
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Figure 8 Magnitude spectrum of computed FOTC of chirp signal.
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environment. The CR bounds are computed in each case for comparison of the variances 
of estimated parameters.

The new definition of symmetric fourth-order moment and cumulant, as proposed in 
(Sircar et al. (2015)) and in this paper, reduces the dimension of fourth-order moment/
cumulant drastically from three lag-variables to one lag-variable. Moreover, the symmet-
ric FOC is found to be time-independent for some non-stationary signals like complex 
exponentials and linear chirps. In our future research, we like to explore the full poten-
tial of symmetric FOC by applying the proposed method for analysis of various other 
stationary and non-stationary signals in multiplicative and additive noise. As further 
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Figure 10 Chirp rate estimation (FOTC diamond, CRB star) a Variance, fr,1 b Bias, fr,1 c Variance, fr,2 d Bias, fr,2.
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research, we need to present results for comparison of performance of our method and 
that of the methods based on the NLLS and cyclic statistics.
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Appendix A: The CR bound for complex sinusoids
The signal Y[n] comprising of M complex sinusoidal signals in multiplicative and additive 
noise is given as

where Ai[n] are the multiplicative noise processes and W[n] is the additive noise process.
The Cramer-Rao bound (CRB) for a single complex sinusoid in multiplicative complex-

valued circularly symmetric Gaussian noise and independent circular complex white 
Gaussian additive noise is considered in (Ghogho et  al. 2001). Here, we consider the 
multi-component signals with multiplicative and additive noise. The noise processes are 
the complex-valued Gaussian processes with the following properties. We also examine 
the random variable case (4). Our assumptions about the noise processes are given below:

 (1)  Ai[n] are the complex-valued Gaussian processes, circularly symmetric around 
their mean µie

ψi, µi ≥ 0, −π ≤ ψi < π, i.e., ai ∼ CN (µie
ψi1, σ 2

Ai
I), where ai is 

a (N × 1) vector generated from Ai[n]. Moreover, Ai[n] are i.i.d. and independent 
of additive noise.

 (2)  W[n] is a zero-mean circular complex white Gaussian noise process, i.e., 
w ∼ CN (0, σ 2

W I), where w is a (N × 1) vector generated from W[n].

We can write (47) as

where Ei = Diag[eωin; n = 0, . . . ,N − 1], and y is a vector of size (N × 1) generated 
from Y[n].

The mean vector is given by

where E is the expectation operator and 1 is a vector of ones of size (N × 1). Let 
ȳ = y −mY ; then ȳ will be circularly symmetric because of the assumption of circular 

(47)Y [n] =

M
∑

i=1

Ai[n]e
ωin +W [n], n = 0, . . . ,N − 1

(48)y =

M
∑

i=1

Eiai + w

(49)mY = E{y} =

M
∑

i=1

µie
ψiEi1
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symmetry and mutual independence of Ai[n]’s and W[n] (Ghogho et al. 2001). The statis-
tics of ȳ can be described by only the correlation matrix RY = E{ȳȳH }, and the psuedo-
correlation matrix UY = E{ȳȳT } will be zero. We can write

where I is the identity matrix of size (N × N ) and E
{

āiāi
H
}

= RAi.
For the complex Gaussian probability density function (PDF), the Fisher information 

matrix (FIM) is given by (Kay 2010)

Let the parameter vector be � = [ω1 ω2 ... ωM]. Consider the ith term of RY  in (50), 
RYi = EiRAiE

H
i + σ 2

W I. Since the process Ai[n] is i.i.d., the derivative of RY  with respect 
to any of the defined parameters will be zero. So only the mean vector will contribute to 
the FIM, and the first term of (51) will be zero. The partial derivatives of the mean vector 
will be

where D = Diag[0, . . . ,N − 1], and

On substitution of the computed values, (51) gives the FIM entries Jθi ,θl. The entries are 
given as

and

where the computed derivatives of the mean are substituted.
The CR bounds are given by the diagonal elements of the inverse of FIM, J−1, and these 

are evaluated at the true value of the parameters, i.e.,

Now consider the signal given in (47). When Ai[n] = Ai is the circularly symmetric com-
plex Gaussian random variable, (47) reduces to

(50)RY = E{ȳȳH } =

M
∑

i=1

EiRAiE
H
i + σ 2

W I

(51)Jθi ,θl = tr

{

R−1
Y

∂RY

∂θi
R−1
Y

∂RY

∂θl

}

+ 2Re

{

∂mH
Y

∂θi
R−1
Y

∂mY

∂θl

}

.

(52)
∂mH

Y

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
−ψi1TEH

i

}

= −µie
−ψi1TDEH

i

(53)
∂mY

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
ψiEi1

}

= µie
ψiDEi1

(54)Jωiωi = µ2
i 2Re

{

1TR−1
Y D21

}

(55)Jωiωl
= µiµl 2Re

{

e (ψl−ψi)1TR−1
Y D2EH

i El1
}

(56)CRB(ωi) =
[

J−1
]

i,i
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where Ai = αieφi, and the amplitude αi is the Rayleigh/ Rician random variable, the 
phase φi ∼ U [0, 2π). Let us consider the non-zero mean case, and assume that Ai is cir-
cularly symmetric around mean µie

ψi. Note that the mean vector of Y[n] will be same 
as (49) and using similar arguments as above the correlation matrix can be shown to be

where E
{

āiā
H
i

}

= σ 2
Ai
11T , which is independent of the frequencies to be estimated. 

So the resulting CR bound expressions will be similar to random process case with 
RAi = σ 2

Ai
11T. The CR bound expressions for random variable case can be obtained in a 

straightforward way by evaluating the partial derivatives given in (51).

Appendix B: The CR bound for complex FM sinusoids
Consider the sum of complex FM sinusoidal signals in multiplicative and additive noise

where the assumptions related to the multiplicative and additive noise are same as in 
Appendix A. The above equation can be written as

where Ei = Diag
[

e [ωin+βi sin(ξin)]; n = 0, . . . ,N − 1
]

, and y, ai, w are vectors of size 
(N × 1).

Following the similar procedure and same assumptions as in appendix A, we get the 
mean vector

where 1 is a vector of ones of size (N × 1) and the correlation matrix is

where I is the identity matrix of size (N × N ) and E
{

āiāi
H
}

= RAi.

(57)Y [n] =

M
∑

i=1

Aie
ωin +W [n], n = 0, . . . ,N − 1

(58)RY = E{ȳȳH } =

M
∑

i=1

Eiσ
2
Ai
11TEH

i + σ 2
W I

(59)Y [n] =

M
∑

i=1

Ai[n]e
 [ωin+βi sin(ξin)] +W [n], n = 0, ...,N − 1

(60)y =

M
∑

i=1

Eiai + w

(61)mY = E{y} =

M
∑

i=1

µie
ψiEi1

(62)RY = E{ȳȳH } =

M
∑

i=1

EiRAiE
H
i + σ 2

W I
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Consider the ith term of RY  in (62), RYi = EiRAiE
H
i + σ 2

W I. Since the random process 
Ai[n] is i.i.d., the derivative of RY  with respect to any of the defined parameters will be 
zero. So only the mean vector will contribute to the FIM.

Let the parameter vector be � = [ξ1 ω1 ξ2 ω2 · · · ξM ωM]. The partial derivatives of 
the mean vector are

where Ci = Diag[cos(ξin); n = 0, . . . ,N − 1], D = Diag[0, . . . ,N − 1], and

On substitution of the computed values, (51) gives the FIM entries Jθi ,θl. The entries are

(63)
∂mH

Y

∂ξi
=

∂

∂ξi

{

M
∑

i=1

µie
ψi1TEH

i

}

= −µie
−ψiβi1

TDCiE
H
i ,

(64)
∂mH

Y

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
ψi1TEH

i

}

= −µie
−ψi1TDEH

i

(65)
∂mY

∂ξi
=

∂

∂ξi

{

M
∑

i=1

µie
ψiEi1

}

= µie
ψiβiDCiEi1,

(66)
∂mY

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
ψiEi1

}

= µie
ψiDEi1.

(67)Jξiξi = 2µ2
i β

2
i Re

{

1TR−1
Y D2C2

i 1
}

(68)Jξiξl = 2µiµlβiβl Re
{

e (ψl−ψi)1TR−1
Y D2CiClE

H
i El1

}

(69)Jξiωi = 2µ2
i βi Re

{

1TR−1
Y D2Ci1

}

(70)Jξiωl
= 2µiµlβi Re

{

e (ψl−ψi)1TR−1
Y D2CiE

H
i El1

}

(71)Jωiξi = 2µ2
i βi Re

{

1TR−1
Y D2Ci1

}

(72)Jωiξl = 2µiµlβl Re
{

e (ψl−ψi)1TR−1
Y D2ClE

H
i El1

}

(73)Jωiωi = 2µ2
i Re

{

1TR−1
Y D21

}

(74)
Jωiωl

= 2µiµl Re
{

e (ψl−ψi)1TR−1
Y D2EH

i El1
}
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where the computed derivatives of the mean are substituted.
The CR bounds are given by the diagonal elements of the inverse of FIM, J−1, and these 

are evaluated at the true value of the parameters, i.e.,

Now consider the signal given in (59). When Ai[n] = Ai is the circularly symmetric com-
plex Gaussian random variable, (59) reduces to

where Ai= αieφi, and the magnitude αi is the Rayleigh/ Rician random variable, the 
phase φi ∼ U [0, 2π). Let us consider the non-zero mean case and assume that Ai is cir-
cularly symmetric around mean µie

ψi. Note that the mean vector of Y[n] will be same 
as (61), and using similar arguments as before the correlation matrix can be shown to be

where E
{

āiā
H
i

}

= σ 2
Ai
11T which is independent of the frequencies to be estimated. So 

the resulting CR bound expressions will be similar to the random process case with 
RAi = σ 2

Ai
11T. The CR bound expressions for the random variable case can be obtained 

in a straightforward way by evaluating the partial derivatives given in (51).

Appendix C: The CR bound for complex linear chirps
Consider the sum of complex linear chirp signals in multiplicative and additive noise

where the assumptions related to the multiplicative and additive noise are same as in 
appendix A. The above equation can be written as

where Ei = Diag
[

e (ωin+γi(n)
2/2); n = 0, . . . ,N − 1

]

, and y, ai, w are vectors of size 
(N × 1).

The mean vector is given by

where 1 is a vector of ones of size (N × 1), and the correlation matrix

(75)CRB(ξi) =
[

J−1
]

2(i−1)+1,2(i−1)+1
, CRB(ωi) =

[

J−1
]

2(i−1)+2,2(i−1)+2
.

(76)Y [n] =

M
∑

i=1

Aie
 (ωin+βi sin(ξin)) +W [n], n = 0, . . . ,N − 1

(77)RY = E{ȳȳH } =

M
∑

i=1

Eiσ
2
Ai
11TEH

i + σ 2
W I

(78)Y [n] =

M
∑

i=1

Ai[n]e
j(ωin+γi(n)

2/2) +W (n), n = 0, . . . ,N − 1

(79)y =

M
∑

i=1

Eiai + w

(80)mY = E{y} =

M
∑

i=1

µie
ψiEi1
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where I is the identity matrix of size (N × N ) and E
{

āāH
}

= RAi.
Let the parameter vector be � = [γ1 ω1 γ2 ω2 ... γM ωM]. The derivative of RY  with 

respect to any of the defined parameters will be zero. So only the mean vector will con-
tribute to the FIM. The partial derivatives of the mean vector will be

where D = Diag[0, . . . ,N − 1], and

On substitution of the computed values, (51) gives the FIM entries Jθi ,θl. The entries are 
given as

(81)RY = E{ȳȳH } =

M
∑

i=1

EiRAiE
H
i + σ 2

W I

(82)
∂mH

Y

∂γi
=

∂

∂γi

{

M
∑

i=1

µie
−ψi1TEH

i

}

= −µie
−ψi

1

2
1TD2EH

i

(83)
∂mH

Y

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
−ψi1TEH

i

}

= −µie
−ψi1TDEH

i

(84)
∂mY

∂γi
=

∂

∂γi

{

M
∑

i=1

µie
ψiEi1

}

= µie
ψi

1

2
D2Ei1

(85)
∂mY

∂ωi
=

∂

∂ωi

{

M
∑

i=1

µie
ψiEi1

}

= µie
ψiDEi1

(86)Jγiγi = µ2
i

1

2
Re

{

1TR−1
Y D41

}

(87)Jγiωi = µ2
i Re

{

1TR−1
Y D31

}

(88)Jγiγl = µiµl
1

2
Re

{

e (ψl−ψi)1TR−1
Y D4EH

i El1
}

(89)Jγiωl
= µiµl Re

{

e (ψl−ψi)1TR−1
Y D3EH

i El1
}

(90)Jωiγi = µ2
i Re

{

1TR−1
Y D31

}

(91)Jωiωi = 2µ2
i Re

{

1TR−1
Y D21

}
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where the computed derivatives of the mean are substituted.
The CR bounds are given by the diagonal elements of the inverse of FIM, J−1, and these 

are evaluated at the true value of the parameters, i.e.,

For the random variable Ai case, we can show that the mean vector will be same as (80) 
and the correlation matrix will be

where E
{

āiā
H
i

}

= σ 2
Ai
11T which will be independent of the parameters to be estimated. 

So the resulting CR bound expressions will be similar to the random process case with 
RAi = σ 2

Ai
11T. The CR bound expressions for the random variable case can be obtained 

in a straightforward way by evaluating the partial derivatives given in (51).
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