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Background
Let H be a real Hilbert space. An operator A : H → H is called monotone if

and is called strongly monotone if there exists � ∈ (0, 1) such that

Interest in monotone operators stems mainly from their usefulness in numerous appli-
cations. Consider, for example, the following: Let f : H → R be a proper and convex 
function. The subdifferential of f  at x ∈ H is defined by

It is easy to check that ∂f : H → 2H is a monotone operator on H , and that 0 ∈ ∂f (x) 
if and only if x is a minimizer of f . Setting ∂f ≡ A, it follows that solving the inclusion 
0 ∈ Au, in this case, is solving for a minimizer of f .

Let E be a real normed space, E∗ its topological dual space. The map J : E → 2E
∗ 

defined by

is called the normalized duality map on E. A map A : E → E is called accretive if for 
each x, y ∈ E, there exists j(x − y) ∈ J (x − y) such that

(1.1)
〈

Ax − Ay, x − y
〉

≥ 0 ∀ x, y ∈ H ,

(1.2)
〈

Ax − Ay, x − y
〉

≥ ��x − y�2 ∀x, y ∈ H .

∂f (x) =
{

x∗ ∈ H : f (y)− f (x) ≥
〈

y− x, x∗
〉

∀ y ∈ H
}

.

Jx =
{

x∗ ∈ E∗ :
〈

x, x∗
〉

= �x�.�x∗�, �x� = �x∗�
}

(1.3)
〈

Ax − Ay, j(x − y)
〉

≥ 0.

Abstract 

Let E = Lp, 1 < p < ∞, and A : E → E∗ be a strongly monotone and Lipschitz map-
ping. A Krasnoselskii-type sequence is constructed and proved to converge strongly to 
the unique solution of Au = 0. Furthermore, our technique of proof is of independent 
interest.
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A is called strongly accretive  if there exists k ∈ (0, 1) such that for each x, y ∈ E, there 
exists j(x − y) ∈ J (x − y) such that

Several existence theorems have been established for the equation Au = 0 when A is of 
the monotone-type (see e.g., Deimling (1985; Pascali and Sburian 1978).

For approximating a solution of Au = 0, assuming existence, where A : E → E is of 
accretive-type, Browder (1967) defined an operator T : E → E by T := I − A, where I is 
the identity map on E. He called such an operator pseudo-contractive. A map T : E → E 
is then called pseudo-contractive if

and is called strongly pseudo-contractive if there exists k ∈ (0, 1) such that

It is trivial to observe that zeros of A corresspond to fixed points of T . For Lipschitz 
strongly pseudo-contractive maps, Chidume (1987) proved the following theorem.

Theorem C1  (Chidume 1987) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E be nonempty 
closed convex and bounded. Let T : K → K  be a strongly pseudocontractive and 
Lipschitz map. For arbitrary x0 ∈ K , let a sequence {xn} be defined iteratively by 
xn+1 = (1− αn)xn + αnTxn, n ≥ 0, where {αn} ⊂ (0, 1) satisfies the following conditions: 
(i)

∑∞
n=1 αn = ∞, (ii)

∑∞
n=1 α

2
n < ∞. Then, {xn} converges strongly to the unique fixed 

point of T .

The main tool used in the proof of Theorem C1 is an inequality of Bynum (1976). This 
theorem signalled the return to extensive research efforts on inequalities in Banach 
spaces and their applications to iterative methods for solutions of nonlinear equations. 
Consequently, this theorem of Chidume has been generalized and extended in vari-
ous directions, leading to flourishing areas of research, for the past thirty years or so, 
by numerous authors (see e.g., Chidume 1986, 1990, 2002; Chidume and Ali 2007; Chi-
dume and Chidume 2005, 2006; Chidume and Osilike 1999; Deng 1993a, b; Zhou 1997; 
Zhou and Jia 1996, 1997; Liu 1995, 1997; Qihou 1990, 2002; Weng 1991, 1992; Xiao 1998; 
Xu 1989, 1991a, b, 1992, 1998; Xu and Roach 1991, 1992; Xu et al. 1995; Zhu 1994 and 
a host of other authors). Recent monographs emanating from these researches include 
those by Chidume (2009), Berinde (2007), Goebel and Reich (1984) and William and 
Shahzad (2014).

Unfortunately, the success achieved in using geometric properties developed from 
the mid 1980ies to early 1990ies in approximating zeros of accretive-type mappings has 
not carried over to approximating zeros of monotone-type operators in general Banach 
spaces. The first problem is that since A maps E to E∗, for xn ∈ E, Axn is in E∗. Conse-
quently, a recursion formula containing xn and Axn may not be well defined. Another 
difficulty is that the normalized duality map which appears in most Banach space ine-
qualities developed, and also appears in the definition of accretive-type mappings, does 
not appear in the definition of monotone-type mappings in general Banach spaces. This 
creats very serious technical difficulties.

(1.4)
〈

Ax − Ay, j(x − y)
〉

≥ k�x − y�2.

(1.5)
〈

Tx − Ty, x − y
〉

≤ �x − y�2 ∀x, y ∈ E,

(1.6)
〈

Tx − Ty, x − y
〉

≤ k�x − y�2 ∀x, y ∈ E.
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Attemps have been made to overcome the first difficulty by introducing the inverse of the 
normalized duality mapping in the recursion formulas for approximating zeros of mono-
tone-type mappings. But one major problem with such recursion formulas is that the exact 
form of the normalized duality map (or its inverse) is not known precisely in any space more 
general than Lp spaces, 1 < p < ∞. Futhermore, the recursion formulas, apart from con-
taining the normalized duality map and its inverse, generally involve computation of subsets 
and generalized projections, both of which are defined in a way that makes their compu-
tation almost impossible. We give some examples of some results obtained using these 
approximation schemes. Before we do this, however, we need the following definitions.

Let E be a real normed space and let a funtion φ(., .) : X × X −→ R be defined by

It is easy to see that in Hilbert space, φ(x, y) reduces to �x − y�2. A function πK : E −→ K  
defined by: πK (x) = x̄ such that x̄ is the solution of

is called a generalized projection map.
Now we present the following results.
In Hilbert space, suppose that a map A : K → H is γ-inverse strongly monotone, i.e., 

there exists γ > 0 such that �Ax − Ay, x − y� ≥ γ ||Ax − Ay||2 ∀ x, y ∈ H . Iiduka et  al. 
(2004) studied the following iterative scheme.

where {αn} is a sequence in [0, 2γ ]. They proved that the sequence {xn} generated by (1.7) 
converges strongly to PVI(K ,A)(x0), where PVI(K ,A) is the metric projection from K  onto 
VI(K ,A) (see e.g., Iiduka et al. 2004 for definition and explanation of the symbols).

Zegeye and Shahzad proved the following result.

Theorem 1.1  (Zegeye and Shahzad 2009) Let E be uniformly smooth and 2-uniformly 
convex real Banach space with dual E∗. Let

A : E −→ E∗ be a γ-inverse strongly monotone mapping and
T : E −→ E be relatively weak nonexpansive mapping with A−1(0) ∩ F(T ) �= ∅. 

Assume that 0 < αn ≤ b0 :=
γ c2

2
, where c is the constants from the Lipschitz property of 

J−1, then the sequence generated by

φ(x, y) = ||x�2 − 2
〈

x, J (y)
〉

+ ||y||2 ∀ x, y ∈ E.

min
{

φ(x, y), y ∈ K
}

,

(1.7)



















x0 ∈ K , choosen arbitrary,
yn = PK (xn − αnAxn);
Cn =

�

z ∈ K : �yn − z� ≤ �xn − z�
�

,

Qn =
�

z ∈ K :
�

xn − z, x0 − xn
�

≥ 0
�

xn+1 = PCn∩Qn(x0), n ≥ 1,











































x0 ∈ K , choosen arbitrary,

yn = J−1(Jxn − αnAxn);
zn = Tyn,
H0 =

�

v ∈ K : φ(v, z0) ≤ φ(v, y0) ≤ φ(v, x0)
�

,

Hn =
�

v ∈ Hn−1 ∩Wn−1 : φ(v, zn) ≤ φ(v, yn) ≤ φ(v, xn)
�

,

W0 = E,
Wn =

�

v ∈ Wn−1 ∩Hn−1 :
�

xn − v, jx0 − jxn
�

≥ 0
�

xn+1 = �Hn∩Wn(x0), n ≥ 1,
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converges strongly to �F(T )∩A−1(0)x0 where �F(T )∩A−1(0) is the generalised projection from 
E onto F(T ) ∩ A−1(0).

We remark here that although the approximation methods used in the result of Iiduka 
et al. referred to above, and in Theorem 1.1 yield strong convergence to a solution of the 
problem under consideration, it is clear that they are not easy to implement. Further-
more, Theorem 1.1 excludes Lp spaces, 2 < p < ∞, because these spaces are not 2-uni-
formly convex. The theorem, however, is applicable in Lp spaces 1 < p < 2.

In this paper, we introduce an iterative scheme of Krasnoselskii-type to approximate the 
unique zero of a strongly monotone Lipschitz mapping in Lp spaces, 1 < p < ∞. In these 
spaces, the formula for J  is known precisely (see e.g., Cioranescu 1990; Chidume 2009). 
The Krasnoselskii sequence, whenever it converges, is known to converge as fast as a 
geometric progression. Furthermore, our iteration method which will not involve con-
struction of subsets or the use of generalized projection is also of independent interest.

Preliminaries
In the sequel, we shall need the following results and definitions.

Lemma 2.1  (see e.g., Chidume 2009, p. 55) Let E = Lp, 1 < p < 2. Then, there exists a 
constant cp > 0 such that for all x, y in Lp the following inequalities hold:

Let E be a smooth real Banach space with dual E∗. The function φ : E × E → R, 
defined by,

where J  is the normalized duality mapping from E into 2E∗, introduced by Alber has 
been studied by Alber (1996), Alber and Guerre-Delabriere (2001), Kamimura and Taka-
hashi (2002), Reich (1996) and a host of other authors. If E = H , a real Hilbert space, 
then Eq (2.3) reduces to φ(x, y) = �x − y�2 for x, y ∈ H . It is obvious from the definition 
of the function φ that

Define V : X × X∗ → R by

Then, it is easy to see that

Corollary 2.2  Let E = Lp, 1 < p ≤ 2. Then J−1 is Lipschitz, i.e., there exists L1 > 0 such 
that for all u, v ∈ E∗, the following inequality holds:

Proof  This follows from inequality (2.2).� �

(2.1)�x + y�2 ≥�x�2 + 2�y, J (x)� + cp�y�
2
,

(2.2)�x − y, J (x)− J (y)� ≥ (p− 1)�x − y�2.

(2.3)φ(x, y) = �x�2 − 2�x, Jy� + �y�2 for x, y ∈ E,

(2.4)(�x� − �y�)2 ≤ φ(x, y) ≤ (�x� + �y�)2 for x, y ∈ E.

(2.5)V (x, x∗) = �x�2 − 2�x, x∗� + �x∗�2.

(2.6)V (x, x∗) = φ(x, J−1(x∗)) ∀ x ∈ X , x∗ ∈ X∗
.

(2.7)�J−1(u)− J−1(v)� ≤ L1�u− v�.
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For Lp, 2 ≤ p < ∞, we have the following lemma.

Lemma 2.3  (Alber and Ryazantseva 2006, p. 48) Let X = Lp, p ≥ 2. Then, the inverse of 
the normalized duality map J−1 : X∗ → X is Hölder continuous on balls. i.e., ∀ u, v ∈ X∗ 
such that �u� ≤ R and �v� ≤ R, then

where mp := (2p+1Lpc
p
2)

1
p−1 > 0, for some constant c2 > 0.

Proof  This follows from the following inequality:

(see e.g., Alber and Ryanzantseva 2006, p. 48).� �

Lemma 2.4  (Alber 1996) Let X be a reflexive striclty convex and smooth Banach space 
with X∗ as its dual. Then,

for all x ∈ X and x∗, y∗ ∈ X∗.

Definition 2.5  An operator T : X → X∗ is called ψ-strongly monotone if there exists a 
continuous, strictly increasing function ψ : R → R with ψ(0) = 0 such that

Let X and Y  be Banach spaces with X∗ and Y ∗ as their respective duals.

Definition 2.6  An operator A : D(A) ⊂ X → Y ∗ is called hemicontinuous at x0 ∈ D(A) 
if x0 + tny ∈ D(A),

Clearly, every continuous map is hemicontinuous.

Lemma 2.7  Let T : X → X∗ be a hemicontinuous ψ-strongly monotone operator with 
D(T ) = X. Then, R(T ) = X∗.

Proof  See chapter III, page 48 of Pascali and Sburian (1978).� �

Main results

Convergence in Lp spaces, 1 < p ≤ 2.
In the sequel, k is the strong monotonicity constant of A and L > 0 is its Lipschitz con-
stant, and δ := k

2(L1+1)(L+1)2
.

(2.8)�J−1(u)− J−1(v)� ≤ mp�u− v�
1

p−1 ,

(2.9)�Jx − Jy, x − y� ≥
�x − y�p

2p+1Lpc
p
2

, c2 = 2max{1,R}.

(2.10)V (x, x∗)+ 2�J−1x∗ − x, y∗� ≤ V (x, x∗ + y∗)

(2.11)
〈

Tx − Ty, x − y
〉

≥ ψ(�x − y�)�x − y� ∀ x, y ∈ D(T ).

for y ∈ X and tn → 0+ =⇒ A(x0 + tny)
w∗

→Ax0.
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Theorem 4.1  Let E = Lp, 1 < p ≤ 2. Let A : E → E∗ be a strongly monotone and Lip-
schitz map. For x0 ∈ E arbitrary, let the sequence {xn} be defined by:

where � ∈
(

0, δ

)

 . Then, the sequence {xn} converges strongly to x∗ ∈ A−1(0) and x∗ is 
unique.

Proof  Let ψ(t) = kt in inequality (2.11). By Lemma 2.7, A−1(0) �= ∅. Let x∗ ∈ A−1(0). 
Using the definition of xn+1 we compute as follows:

Applying Lemma 2.4, we have

Using the strong monotonocity of A, Lipschitz property of j−1 and the Lipschitz prop-
erty of A, we have that:

Thus, φ(x∗, xn) converges, since it is monotone decreasing and bounded below by zero. 
Consequently,

This yields xn → x∗ as n → ∞. Suppose there exists y∗ ∈ A−1(0), y∗ �= x∗. Then, sub-
stituting x∗ by y∗ in the above argument, we obtain that xn → y∗ as n → ∞. By unique-
ness of limit x∗ = y∗. So, x∗ is unique. completing the proof.� �

Convergence in Lp spaces, 2 ≤ p < ∞.

Remark 1  We remark that for E = Lp, 2 ≤ p < ∞, if A : E → E∗ satisfies the following 
conditions: there exists k ∈ (0, 1) such that

(4.1)xn+1 = J−1(Jxn − �Axn), n ≥ 0,

φ(x∗, xn+1) = φ(x∗, J−1(Jxn − �Axn))

= V (x∗, Jxn − �Axn)

φ(x∗, xn+1) = V (x∗, Jxn − �Axn)

≤ V (x∗, Jxn)− 2��J−1(Jxn − �Axn)− x∗,Axn − Ax∗�

= φ(x∗, xn)− 2��xn − x∗,Axn − Ax∗�

+ 2��xn − x∗,Axn − Ax∗�

− 2��J−1(Jxn − �Axn)− x∗,Axn − Ax∗�

= φ(x∗, xn)− 2��xn − x∗,Axn − Ax∗�

− 2��J−1(Jxn − �Axn)− J−1(Jxn),Axn − Ax∗�.

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2�k�xn − x∗�2

+ 2��J−1(Jxn − �Axn)− J−1(Jxn)��Axn − Ax∗�

≤ φ(x∗, xn)− 2�k
∥

∥xn − x∗
∥

∥

2
+ 2�

2L1L
2
∥

∥xn − x∗
∥

∥

2

≤ φ(x∗, xn)− �k�xn − x∗�2.

�k�xn − x∗�2 ≤ φ(x∗, xn)− φ(x∗, xn+1) → 0, as n → ∞.

(5.1)
〈

Ax − Ay, x − y
〉

≥ k�x − y�
p

p−1 ∀ x, y ∈ E,
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and A−1(0) �= ∅, then the Krasnoselskii-type sequence (4.1) converges strongly to the 
unique solution of Au = 0. In fact, we prove the following theorem.

In the following theorem, δp :=
(

k

2mpL
p

p−1

)p−1

.

Theorem  5.1  Let X = Lp, 2 ≤ p < ∞. Let A : X → X∗ be a Lipschitz map. Assume 
that there exists a constant k ∈ (0, 1) such that A satisfies the following condition:

and that A−1(0) �= ∅. For arbitrary x0 ∈ X, define the sequence {xn} iteratively by:

where � ∈ (0, δp). Then, the sequence {xn} converges strongly to the unique solution of the 
equation Ax = 0.

Proof  We first prove that {xn} is bounded. This proof is by induction.

Let x∗ ∈ A−1(0). Then, there exists r > 0 such that φ(x∗, x1) ≤ r. By construction, 
φ(x∗, x1) ≤ r. Suppose that φ(x∗, xn) ≤ r, for some n ≥ 1. We prove that φ(x∗, xn+1) ≤ r.

Using Eq (2.6) and inequality (2.10), we have:

Using condition (5.2) on A and inequality (2.8), we obtain:

Hence, by induction, {xn} is bounded. We now prove that {xn} converges strongly to 
x∗ ∈ A−1(0). Let x∗ ∈ A−1(0). From the same computation as above, we have that:

which implies φ(x∗, xn) is decreasing and bounded below by zero, so the limit of φ(x∗, xn) 
exists. Therefore,

(5.2)
〈

Ax − Ay, x − y
〉

≥ k�x − y�
p

p−1 ,

(5.3)xn+1 = J−1(Jxn − �Axn), n ≥ 0,

φ(x∗, xn+1) = φ(x∗, J−1(Jxn − �Axn)) = V (x∗, Jxn − �Axn)

≤ V (x∗, Jxn)− 2�J−1(Jxn − �Axn)− x∗, �Axn�

= V (x∗, Jxn)− 2��xn − x∗,Axn − Ax∗�

+ 2��J−1(Jxn − �Axn)− J−1(Jxn),Axn − Ax∗�.

≤ φ(x∗, xn)− 2��xn − x∗,Axn − Ax∗�

+ 2��J−1(Jxn − �Axn)− J−1(Jxn)��Axn − Ax∗�.

φ(x∗, xn+1) ≤ φ(x∗, xn)− 2k��xn − x∗�
p

p−1 + 2��
1

p−1mp�Axn�
1

p−1 �Axn − Ax∗�

≤ φ(x∗, xn)− 2k��xn − x∗�
p

p−1 + 2��
1

p−1mp�Axn − Ax∗�
p

p−1 .

≤ φ(x∗, xn)− 2k��xn − x∗�
p

p−1 + 2��
1

p−1mpL
p

p−1 �xn − x∗�
p

p−1

≤ φ(x∗, xn)− k��xn − x∗�
p

p−1

≤ r.

φ(x∗, xn+1) ≤φ(x∗, xn)− �k�xn − x∗�
p

p−1 ,

0 ≤ lim

(

�k�xn − x∗�
p

p−1

)

≤ lim

(

φ(x∗, xn)− φ(x∗, xn+1)

)

= 0.
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Hence, xn → x∗ as n → ∞. Uniqueness follows as in the proof of Theorem 4.1.� �

Open Question
 If E = Lp, 2 ≤ p < ∞, attempts to obtain strong convergence of the Krasnoselskii-type 
sequence defined for x0 ∈ E, by:

to a solution of the equation Au = 0, where A is strongly monotone and Lipschitz, have 
not yielded any positive result. It is, therefore, of interest to find out if a Krasnoselskii-
type sequence will converge strongly to a solution of Au = 0 in this space.
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