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Abstract 

Background:  This study determined the effect of repeated sprint training in hypoxia (RSH) in female athletes.

Methods:  Thirty-two college female athletes performed repeated cycling sprints of two sets of 10 × 7-s sprints with 
a 30-s rest between sprints twice per week for 4 weeks under either normoxic conditions (RSN group; FiO2, 20.9%; 
n = 16) or hypoxic conditions (RSH group; FiO2, 14.5%; n = 16). The repeated sprint ability (10 × 7-s sprints) and maxi-
mal oxygen uptake (V̇O2max) were determined before and after the training period.

Results:  After training, when compared to pre-values, the mean power output was higher in all sprints during the 
repeated sprint test in the RSH group but only for the second half of the sprints in the RSN group (P ≤ 0.05). The 
percentage increases in peak and mean power output between before and after the training period were significantly 
greater in the RSH group than in the RSN group (peak power output, 5.0 ± 0.7% vs. 1.5 ± 0.9%, respectively; mean 
power output, 9.7 ± 0.9% vs. 6.0 ± 0.8%, respectively; P < 0.05). V̇O2max did not change significantly after the training 
period in either group.

Conclusion:  Four weeks of RSH further enhanced the peak and mean power output during repeated sprint test 
compared with RSN.
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Background
The application of training in hypoxia for exercise capac-
ity improvement has been accepted widely among endur-
ance athletes (e.g., long-distance runners and swimmers), 
and a large amount of experimental evidence supports 
the efficacy of this training method (Dufour et  al. 2006; 
Millet et al. 2010; Strzala et al. 2011). In contrast, growing 
evidence suggests that training in hypoxia also improves 
anaerobic or repeated sprints performance (Mizuno 
et  al. 1990; Hamlin et  al. 2010; Faiss et  al. 2013a, 2015; 
Gatterer et  al. 2014). Mizuno et  al. (1990) revealed that 
2 weeks of training at altitude significantly increased the 
time to exhaustion (TTE) in highly trained cross-coun-
try skiers during incremental treadmill running, with 
no change in maximal oxygen uptake (V̇O2max). Fur-
thermore, improvements in running duration following 

the training period were significantly correlated with an 
increase in the buffering capacity of the gastrocnemius 
muscle. Moreover, intensive training in hypoxia (FiO2, 
17.0–14.0%) for 10  successive days caused significantly 
greater increases in the mean power output during 30 s 
of maximal pedaling than did the same training in nor-
moxia (Hamlin et al. 2010). Therefore, sprint training in 
hypoxia may further improve the anaerobic power output 
and sprint capacity (Billaut et al. 2012).

Team sports such as football, hockey, and basketball 
require athletes to perform a number of short sprints 
separated by periods of rest or low-to-moderate–inten-
sity exercise (Bishop and Edge 2006). Recent studies have 
focused on the influences of repeated sprint training in 
hypoxia (RSH) on repeated sprint ability (Faiss et  al. 
2013a; Galvin et al. 2013; Millet et al. 2013; Gatterer et al. 
2014). Faiss et  al. (2013a) showed that 4  weeks of RSH 
further increased the number of sets until fatigue during 
a repeated sprint test (repeated 10-s maximal sprints with 
20-s active recovery until exhaustion) compared with 
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repeated sprint training in normoxia (RSN) among male 
cyclists. Furthermore, Gatterer et  al. (2014) suggested 
that 5  weeks of shuttle running under hypoxia attenu-
ated the reduction in sprint time during a shuttle run test 
(6 × 40-m sprints with 20-s passive recovery) compared 
with the same training in normoxia among young male 
soccer players. Although these findings suggest that RSH 
enhances anaerobic performance, further research is 
required using team sport athletes (Girard et al. 2013). In 
addition, the efficacy of RSH has been shown in male but 
not female team sport players (Galvin et  al. 2013; Bro-
cherie et  al. 2015a, b). Because arterial O2 desaturation 
has been shown to be less sensitive to hypoxic stimuli in 
females than in males (Billaut and Smith 2009), the effect 
of RSH might be small in female athletes. Therefore, this 
study determined the effect of 4  weeks of RSH on the 
repeated sprint ability of female team sport athletes.

Methods
Subjects
Thirty-two college female athletes participated in this 
study (Table  1). All athletes were born and living at sea 
level. They belonged to the lacrosse club at the same uni-
versity and performed lacrosse-specific training 5  days 
per week (2 h/day). This study was conducted during the 
basic training phase in a periodized training program.

Experimental design
The experiment began with a familiarization session 
with sprint training (under normoxia) before the base-
line measurement. The baseline measurement was then 
made at least 48  h after the familiarization session. 
Based on the results of repeated sprint test during the 
baseline measurements, all subjects were assigned ran-
domly to either the training group in normoxia (RSN 
group, n =  16) or the training group in hypoxia (RSH 
group, n = 16), matching the exercise capacity and physi-
cal characteristics (Table  1). No significant difference 

between the two groups was observed at the start of the 
training. All training sessions were conducted in an envi-
ronmentally controlled chamber using an electromagnet-
ically braked cycle ergometer (Power Max VIII; Konami 
Corporation, Tokyo, Japan). The subjects performed 
repeated pedaling with maximal effort twice per week for 
4 weeks (eight training sessions in total) under normoxic 
conditions (FiO2, 20.9%) or hypoxic conditions (FiO2, 
14.5%, equivalent to a simulated altitude of 3,000  m). 
This study was conducted in a single-blind fashion, and 
no subject was given information about group classifica-
tion. The temperature in the chamber was maintained at 
20°C during all training sessions. The hypoxic chamber 
was the whole-room type, and the hypoxic condition was 
established by insufflation of nitrogen (Morishima et  al. 
2013, 2014a; Morishima and Goto 2014). The oxygen and 
carbon dioxide concentrations within the chamber were 
continuously monitored.

A standardized warm-up (30  s of submaximal sprint-
ing and 2 ×  3-s maximal sprinting) was performed on 
an ergometer. Each training session comprised two suc-
cessive sets of 10 × 7-s sprints (maximal pedaling) with 
a 30-s rest period between sprints. The training protocol 
was designed in accordance with published protocols 
to enhance anaerobic performance and muscular adap-
tation (Edge et  al. 2005; Faiss et  al. 2013b). The physi-
ological target for the training was improvements in the 
repeated sprint ability and buffer capacity (Edge et  al. 
2005; Buchheit and Laursen 2013). The load during ped-
aling corresponded to 4.0% of the subject’s body weight. 
The rest period between the two sets was set at 20 min 
during the first 2 weeks, and it was shortened to 10 min 
during the subsequent 2 weeks (Figure 1). Each training 
session was started after a 10-min rest following entrance 
into the chamber, and the subjects remained in the cham-
ber for 10 min after completing the final set of training. 
Therefore, the total duration of exposure to hypoxia or 
normoxia was approximately 60 min in each training ses-
sion. During all training sessions, the percutaneous oxy-
gen saturation (SpO2) was monitored using a finger pulse 
oximeter (Smart Pulse; Fukuda Denshi, Tokyo, Japan) 
placed on the tip of the right forefinger. Before and after 
the training period, the repeated sprint ability (10 × 7-s 
sprints with a 30-s rest period between sprints) and max-
imal oxygen uptake (V̇O2max) were determined under 
normoxic conditions.

Measuring maximal oxygen uptake and repeated sprint 
ability
The subjects visited the laboratory twice before the start 
of the 4-week training program. On the first visit, the 
subjects’ V̇O2max was assessed using a graded power 

Table 1  Physical characteristics and  baseline measures 
of performance of the subjects in two groups

Values are mean ± SE.

RSH group RSN group

Age (years) 20 ± 0.2 20 ± 0.1

Height (cm) 158.9 ± 1.4 158.9 ± 1.3

Body weight (kg) 53.9 ± 1.2 54.6 ± 1.6

Repeated sprint test

 Peak power (W/kg) 6.8 ± 0.1 6.9 ± 0.1

 Mean power (W/kg) 5.6 ± 0.1 5.6 ± 0.1

 Fatigue index (%) 12.2 ± 1.6 13.9 ± 1.5
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test on an ergometer (Aerobike 75XLIII; Konami Cor-
poration, Tokyo, Japan). Before the graded power test, 
the subjects performed a standardized warm-up (pedal-
ing at 50 W for 5 min). The test began at 70 W, and the 
load was increased progressively by 35-W increments 
every 2 min until exhaustion (70 rpm). The TTE was also 
evaluated during the test. The TTE was defined as the 
exercise duration until the subjects failed to maintain 
a pedaling frequency of 70  rpm for 5  s. For the graded 
power test, the first criterion of exhaustion was main-
tenance of pedaling frequency. In addition to the first 
criterion, when the two of four criteria (1.V̇O2max pla-
teau, 2. respiratory exchange ratio ≥1.10, 3. Heart rate 
(HR) reaching at least 90% of the theoretical maximal 
HR, 4. rating of perceived exertion ≥19) were fulfilled, 
the test was terminated (Howley et  al. 1995). Respira-
tory gases were collected and analyzed using an auto-
matic gas analyzer (AE300S; Minato Medical Science, 
Tokyo, Japan). The collected data were averaged every 
30  s. Each subject’s HR during exercise was measured 
continuously using a wireless HR monitor (RS400; Polar 
Electro, Tokyo, Japan). The rating of perceived exertion 
was determined every 2 min using a Borg 15-point scale 
(Borg 1973).

On the second visit, the subjects conducted a repeated 
sprint test under normoxic conditions, comprising 
10  ×  7-s sprints (maximal pedaling) with a 30-s rest 
period between sprints. Before the tests, the subjects 
completed a standardized warm-up (30 s of submaximal 
pedaling and 2 ×  3-s sprint) on an electromagnetically 
braked cycle ergometer (Power Max VIII; Konami Cor-
poration, Tokyo, Japan). The applied load for the repeated 
sprint test was equivalent to 4.0% of the subject’s body 
weight. The peak and mean power outputs during each 
sprint were recorded. The fatigue index was calculated 
as the magnitude of the percentage reduction over 10 
sprints [(sprint 1 −  sprint 10)/sprint 1] ×  100 (Glaister 
et  al. 2008). After the training period, a graded power 
test and repeated sprint test were performed to assess 
V̇O2max.

Statistical analysis
All data are expressed as mean ± standard error (SE). To 
compare power output during the repeated sprint test, 
two-way analysis of variance (ANOVA) with repeated 
measures was applied to confirm the interaction [train-
ing period (before, after training period)  ×  number of 
sprints (sprints 1 − 10)] or main effect (training period, 
number of sprints). When ANOVA revealed a significant 
interaction or main effect, the Tukey–Kramer post hoc 
test was performed to identify differences. To compare 
V̇O2max and TTE between before and after the train-
ing period, two-way ANOVA with repeated measures 
[group (RSH, RSN group), training period (before, after 
training period)] was performed. Percentage changes in 
the power output during the repeated sprint test (relative 
to pretraining values) were compared between the two 
groups using an unpaired t test. For all tests, P < 0.05 was 
considered to indicate statistical significance.

Results
Physiological and performance variables during the 
training period
The average values of SpO2 during all training sessions 
were significantly lower in the RSH group (92.5 ± 0.3%) 
than in the RSN group (97.7  ±  0.4%, P  <  0.05). Body 
weight did not change significantly after the train-
ing period in the RSH group (before, 53.9  ±  1.2  kg; 
after, 54.3  ±  1.2  kg; n.s.) or the RSN group (before, 
54.6 ± 1.6 kg; after, 54.6 ± 1.6 kg; n.s.).

During the 4-week training period, both groups 
showed increases in power output during the train-
ing sessions, but the temporal changes differed between 
the groups. In the RSH group, significant increases in 
the peak power output (relative to the value for the first 
training session) were observed during training ses-
sions 4 and 6–8 (P  <  0.05), whereas the RSN group did 
not show a significant increase relative to the first train-
ing session over all training sessions. During sessions 3, 
4, and 6–8, the relative values of the peak power output 
were significantly higher in the RSH group than in the 

Hypoxic condition (FiO2: 14.5%) 

Normoxic condition (FiO2: 20.9%) 

RSH group ( n=16 )

RSN group ( n=16 ) 

Repeated sprint training 

10 min 5 min 10 ~ 20 min 10 minWarm-up 

(10 7s sprints, 30s rest between sprints) 
Repeated sprint training 
(10 7s sprints, 30s rest between sprints) 

Figure 1  Protocol for each training session.
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RSN group (P  <  0.05). Both groups showed significant 
increases in the mean power output during the eight 
training sessions. However, the RSH group showed a sig-
nificant increase in the relative value of the mean power 
output in session 4, whereas the RSN group showed a sig-
nificant increase in session 8.

Performance during the repeated sprint test
Figure  2 presents the mean power output during the 
repeated sprint test before and after the training period. 
The mean power output during each sprint decreased 
significantly with increased numbers of sprints in both 
groups (P < 0.05). In the RSH group, significant increases 
(relative to the pretraining values) in the mean power 
output were observed in all sprints (P  <  0.05), whereas 
the RSN group showed significant increases in sprints 5 
and 7–10 (P < 0.05).

When the magnitude of the percentage changes (rela-
tive to pretraining values) in the power output during 
the repeated sprint test was compared between the two 
groups (Figure 3), the RSH group showed a significantly 
greater percentage increase in peak power output than 
did the RSN group (5.0 ±  0.7% vs. 1.5 ±  0.9%, respec-
tively; P  <  0.05). In addition, the RSH group showed a 
significantly greater percentage increase in the average 
values of mean power output over 10 sprints than did 
the RSN group (9.7 ± 0.9% vs. 6.0 ± 0.8%, respectively; 
P  <  0.05). When the fatigue index during the repeated 
sprint test was compared between before and after the 
training period, the RSN group showed a significant 
reduction in the fatigue index after the training period 
(before, 13.9 ± 1.5%; after, 9.6 ± 1.1%; P < 0.05). The RSH 

group also showed a tendency toward a reduction after 
the training period (before, 12.2 ± 1.6%; after, 9.2 ± 0.9%; 
P = 0.05).

V̇O2max and time to exhaustion
There were no significant differences in V̇O2max or 
maximal HR between the two groups before the training 
period (Table 2). These values were not significantly dif-
ferent in either group between before and after the train-
ing period. However, the RSH group showed a significant 
increase in TTE after the training period (P  <  0.05), 
whereas no significant change was observed in the RSN 
group. The maximal HR did not change significantly after 
the training period in either group.

Discussion
This study compared the effects of 4  weeks of repeated 
sprint training between a training group in hypoxia (RSH 
group) and a training group in normoxia (RSN group). 
The results indicated that the RSH group showed sig-
nificantly greater improvement in repeated sprint ability 
than did the RSN group. A novel finding of this study was 
that an approximately three-fold greater increase in peak 
power output during repeated sprint test was observed in 
the RSH group than in the RSN group. To our knowledge, 
this is the first report to show that high-intensity train-
ing under hypoxic conditions is beneficial for improving 
maximal power output.

Both groups showed significant increases in the mean 
power output during the repeated sprint test after the 
4-week training period. However, when we compared the 
relative increase from the pretraining values between the 
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two groups, the RSH group showed a significantly greater 
percentage change than did the RSN group. This result 
suggests that the RSH group had further improvement in 
the repeated sprint ability compared with the RSN group. 
These findings are supported by recent publications. 
Hamlin et al. (2010) reported that sprint training in mod-
erate hypoxia (FiO2, 17.0–14.0%) for 10  successive days 
caused significantly greater increases in the mean power 
output during 30  s of maximal pedaling than the same 
training in normoxia. Faiss et al. (2013a) also showed that 
4  weeks of RSH (3 sets of 5 ×  10-s sprint; FiO2, 14.6%) 
resulted in a significant increase in the number of sets 
until exhaustion during the repeated sprint test, whereas 
no change was found after the same training in normoxia. 

Galvin et al. (2013) recently reported that 4 weeks of RSH 
(FiO2, 13.0%) resulted in two-fold greater improvements 
in distance during the intermittent running test than did 
equivalent RSN. The repeated sprint ability is related to 
the capacity for phosphocreatine (PCr) resynthesis (Men-
dez-Villanueva et  al. 2012) and aerobic capacity (Edge 
et al. 2005; Bishop et al. 2011). Although we were unable 
to evaluate the capacity for PCr resynthesis, V̇O2max (an 
indicator of aerobic capacity) did not change significantly 
in either group after the training period. During short-
duration, high-intensity exercise of <60 s, the metabolic 
response under hypoxia has been suggested to differ 
from that under normoxia, independent of similar exer-
cise capacities (Weyand et al. 1999). Two studies (Ogura 
et al. 2006; Ogawa et al. 2007) indicated that the power 
output during 40  s of maximal pedaling or a maximal 
anaerobic running test did not differ between hypoxic 
and normoxic conditions. However, the contribution of 
the anaerobic energy supply was augmented by about 
9.3% in hypoxia compared with normoxia (Ogura et  al. 
2006). The augmented energy supply from the anaerobic 
system might cause greater stimulus for adaptation and 
further improvement in the repeated sprint ability.

The novel finding of this study was that the power 
output during the first sprint in the repeated sprint test 
increased significantly only in the RSH group. In the 
repeated sprint test, a significant increase in power out-
put during all sprints was observed in the RSH group, 
whereas the RSN group showed significant increases 
during the second half of the repeated sprint exercise. 
However, growing evidence suggests that RSH and high-
intensity interval training under hypoxic conditions pro-
duce greater improvements in the mean power output 
(anaerobic endurance capacity) (Hamlin et al. 2010; Faiss 
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Figure 3  Percentage changes in the peak and mean power outputs during the repeated sprint test before and after the training period. Values are 
mean ± SE. †P < 0.05 between the RSH and RSN groups.

Table 2  Respiratory variables and performance during the 
graded power test

Values are mean ± SE.

* P < 0.05 between before and after the training period.

Before After

V̇O2max (ml/min)

 RSH group 2,398 ± 52 2,470 ± 59

 RSN group 2,461 ± 79 2,473 ± 67

V̇O2max/BW (ml/min/kg)

 RSH group 44.6 ± 0.8 45.9 ± 0.7

 RSN group 45.1 ± 1.0 45.4 ± 0.8

Time to exhaustion (s)

 RSH group 659 ± 18 688 ± 21*

 RSN group 656 ± 23 678 ± 22

Maximal HR (bpm)

 RSH group 194 ± 2 193 ± 1

 RSN group 190 ± 2 189 ± 2
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et al. 2013a, b; Galvin et al. 2013). Our finding of further 
improvement in the power output of the first sprint has 
not been reported. During 7-s maximal pedaling, the 
ATP-PCr system rather than the glycolytic system is 
thought to play a main role in ATP production. There-
fore, the improved power output during the first sprint 
in the RSH group might be related to an augmented 
PCr content in muscle. In support of this hypothesis, we 
recently observed that six consecutive days of RSH sig-
nificantly increased the PCr content in muscle among 
sprinters (unpublished observation). Further research 
involving determination of the intramuscular PCr con-
tent is necessary.

In this study, we monitored the time course of the 
changes in power output during all training sessions in 
each group. Consequently, the RSH group showed a sig-
nificantly greater increase in power output during the 
second week (versus the value in first training session), 
whereas a similar increase was observed during fourth 
week in the RSN group. Therefore, the training stimulus 
might be higher in the RSH group during the training 
period, leading to greater adaptation of sprint perfor-
mance. Furthermore, the fatigue index was reduced sig-
nificantly after the training period in the RSN group 
alone. However, caution is necessary when interpret-
ing this later result because the absence of significant 
improvement in the RSH group is thought to be due to 
marked enhancement of the power output in the first 
sprint during repeated sprint test.

A unique point of this study is that we recruited 
female team sport athletes. Although we found marked 
improvements in repeated sprint ability, we cannot con-
clude whether the training effects in this study are spe-
cific to female athletes because of a lack of comparative 
data from males. Because female athletes tend to have 
lower anaerobic power outputs than do male athletes 
(Brooks et al. 1990; Billaut and Smith 2009), there might 
be greater trainability in response to sprint training. In 
contrast, females have been shown to be less sensitive to 
hypoxic stimuli for arterial O2 desaturation (Billaut and 
Smith 2009). Therefore, it is unlikely that our results are 
specific to female athletes. We believe that RSH is suit-
able for both male and female athletes.

In this study, twice-weekly repeated sprint training ses-
sions (approximately 60  min per training session) were 
incorporated into the regular training schedule. There-
fore, the training protocol is practical and would be suit-
able for most athletes. Our finding suggests that RSH is 
a new strategy for augmenting the maximal anaerobic 
power output and repeated sprint ability in female ath-
letes. This study focused on the adaptation of sprint per-
formance, and future studies are necessary to reveal the 
detailed mechanism behind the adaptation.

Conclusion
Four weeks of RSH caused further increases in the peak 
and mean power outputs during the repeated sprint test 
compared with RSN in female team sport athletes.
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