
A parallel algorithm for motion
estimation in video coding using the bilinear
transformation
Charalampos Konstantopoulos*

Background
Motion estimation plays an important role in reducing the data redundancy typically exist-
ing between successive frames of a video and hence it is always included in any video com-
pression scheme (Sayood 2012; Rao et al. 2014; Chiariglione 2012). It is also that step of
compression algorithms with the highest computational demands.

The need for accurate estimation of the motion in a video is more pressing in compres-
sion techniques aiming at low or very low bit rates (Mokraoui et al. 2012; Ghanbari et al.
1995; Sayed and Badawy 2006). Inaccurate motion estimation increases the prediction error
and thus more bits should be allocated for storing or transmitting this information. Thus,
for this low-bit rate setting, simple block-matching motion estimation is not adequate due
to its simplistic assumption about the motion of the objects in a video. Specifically, the basic
assumption in this technique it that each video frame can be split into small square blocks.
The motion at all the pixels of each block is the same, more precisely, purely translational and
hence it can be described by only one vector per block. Clearly, this assumption is not real-
istic and as a result, simple block-matching motion estimation algorithms fail to identify the
actual movement in a video especially when there is complex object movement in the scene.

In order to achieve more accurate motion estimation without overly increasing com-
putational demands, a number of techniques have been proposed, which generalize the

Abstract 

Accurate motion estimation between frames is important for drastically reducing data
redundancy in video coding. However, advanced motion estimation methods are
computationally intensive and their execution in real time usually requires a parallel
implementation. In this paper, we investigate the parallel implementation of such a
motion estimation technique. Specifically, we present a parallel algorithm for motion
estimation based on the bilinear transformation on the well-known parallel model of
the hypercube network and formally prove the time and the space complexity of the
proposed algorithm. We also show that the parallel algorithm can also run on other
hypercubic networks, such as butterfly, cube-connected-cycles, shuffle-exchange or
de Bruijn network with only constant slowdown.

Keywords:  Motion estimation, Video coding, Parallel algorithms, Hypercube network

Open Access

© 2015 Konstantopoulos. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Konstantopoulos. ﻿SpringerPlus (2015) 4:288
DOI 10.1186/s40064-015-1038-z

*Correspondence:
konstant@unipi.gr
Department of Informatics,
University of Piraeus, 80
Karaoli and Dimitriou, Piraeus,
Greece

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1038-z&domain=pdf

Page 2 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

block-based algorithms (Mokraoui et al. 2012; Tekalp 1995; Aizawa and Huang 1995;
Altunbasak and Tekalp 1997; Huang et al. 2013; Kordasiewicz et al. 2007; Sharaf and
Marvasti 1999; Nosratinia 2001; Sayed and Badawy 2004; Nakaya and Harashima 1994;
Muhit et al. 2012). These techniques assume a regular tiling over the image where each
tile can be triangular or rectangular. The movement of each tile is rendered more realis-
tically than in simple block-based algorithms by employing more complex spatial trans-
formations such as the affine, perspective or bilinear transformation (Wolberg 1990) or
by employing elastic motion models (Muhit et al. 2010, 2012) which include the simple
translation as a special case.

In a previous work (Konstantopoulos et al. 2000), we have designed a parallel algo-
rithm on the parallel model of the hypercube network for motion estimation in video
using the affine transformation. We have demonstrated how to perform this estimation
with low time complexity as well as with low local memory requirements per proces-
sor. In this paper, we follow the general methodology in (Konstantopoulos et al. 2000),
and present a parallel motion estimation algorithm based on the bilinear transformation
again on the hypercube. Note that the bilinear transformation is more complex than the
affine one since the latter is a special case of the former. Although, achieving low time
and space complexity again is more difficult now due to the increased complexity of the
bilinear transformation, we will formally prove that the proposed parallel implementa-
tion achieves similar low complexity as in the case of the affine transformation.

The rest of the paper is organized as follows. In “Related work”, relevant work is pre-
sented. In “Spatial transformations and motion estimation”, motion estimation based on
the bilinear transformation is discussed while in “The parallel algorithm”, the parallel
algorithm for this motion estimation is presented and its time and space complexity is
analyzed. Finally, “Conclusions” concludes our work.

Related work
Video coding is the enabling technology for nearly all multimedia applications (Sayood
2012). Acknowledging this fact, a number of standardization efforts have taken place dur-
ing the last 25 years, which constantly improve the rate-distortion trade-off in the lossy
compression applied in video coding (Rao et al. 2014). The core technique for reducing
data redundancy in video is the motion compensated prediction where the contents of
each frame are predicted from the contents of one or two reference frames, taking also into
account the movements of the objects between these frames. Thus, accurately estimating
the motion in a scene reduces the prediction error, helps in reducing the data redundancy
and hence achieves higher compression ratios. Considering the complexity of this estima-
tion, most video coding standards follow a compromise solution by dividing each frame
into a number of blocks, termed macroblocks, and then assume a simple translational
motion where the motion of each macroblock can be expressed by a single motion vector.
As has been mentioned in “Background”, a large body of literature have appeared, which
propose improved motion estimation techniques by employing more advanced motion
models, however, with increased computational complexity.

Due to heavy computation demands of video coding, parallel implementation of the
basic operations of this computation is necessary for satisfying the real time constraints
usually imposed in multimedia applications. Fortunately, motion estimation within each

Page 3 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

macroblock, which is the most computation intensive task in video coding, exhibits data
parallelism, that is, different data can be processed concurrently by multiple processors.
Nevertheless, the use of previous frames or previous macroblocks in the same frame for
encoding the current frame or macroblock, respectively makes video coding an inher-
ently sequential procedure at a higher level, limiting the degree of parallelism that can be
achieved. Yet, for limiting the effect of data loss in a frame due to transmission errors in
all subsequent frames, or for providing random access capability in the encoded video,
most video coding standards define segments within video that can be processed inde-
pendently, that is, they do not depend on previously decoded parts of the video. Specifi-
cally, the frame sequence can be spit into a number of group of pictures (GOPs), each
of which contains consecutive frames which can be encoded/decoded independently of
other groups. In addition, each frame can be divided into a number of slices each con-
taining a number of consecutive macroblocks of the frame. Again, each slice can be
encoded/decoded independently of other slices. Although, the aim for these partition-
ing techniques was not to facilitate parallel processing, the fact that GOPs and slices can
be processed independently can also be exploited for effective parallel implementation.
Also, in contrast to the previous video coding standards where parallel processing was
only an afterthought, in the latest standard, HEVC (Sullivan et al. 2012), parallel pro-
cessing is considered in the first place and additional partitioning schemes (tiling) or
pipeline-based techniques (wavefront processing) are introduced (Pourazad et al. 2012).
In tiling, each frame is partitioned into rectangular regions (tiles) separated by verti-
cal and horizontal boundaries. Each tile can be processed independently of other tiles
thereby enabling parallel processing. In wavefront processing, the processing of the cur-
rent frame proceeds in raster scan order but the processing of a block in a row can start
as soon as two neighboring blocks in the row above have been processed.

Parallel implementations for video encoders/decoders can be found either in hardware
or software. In the first approach, application specific integration circuits (ASICs) are
designed which implement specific functionalities in video coding (Malvar et al. 2003;
Chen et al. 2006; Ruiz and Michell 2011; Badawy and Bayoumi 2002a, b). For instance,
a large number of architectures have appeared for block matching motion estimation
algorithms especially for the full search algorithm (Ruiz and Michell 2011; Ou et al.
2005; Bojnordi et al. 2006; Zhang and Gao 2007; Li et al. 2007; Lin et al. 2008; Kim and
Park 2009; Chatterjee and Chakrabarti 2011). Due to its highly regular data flow, most
implementations of this algorithm use mesh-like systolic arrays. Also, hardware archi-
tectures have been proposed in the literature for more accurate motion estimation using
the affine transformation (Sayed and Badawy 2006; Badawy and Bayoumi 2002a, b; Utgi-
kar et al. 2003). The main benefit of the hardware-based coders is the real-time perfor-
mance. However, their shortcoming is the lack of flexility in case that some parameters
of the computation need to change. In addition, they can easily become obsolete rather
soon due to the rapid advances in video coding techniques.

The second implementation approach for video coding is the software implementa-
tion in general-purpose computing platforms (Fernandez and Malumbres 2002; Jung
and Jeon 2008; Ahmad et al. 2001; Alvanos et al. 2011; Hsiao and Wu 2013) with par-
ticular focus on GPU implementations (Cheung et al. 2010; Ren et al. 2010; Chen and
Hang 2008; Kung et al. 2008; Pieters et al. 2009; Su et al. 2014). Although, a hardware

Page 4 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

based solution is always superior in computation speed, the ever-increasing number of
cores in modern processors enables a cost-effective implementation of the basic func-
tionalities of video coding with performance comparable to that of hardware coders/
decoders.

In this paper, we deal with the problem of motion estimation in video by using the
bilinear spatial transformation. Specifically, we propose a parallel algorithm for this com-
putation on the well-known parallel model of the hypercube network (Leighton 1992).
This network as well as its numerous variations have been intensively studied in the lit-
erature (Hsieh and Lee 2010; Shih et al. 2008; Fu 2008; Lai 2012; Kuo et al. 2013; Zhou
et al. 2015). The rich interconnection structure of this network favours the design of
“elegant” parallel algorithms for a number of problems (Grama et al. 2002) which can be
used in other parallel models (Sundar et al. 2013), as well. Following the basic methodol-
ogy of (Konstantopoulos et al. 2000), we present a hypercube algorithm with low com-
munication and computation cost. We formally prove those good features and we also
analytically determine the memory required per processor for running the algorithm.

Spatial transformations and motion estimation
The motion estimation techniques employed in video coding split each frame into small
regions, usually polygons, and then they estimate a number of motion parameters for each
region. Next, the current frame In is predicted from the previous decoded frame Ĩn−1 by
applying image warping (also known as texture mapping) (Wolberg 1990). This step can be
expressed as follows:

where Īn is the prediction for the current frame and x′ = f (x, y), y′ = g(x, y) are the
transformation functions which describe the on-going movement.

For instance, in the case of block matching algorithms, the functions f and g are given
by the following relations:

where (ui, vi) is the displacement vector for the i-st region (block).
When, coordinates x′ and y′ are not integers, the intensity value Ĩn−1(x

′, y′) is derived
by applying an interpolating function on the intensities of the nearest image pixels. In
this function, the intensity value for the point (x′, y′) is given by the following relation:

where a and b are the fractional part of the coordinates x′ and y′, respectively.
Different motion estimation methods can be developed according to the spatial trans-

formation assumed in the estimation. Clearly, the employed transformation largely deter-
mines the accuracy of the motion estimation. Besides the estimation accuracy, the spatial
transformation should be formulated with a relevant small number of parameters so that

(1)Īn(x, y) = Ĩn−1

(

f (x, y), g(x, y)
)

(2)
f (x, y) = x − ui

g(x, y) = y− vi

(3)

Ĩn−1(x
′, y′) = (1− a)((1− b)Ĩn−1(⌊x

′⌋, ⌊y′⌋)+

bĨn−1(⌊x
′⌋, ⌊y′⌋ + 1))+

a((1− b)Ĩn−1(⌊x
′⌋ + 1, ⌊y′⌋)+

bĨn−1(⌊x
′⌋ + 1, ⌊y′⌋ + 1))

Page 5 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

its estimation does not require a lot of numerical operations. However, these are conflict-
ing objectives since high accuracy in motion estimation usually demand more complex
transformation functions. A clear benefit of the parallel motion estimation is that more
complex options can be adopted while keeping the execution time reasonably low.

In general, the texture mapping operation comprises the following steps (Nakaya and
Harashima 1994; Huang and Hsu 1994):

1.	 Estimation of motion parameters for each region of the frame.
2.	 Estimation of the value of the transformation functions at all frame pixels based on

the above parameters.
3.	 Interpolation for finding the intensity of the image in the frame Ĩn−1 of these pixels

that were not mapped to integer coordinates after applying the spatial transformation.

The estimation of motion parameters usually requires an iteration of the second and
third step in order that the optimal values for the motion parameters can be determined.
It is now clear that texture mapping is rather a costly operation. Fortunately, this kind of
operation is amenable to massive parallelism since computations at different pixels can
be executed in parallel most of time.

Bilinear transformation

Although, many different spatial transformation have been studied in Graphics, three
transformations have been commonly used (Tekalp 1995; Sharaf and Marvasti 1999), for
video compression, namely, the affine, the bilinear and the perspective transformation. In
this work, we will focus on the bilinear transformation. In this transformation, the map-
ping functions f and g are given as follows:

where ai1 . . . ai8 are the eight parameters of this transformation. Clearly, if the values of
f and g are given for four points of the image, the parameters ai1 . . . ai8 can be deter-
mined by solving two linear systems, each of four equations with four unknowns. For this
reason, when using bilinear transformation, it is most convenient to split the image into
rectangular regions (Figure 1a). Then, by giving the displacement vectors at the corners
of each rectangle, the parameters of the bilinear transformation for that rectangle can be
easily derived. Another reason for using rectangular regions is that the bilinear transfor-
mation maps the vertical and horizontal lines again to lines (Wolberg 1990). For all other
orientations, this does not hold, and, for instance, a diagonal line is transformed to a
curve. Another interesting property of that transform that can be easily verified is that the
boundaries of the objects are preserved after this transformation, that is, the pixels on the
border of each region are again on the border of the image of this region after the applica-
tion of the transform. Finally, as already mentioned above, the affine transformation is a
special case of the bilinear transformation by setting ai3 and ai7 equal to 0.

Now, if �d1 = (dx
1
, d

y
1
), �d2 = (dx

2
, d

y
2
), �d3 = (dx

3
, d

y
3
), �d4 = (dx

4
, d

y
4
) are the displacement

vectors of the four corners of the block whose upper left corner is at point (x0, y0) (the
thick block) in Figure 1a, then the parameters ai1, ai2, . . . , ai8 of the bilinear transforma-
tion for these displacements will be:

(4)
f (x, y) = ai1x + ai2y+ ai3xy+ ai4

g(x, y) = ai5x + ai6y+ ai7xy+ ai8

Page 6 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Another important issue in this motion estimation approach is the assumption about
the movements of the adjacent blocks. Specifically, there is the continuous and the dis-
continuous motion model (Nakaya and Harashima 1994; Huang and Hsu 1994). In the
first model, there is a correlation between the movement of adjacent blocks while in the
second model the blocks are moving independently. For the same number of blocks, the
continuous model requires a smaller number of bits for coding the motion parameters
than the discontinuous model since the assumption of motion continuity reduces the
degrees of freedom of the problem at hand. For this reason, the continuous model is
commonly used for motion estimation in low-bit rate video coding schemes. This is also
the model, we assume in this work. Thus, after the application of the bilinear transfor-
mation, the blocks are not overlapping while the relevant positions of the corners of each
block are maintained, for instance, the upper left corner cannot be found lower than the
lower left corner or right of the upper right corner (Figure 1b).

Since, the displacement vectors cannot be arbitrary large due to short time interval
between successive frames in a video, we will consider the following range of values for
the displacement vectors:

(5)

ai1 =
(dx

2
− dx

1
)(l − y0)+ y0(d

x
4
− dx

3
)+ kl

kl
ai2 =

(x0 + k)(dx
1
− dx

3
)+ x0(d

x
4
− dx

2
)

kl

ai3 =
dx
2
− dx

1
+ dx

3
− dx

4

kl
ai4 = x0 + dx

1
− ai1x0 − ai2y0 − ai3x0y0

ai5 =
(l − y0)(d

y
2
− d

y
1
)+ y0(d

y
4
− d

y
3
)

kl
ai6 =

(x0 + k)(d
y
1
− d

y
3
)+ x0(d

y
4
− d

y
2
)+ kl

kl

ai7 =
d
y
3
− d

y
1
+ d

y
2
− d

y
4

kl
ai8 = y0 + d

y
1
− ai5x0 − ai6y0 − ai7x0y0

(6)
−
k

2
< dx1 , d

x
2 , d

x
3 , d

x
4 <

k

2

−
l

2
< d

y
1
, d

y
2
, d

y
3
, d

y
4
<

l

2
.

Figure 1  Motion estimation between the current frame (a) and its previous frame (b) based on the bilinear
transformation.

Page 7 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Notice also that with these displacement vectors, all the constraints of the continuous
model are respected.

Now, we can prove the following lemma:

Lemma 3.1  Given the constraints (6), it holds that 1

k
< ai1 + ai3y < 2− 1

k
,

1

l
< ai6 + ai7x < 2− 1

l
, − l−1

k
< ai5 + ai7y <

l−1

k
 where y ∈ [y0 − l . . . y0] and

x ∈ [x0 . . . x0 + k].

Proof  We will prove only the first inequality. The proof for the second and the third
inequality is similar. From the Eq. (5) we get that:

It can be easily seen that (l − y0 + y), (y0 − y) and lk are all non negative. Therefore,
the expression (7) gets its maximum (minimum) value when the expressions (dx

2
− dx

1
)

and (dx
4
− dx

3
) get their maximum (minimum) value. Given the constraints (6) and since

these vectors always have integer coordinates, the maximum value for the expressions
(dx

2
− dx

1
) and (dx

4
− dx

3
) is k − 1 while its minimum is −k + 1. Now, it is easy to see that

the minimum value of (7) is 1
k
 and its maximum value is 2− 1

k
.� �

Now, if the coordinates of the point (f (x, y), g(x, y)) are not integers, the intensity value
at that point is derived by applying the interpolation function (3) on the adjacent pixels
of the frame Ĩn−1.

Algorithm 1 provides the basic steps for the motion estimation using the bilinear
transformation (Nakaya and Harashima 1994). Specifically, for each of the frame blocks,
all feasible combinations of displacement vectors at its corners are considered while
respecting the constraints (6). For each combination, the parameters of the bilinear

(7)ai1 + ai3y =
(dx

2
− dx

1
) (l − y0 + y)+ (dx

4
− dx

3
) (y0 − y)+ kl

kl

Algorithm 1: Motion estimation based on the bilinear
transformation

input : The current frame nI and the reference frame 1
~

−nI
output: The displacement vectors at all the corners of the

blocks minimizing the prediction error
foreach block iB of nI do

Minimum Prediction Error ∞← ;
Min_Vectorsi ∅← ;

foreach combination of 1d
r

, 2d
r

, 3d
r

, 4d
r

at iB ’s corners do

calculate ija (81= Kj) from (5);

Prediction Error←
() |),(),,(~),(| 1

),(
yxgyxfIyxI nn

iByx
−

∈

−∑ ;

if Prediction Error < Minimum Prediction Error
then

Minimum Prediction Error ← Prediction Error;

Min_Vectorsi ← },,,{ 4321 dddd
rrrr

;

return Min_Vectorsi;

Page 8 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

transformation are estimated and then the texture mapping step is performed (see also
Figure 1). The error of prediction of the current frame from the previous one after this
mapping is calculated and finally, for each block, the displacement vectors yielding the
lowest prediction error are returned. This set of vectors is exactly the information that
will be given to the decoder for restoring the current frame from the previous one by
simply reversing the texture mapping step.

In the following section, the parallel algorithm on the hypercube network model for
the above motion estimation is presented and its time and space complexity is analyti-
cally determined.

The parallel algorithm
A hypercube of N (= 2n) nodes is an interconnection network where each network node
is directly connected to n other nodes whose binary representation differ from that of this
node only at a single bit (Leighton 1992). Specifically, node i(= in−1in−2 . . . i1i0) is con-
nected to the nodes i(j)(= in−1 . . . ij . . . i0) for j = 0 . . . n− 1. Due to its rich interconnec-
tion, the hypercube has low diameter (n) and high bisection width (N/2). These features as
well as the symmetry existing in the structure of this network facilitate the design of paral-
lel algorithms with low communication cost.

Algorithm 2: Parallel Motion estimation based on the
Bilinear Transformation
input : Processor),(yx stores the pixels),(yxIn ,

),(~
1 yxIn− (10=, −Nyx K), the width k and the height

l of the frame blocks
output: The same output as that of Algorithm 1

foreach combination of 1d
r

, 2d
r

, 3d
r

, 4d
r

with
2

<<
2

kdk x
i−

and
2

<<
2

ldl y
i− , 4)1=(Ki do

forall the 10= −Nx K , 10= −Ny K do

Processor),(yx :
1) calculates the parameters of the bilinear
transformation of its block by (5)
2) executes a Random Access Read to get from

processor),(′′ yx the pixels of 1
~

−nI

required for estimating ()yxIn ′′− ,~
1 by (3)

3) estimates the prediction error

|),(~),(| 1 yxIyxI nn ′′− −

forall the blocks iB of the current frame do
Store the total prediction error at the upper-left
processor of iB by running segmented-prefix
sum operations
if total prediction error < the minimum so far
error then

The upper-left processor updates the minimum so
far prediction error and stores the current
displacement vectors

Page 9 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Now, we assume video frames of dimension N × N where N = 2n. We also assume a
hypercube network of N 2 nodes and initially, the current and the previous frame have
been distributed to the node/processors of this network. Specifically, pixel (i, j) has been
stored in the processor j + iN . For convenience, we view the hypercube as a two dimen-
sional N × N mesh and thus the processor j + iN can be considered as the processor
(i, j) of this mesh (i, j = 0 . . .N − 1). It can also be easily seen that the processors along
the same row or column of the mesh form a sub-hypercube of N nodes and thus, wher-
ever in the text, we mention columns and rows, we will actually mean the corresponding
sub-hypercubes.

With regard to the communication capabilities of the processors in the hypercube,
we will consider two different possibilities. Specifically, we assume either that each
processor sends or receives at most one packet at a time (one-port capability) or that
each processor is able to send to or receive from all its port simultaneously (all-port
capability). With all-port capability, similar communication operations executed in
succession can be pipelined and this results in great reduction of the total communica-
tion time.

Now, our goal is to design an algorithm will low computational and the communi-
cation cost as well as with low memory requirements at each node. Besides giving the
details of the algorithm, we will also formally prove the effectiveness of the algorithm
with respect to the costs above.

As has already been explained in the previous section, the estimation of the param-
eters of the bilinear transformation for each block is an iterative procedure where at
each iteration, a different combination of displacement vectors at the block corners
is tested and then a texture mapping step from the current to the previous frame is
executed until the vector combination with the minimum prediction error is found.
Apparently, texture mapping is the most computationally intensive step and since it is
executed repeatedly, its parallel implementation will largely speed up the whole com-
putation. Thus, in this paper we mainly focus on the parallel implementation of this
step.

Algorithm 2 gives the basic steps of the parallel texture mapping as a part of an itera-
tive procedure where all possible combinations of displacement vectors are examined.
Assuming that the feasible range of the displacement vectors has been previously broad-
casted to all processors [O(logN) time], all processors can now produce the different vec-
tor combinations in the same order and thus they can work on the same displacement
vectors simultaneously. Thus, given the displacement vectors at a particular iteration,
each processor can determine the corresponding parameters of the bilinear transforma-
tion of its block by (5). Then, for computing the prediction error |In(x, y)− Ĩn−1(x

′, y′)|,
each processor (x, y) needs to learn only the value Ĩn−1(x

′, y′), since the intensity In(x, y)
is already stored in the processor.

A straightforward approach for transferring this value to processor (x, y) is for a pro-
cessor “near” the point (x′, y′) to send these data. Specifically, the processor (⌊x′⌋, ⌊y′⌋)
could estimate the intensity value Ĩn−1(x

′, y′) by getting the intensity of pixels stored in
neighboring processors (if needed) and then it could send that intensity value to the
processor (x, y). The problem arising with this approach is that the processor (⌊x′⌋, ⌊y′⌋)
should know the processors to which it should send the intensity value it has just

Page 10 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

estimated. Since, for each block, the parameters of the bilinear transformation are dif-
ferent, this processor should estimate the transform parameters of a number of different
blocks in order that it can determine which pixels are mapped after truncation to its
position. Moreover, even if only one block was mapped to the “area” of this processor
and hence only one instance of bilinear transformation was to be applied, still, it would
be possible that more than one pixels could be mapped on the same pixel due to the
truncation of the transformation output to the nearest integer. This holds even without
applying this truncation, since reversing the bilinear transformation requires the solu-
tion of a quadratic equation anyhow (Wolberg 1990).

In order to get around these difficulties, random access read (RAR) operation (Ranka
and Sahni 2012) is used for performing the transfer above. This operation consists of two
phases. At the first phase, each processor (x, y) sends a packet containing its address to
the processor (⌊x′⌋, ⌊y′⌋). The processor (⌊x′⌋, ⌊y′⌋) now knows where to send all the data
required for calculating the intensity value Ĩn−1(x

′, y′) and in the second phase, it sends
these data to these processors.

In general, the RAR implementation requires a distributed sorting step where the
packets to be sent are sorted according to the recipients’ addresses. All practical sorting
algorithms on a N-node hypercube require O(log2N) time and thus the total time com-
plexity of a sort-based RAR operation is of the same order (Ranka and Sahni 2012). The
main goal is to implement the RAR operation without resorting to a sorting operation
by exploiting the properties of the bilinear transform. In the following section, we give
more details of this implementation.

After receiving the pixels required for the computation of Ĩn−1(x
′, y′), each processor

(x, y) computes the prediction error for its pixel. Then, these local errors are distribu-
tively added and the total prediction error for each block finally ends up at the processor
located at the upper-left corner of the block. This transfer can be easily implemented
with two rounds of parallel segmented prefix sum operations (Leighton 1992). Initially,
the segmented prefix sum operations are performed along the columns of the frames
with the segment length of each prefix-sum operation being the height of the blocks.
Then, parallel segmented prefix-sum operations are carried out along the lines coincid-
ing with the horizontal boundaries of the rectangles (see Figure 1a). The segment length
of each “horizontal” prefix-sum operation is now the block width. Each segmented pre-
fix-sum takes O(logN) time at most and thus the total time for estimating the total pre-
diction error is of the same order.

Then, each of the above upper-left processors updates the minimum prediction error
if the current prediction error is the lowest seen so far. In this case also, they store the
corresponding displacement vectors. Thus, after the end of all iterations, each of the
upper-left processor will know the minimum prediction error for its block and which
displacement vectors at the corners of the rectangle give the best prediction.

Page 11 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Algorithm 3: Implementation of the RAR operation by
YX − routing

forall the 10= −Nx K , 10= −Ny K do
/* First Phase */
/* X-Routing */

),(00 yx ← the upper left corner of the block in nI
containing),(yx

if Lxx ′′ < then /*),(= yxfx′ ,),(= 0 yxfxL′
by (4) */

′xxint =
else

′xxint =

Processor),(yx sends its request packet to the processor

),(yxint
/* Y-Routing */
2a) Processor),(yxint forwards the request packet to the

processor),(′′yxint where y ′′ is given by (12)

2b) Processor),(′′yxint collects in its local memory all
the pixels required for the estimation of the interpolation
function (3) at),(yx ′′ where),(= yxgy′ by (4)
/* Second Phase */

3) Processor),(′′yxint sends these pixels back to

processor),(yx by executing the steps 1 and 2a in reverse

The RAR operation

Algorithm 3 gives the basic steps for the proposed implementation of the RAR operation.
As has been mentioned previously, in the first phase, each processor (x, y) sends a read
request to the processor holding all the information required for calculating the intensity
of the pixel (x′, y′) in the previous frame Ĩn−1 where x′ = f (x, y) and y′ = g(x, y) by (4).
Since, x′, y′ may not be integers, they should be rounded to nearest integers and thus, the
request is sent to the processor (xint , ⌊y′′⌋) which is close to the position (x′, y′) as will seen
later. Also, by viewing the hypercube of N 2 nodes as a two dimensional mesh N × N , rout-
ing of this request can be performed by using the well known technique of X − Y rout-
ing. First, the x-coordinate is corrected and the packet is routed horizontally toward the
destination column and then the packet is routed vertically to the final destination. After,
the read request has arrived the processor (xint , ⌊y′′⌋), the second phase starts and the pro-
cessor (xint , ⌊y′′⌋) gathers all the pixels needed for estimating the intensity Ĩn−1(x

′, y′) for
all processors (x, y) which sent read-requests to that processor. Then, it sends these pixels
back to the above processors (x, y) by reversing the steps of the X − Y routing of the first
phase. In what follows, we give the details of these steps.

Page 12 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

X‑routing

At this step, each processor (x, y) sends a packet containing its coordinates to the proces-
sor (⌊x′⌋, y) except possibly when the processor is near the left edge of its block. Specifi-
cally, for these processors, the pixel (⌊x′⌋, y) may be outside the image of the block in the
previous frame. Thus, these processors (x, y) are forced to send to the processor (⌈x′⌉, y).
We should specially treat these processors in order to ensure that after the end of X-rout-
ing, each processor will have received packets originated only from a single block. As will
be seen, with this guarantee, the implementation of Y -routing is greatly simplified. Notice
also that each processor can easily identify this special case. For instance, a processor (x, y)
inside the thick block of Figure 1a should send the packet to the processor (⌈x′⌉, y), only if
⌊x′⌋ < ai1x0 + ai2y0 + ai3x0y0 + ai4. Now, we prove the following Lemma.

Lemma 4.1  Let (x1, y) and (x2, y) be two processors along the same horizontal line and
let processors (xint

1
, y), (xint

2
, y) be the recipients of the packets of these processors respec-

tively during X-routing where xinti is either ⌊x′⌋ or ⌈x′⌉ depending on whether the above
special case arises or not. If x1 < x2, then it holds that xint

1
≤ xint

2
.

Proof  We consider two cases: (a) the processors (x1, y) and (x2, y) belong to the same
block Bi and (b) belong to different blocks. Now, we deal with the first case. Writing the
first of the relations (4) as follows:

We notice that the terms ai1 + ai3y και ai2y+ ai4 are constant for all processors of Bi
residing on the same horizontal line. Due to Lemma 3.1, the expression ai1 + ai3y is pos-
itive, therefore, x′

1
< x′

2
 and thus xint

1
≤ xint

2
.

For the second case where processors (x1, y) and (x2, y) belong to different blocks,
notice that because of the assumption of the continuous motion model and also due to
the guarantee that each packet from a block ends up again inside the image of the block,
the destinations of packets originated from different blocks are ordered according to the
relevant locations of the blocks they belong to. Specifically, the block of processor (x1, y)
is left of the block of processor (x2, y) and thus the packet of the former will end up left of
the packet coming from the latter. Therefore, we have proved the Lemma for the second
case as well. �

If the destinations of the packets to be routed on the hypercube are already sorted with
respect to their destinations, as in our case, the packet routing can be performed opti-
mally in O(logN) time by using monotone routing (Leighton 1992). Here, we assume that
the packet destinations are all different. Otherwise, if L is the maximum number of pack-
ets that have the same destination, then monotone routing is completed in O(LlogN)
time (O(L+ logN)) in case of the one (all) port capability where

However, all packets having the same final destination after X − Y routing, originating
also from processors on the same horizontal line can be easily combined into a single

(8)x′ = (ai1 + ai3y)x + ai2y+ ai4

(9)
L = max

Bi
max

line y = yq
crosses Bi

max

((

1

ai3yq + ai1

)

, 1

)

Page 13 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

proxy packet. Indeed, the source processors of these packets are consecutive along the
horizontal line and thus their packets can be combined in O(logN) time using standard
techniques described in (Leighton 1992; Ranka and Sahni 2012). Then, only the proxy
packet needs to be routed by X − Y routing. The time complexity is given by the above
expressions again but now

By Lemma 3.1, the expression ai3yq + ai1 is in the range [1
k
, 2− 1

k
] and is getting closer

to 1
k
 when the four corners of Bi tend to be collinear along the same vertical line after the

application of bilinear transformation. In contrast, the value of this expression is getting
nearer 2− 1

k
, when the corners of Bi are moving apart horizontally. For the expression

|ai7yq + ai5|, its value is always in the range
[

0,
l−1

k

]

 again by Lemma 3.1. It converges
toward zero when the upper and the lower edge of the block Bi still remain horizon-
tal after the bilinear transformation while it converges toward l−1

k
 when the upper and

the lower edge of the block Bi are inclined 45◦ after applying the transform. Overall, the
maximum value of L is (l − 1) and this value results when the four corners of a block
all converge to the same vertical line. For other more “typical” cases of corner displace-
ments, L takes much lower values.

Also, it is clear that after the end of X-routing, each processor have received at most L
packets and thus it requires that much local memory.

We can also provide an implementation of the X-routing with lower communication
cost but with higher computation cost. Specifically, we can combine into a single proxy
packet, all the packets coming from processors (x, y) having the same destination (xint , y).
Thus, the communication time required for X-routing is now lower, namely, O(logN).
All these processors are consecutive along the same horizontal line and the proxy packet
needs to carry only the interval [xr . . . xq] of these processors whose length is obviously
O(L) where L is given by (9). In addition, all these processors belong to the same block
of the frame In and thus the processor (xint , y) can easily identify that block from the
above interval of x-values. Thus, then it is able to estimate the parameters ai1, . . . , ai8 of
the bilinear transformation for that block. Next, processor (xint , y) can determine all the
subintervals of the [xr . . . xq] which correspond to the processors having the same final
destination (xint , ⌊y′⌋) after X − Y routing. The number of these subintervals is clearly
O(L) where L is now given by (10) and computation time is also O(L) for finding these
intervals. Thus, eventually, the processor (xint , y) has the same information as that it had
when following the first implementation of X-routing.

It is also worth mentioning that the above two alternative implementations of X-rout-
ing actually lead to the same overall complexity for the RAR operation as will be clear
after the analysis of the remaining steps of that operation.

Y‑routing

At this step, the packets reach their final destinations, moving vertically, that is, in paral-
lel with axis Y . After the end of X-routing, the packet that started from processor (x, y) is
at processor (xint , y) where xint is the approximation of x′ by the integer ⌊x′⌋ or ⌈x′⌉. As has

(10)
L = max

Bi
max

line y = yq
crosses Bi

min(|ai7yq + ai5|, 1)

min(ai3yq + ai1, 1)

Page 14 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

been mentioned earlier, the proxy packets arriving at processor (xint , y) are coming from
the same block of the frame In and this processor can estimate the parameters ai1, . . . , ai8
of the bilinear transformation for the origin block. By finding x from the first Eq. (4) and
then replacing x(= xint + δ) in the second equation, we finally get:

where δ ∈ [−1, 1]. Division by zero does not arise since the denominator ai3y+ ai1 is
always positive from Lemma 3.1.

Now, Y -routing is executed in two stages. In the first stage, the packet in the processor
(x′, y) is sent to the processor (x′, ⌊y′′⌋) where y′′ is given by the following relation:

At the second stage, we take into account the term ai7y+ai5
ai3y+ai1

δ as well as the truncation
of coordinate y′′ to the nearest smaller integer, i.e. ⌊y′′⌋. Notice also that all the packets
residing in the processor (xint , y) after X-routing have the same destination (xint , y′′) dur-
ing Y -routing and thus they can be easily combined into a single proxy packet again.

Next, we will describe the first stage of Y -routing.
First stage. The function (12) which gives the destinations of packets during this stage

is a ratio of a second order polynomial over a linear function. Figure 2 depicts an exam-
ple of the bilinear transformation on a block and Figure 3 illustrates the graph of y′′ for
this particular transformation. By following a standard analysis using the first derivative
of this function and by taking into account that y′′ is not continuous for y-values around
the root of denominator, we can easily prove that the horizontal axis y is always divided
into at most four intervals where the function y′′ is either increasing or decreasing. Let
(−∞, y1], (y1, y2], (y2, y3], (y3,+∞) be these intervals. Obviously, y1,y2,y3 can be easily
determined by studying the first derivative of y′′.

Here, it should be noted that actually we are not interested in the whole range of the val-
ues of y but only for those y-values relevant for the corresponding block ([y0 − l . . . y0]),
e.g., the shaded region in Figure 3. Although, it was not possible to prove it due to com-
plexity of (12), however, by performing a number of tests with different parameters of
the bilinear transformation for each test, we have noticed that within the relevant range
[y0 − l . . . y0], the function is monotone except for some cases where the block suffers
severe distortion, e.g. when the left part of the block goes down and right part up and
the two vertical sides nearly coincide. In that case, the function change monotonicity
mode only once.

Thus, the general technique for the first stage of Y -routing is to split the packet rout-
ing into as many phases as the number of intervals with different monotonicity (at most
four). At each phase, packets are sent only from those processor (x′int , y) whose y-coor-
dinate belongs to the corresponding interval. Specifically, at the intervals where y′′ is
increasing, monotone routing is directly employed. At intervals where y′′ is decreasing,
each processor (x′int , y) first sends a packet to processor (x′int ,N − 1− y). This transfer

(11)

y′ =
(ai6ai3 − ai7ai2)y

2 + (ai1ai6 − ai2ai5 + ai7xint − ai4ai7 + ai3ai8)y+ ai5xint − ai4ai5 + ai1ai8

ai3y+ ai1
+

ai7y+ ai5

ai3y+ ai1
δ

(12)

y′′ =
(ai6ai3 − ai7ai2)y

2 + (ai1ai6 − ai2ai5 + ai7xint − ai4ai7 + ai3ai8)y+ ai5xint − ai4ai5 + ai1ai8

ai3y+ ai1

Page 15 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

can be easily done in O(logN) time by complementing the bits of coordinate y. After this
transfer, the packets to be sent are sorted in increasing order of their final destination y′′
again. Thus, now monotone routing can be applied for packet routing.

In the discussion above, we implicitly assume that all packets are coming from the
same initial block. However, the above techniques are still valid when there are packets
from different blocks. For different initial blocks, the function (12) differs accordingly.
Still, packet routing can be arranged in such a way that all packets to be sent in one of
the at most four phases mentioned above will be sorted in increasing or decreasing order
of their final destination again. This total ordering of packet destinations in each phase
is thanks to the modification we did on X-routing step which ensures that each packet
coming from a block will end up again in the same image block in the previous frame as
well as because of the continuous motion model assumed in this work. According to that
model, the blocks after the bilinear transformation maintain their initial relevant spatial
placement. Specifically, we prove the following Lemma:

Figure 2  An example of the bilinear transformation on a frame block.

Figure 3  Graph of the function (12) for the example of Figure 2 and for xint = 72.

Page 16 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Lemma 4.2  Let A and B be two packets from different initial blocks which are on the
same column after the end of X-routing, specifically at processors (xint , yA) and (xint , yB)
respectively. If yA > yB then y′′A > y′′B where y′′A and y′′B are given by (12).

Proof  We will only consider the case where the packets A and B belong to adjacent ini-
tial blocks (Figure 4). Then, the general case is easily derived. Let (xA, yA) and (xB, yB) be
two points inside the two blocks for which it holds that:

where aA1, . . . , aA4 and aB1, . . . , aB4 are the first four parameters of the bilinear transfor-
mation of the blocks of packets A and B, respectively. The existence of these two points
results from the properties of the bilinear transform and from the modification of X
-routing which ensures that no packet will end up outside the image of its origin block
after the application of the bilinear transformation. Note that x-coordinates of these
points are not necessarily integer numbers.

Now, after applying the bilinear transformation, these points are mapped to the fol-
lowing points:

Due to continuous motion model, after the application of the bilinear transformation,
the blocks maintain their initial relevant vertical order and hence it holds that y′A > y′B.
After finding xA and xB from Eqs. (13, 14), respectively and then replacing these in the
Eqs. (15, 16) we get:

(13)xint = aA1xA + aA2yA + aA3xAyA + aA4

(14)xint = aB1xB + aB2yB + aB3xByB + aB4

(15)y′A = aA5xA + aA6yA + aA7xAyA + aA8

(16)y′B = aB5xB + aB6yB + aB7xByB + aB8

Figure 4  Proof of Lemma 4.2.

Page 17 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Now, it is easy to see that y′′A = y′A, y′′B = y′B and hence y′′A > y′′B.
From this Lemma, it is now clear that the monotone routing can now be applied for

the first stage of Y -routing. Again, packet combining can be employed for replacing all
packets heading for the same processor with a single proxy-packet. After the end of X
-routing, all these packets have been stored in neighboring processors along the same
column and thus, combining is easy to implement. As a result, the first step of Y -rout-
ing can run in O(logN) time. If (x, yA), (x, yA + 1), (x, yA + 2), . . ., (x, yB − 1), (x, yB) are
the processors whose packets have the same destination during the first stage of Y -rout-
ing, then the proxy packet of all the packets residing in these processors should carry
the maximum absolute value of the fraction ai7y+ai5

ai3y+ai1
δ for y ∈ [yA . . . yB]. This information

which will be denoted by ycr will be used at the second stage of Y -routing. The factor δ is
the truncation error during the X-routing and gets nearly random values in the interval
(−1, 1). It is also easy to see that ycr = O(L).

Second stage. After the first stage of Y -routing, the proxy of the read-request origi-
nated from the processor (x, y) has ended up at the processor (xint , ⌊y′′⌋). In the second
stage of Y -routing, we take into account the term ai7y+ai5

ai3y+ai1
δ in (11) as well as the trunca-

tion error due to the approximation of y′′ with the integer ⌊y′′⌋.
Now, each processor which has received a proxy-packet uses the value of ycr stored

in the proxy-packet for determining the pixels that should be gathered from the nearby
processors. Specifically, processor (xint , ⌊y′′⌋) needs to get pixels only from the proces-
sors (xint + r, ⌊y′′⌋ + q) where r = −1, 0, 1 and q = −⌊ycr⌋ . . . ⌈ycr⌉ + 1. These pixels
surely include all the pixels necessary for the estimation of interpolation function (3) for
all packets whose proxy-packet ended up at processor (xint , ⌊y′′⌋).

The above group of pixels can be transferred from the nearby processors to the proces-
sor (xint , ⌊y′′⌋) by running O(ycr) or, equivalently, O(L) shift operations. The total time for
this transfer is O(LlogN) in the case of one-port capability. In the case of all-port capa-
bility, the shift operations can be pipelined and so the total time for the above transfer
is reduced to O(L+ logN). Clearly, the local memory per processor required for storing
the received pixels is O(L).

We have concluded the description of the first phase of the RAR operation. Next, we
present the second phase of this operation.

The second phase of the RAR operation

This phase is essentially the reversal of the steps executed during the first phase. At the end
of first phase of the RAR operation, each processor O(xint , ⌊y

′′⌋) has gathered O(L) pixels
that should be returned to the processors that asked for them. The second phase of the
RAR operation starts by reversing the first stage of Y -routing and the size of packets trans-
ferred in this step is O(L). Thus, the time required for this step is O(LlogN) (O(L+ logN))

y′A =
(aA3aA6−aA2aA7)y

2

A + (aA1aA6 − aA2aA5 + aA7xint − aA4aA7 + aA3aA8)yA + aA5xint−aA4aA5 + aA1aA8

aA3yA + aA1

y′B =
(aB3aB6 − aB2aB7)y

2

B+(aB1aB6 − aB2aB5 + aB7xint − aB4aB7+aB3aB8)yB + aB5xint − aB4aB5 + aB1aB8

aB3yB + aB1

�

Page 18 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

at most in the case of the one-port (all-port) capability. After, this step, each processor
stores O(L) pixels at most in its local memory.

Next, the X-routing step is reversed. The processors have kept in their local memory
the packets that received at the end of X-routing during the first phase of the RAR oper-
ation and now they are able to return to each processor (x, y) only the pixels that this
processor needs for estimating the interpolated value I(x′, y′) where x′,y′ are given by
the Eq. (4). As a result, the packets sent during this step, are all of size O(1), while each
processor (x, y) should send packets to at most O(L) processors horizontally. Therefore,
the reverse X-routing requires O(LlogN) (O(L+ logN)) time in the case of one-port (all-
port) capability.

Now, each processor (x, y) has all the pixels it needs for estimating the interpolation
function (3) and hence the intensity value of the pixel which the pixel (x, y) is mapped to
in the previous frame Ĩn−1 with the application of the bilinear transformation.

Finally, we can prove the following Theorem:

Theorem 4.1  The motion estimation based on the bilinear transformation between
two successive video frames of dimension N × N can be executed on a hypercube of N 2
nodes in O(klLlogN) or O(kl(L+ logN)) time at most assuming one-port or all-port capa-
bility respectively where L is given by (10). The local memory required at each processor
for this computation is O(L) at most. With the constraints (6) on the displacement vec-
tors at the block corners, the above time and the space complexities become O(kl2logN),
O(kl2 + kllogN) and O(l) respectively.

Proof  The most costly operation in each of the Θ(kl) iterations of the Algorithm 2 is
the RAR operation whose time complexity is O(LlogN) or O(L+ logN) for one-port or
all-port capability, respectively while the local memory at each processor is O(L) at most.
Thus, the time and space complexities stated in the theorem easily follow. Recall also
that L = O(l) at most and this maximum arises only in the rather uncommon scenario
where the corners of a block are almost collinear along a vertical line after applying the
bilinear transformation.

With the one-port assumption, a nice feature of all communications used in the pro-
posed algorithm such as, the prefix-sum, monotone routing or shift, is that they are nor-
mal algorithms (Leighton 1992), that is, at any step of these communications, only one
hypercube dimension is used and successive dimensions are used in successive steps.
Now, a well-known fact for the normal algorithms is that they can be simulated with the
same asymptotic complexity in other hypercubic networks (butterfly, cube-connected-
cycles, shuffle-exchange or de Bruijn network) of the same number of nodes (Leighton
1992). Thus, the proposed parallel motion estimation algorithm can be easily ported to
other interconnection network models as well.

Conclusions
We have presented a parallel algorithm for motion estimation for video coding based on
the bilinear transformation. The algorithm runs on the the parallel model of the hypercube
which has been widely used for parallel algorithm design in the literature. We have also

�

Page 19 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

provided complete analysis of the time and space complexity of the proposed algorithm.
We have also shown that our algorithm can be used not only for the hypercube network
but can also run on other hypercubic networks as well.

Abbreviations
ASIC: application specific integration circuits; GOP: group of pictures; RAR: random access read.

Acknowledgements
The publication of this paper has been partly supported by the University of Piraeus Research Center. Specifically, this
Center is going to cover the article processing charge of this paper if this manuscript is accepted for publication.

Compliance with ethical guidelines

Competing interests
The author declares that he has no competing interests.

Received: 25 February 2015 Accepted: 13 May 2015

References
Ahmad I, Akramullah SM, Liou ML, Kafil M (2001) A scalable off-line MPEG-2 video encoding scheme using a multiproces-

sor system. Parallel Comput 27(6):823–846
Aizawa K, Huang TS (1995) Model-based image coding: advanced video coding techniques for very low bit-rate applica-

tions. Proc IEEE 83(2):259–271
Altunbasak Y, Tekalp AM (1997) Closed-form connectivity-preserving solutions for motion compensation using 2-D

meshes. IEEE Trans Image Process 6(9):1255–1269
Alvanos M, Tzenakis G, Nikolopoulos DS, Bilas A (2011) Task-based parallel H. 264 video encoding for explicit communica-

tion architectures. International conference on embedded computer systems (SAMOS) 2011, pp 217–224. IEEE
Badawy W, Bayoumi MA (2002a) A low power VLSI architecture for mesh-based video motion tracking. IEEE Trans Circuits

Syst II Analog Digital Sig Process 49(7):488–504
Badawy W, Bayoumi M (2002b) A multiplication-free algorithm and a parallel architecture for affine transformation. J VLSI

Signal Process Syst Signal Image Video Technol 31(2):173–184
Bojnordi MN, Semsarzadeh M, Hashemi MR, Fatemi O (2006) Efficient hardware implementation for H. 264/AVC motion

estimation. IEEE Asia Pacific conference on circuits and systems, 2006. APCCAS 2006, pp 1749–1752. IEEE
Chatterjee SK, Chakrabarti I (2011) Power efficient motion estimation algorithm and architecture based on pixel trunca-

tion. IEEE Trans Consum Electr 57(4):1782–1790
Chen W-N, Hang H-M (2008) H.264/AVC motion estimation implementation on compute unified device architecture

(CUDA). IEEE international conference on multimedia and expo, 2008, pp 697–700
Chen T-C, Chien S-Y, Huang Y-W, Tsai C-H, Chen C-Y, Chen T-W, Chen L-G (2006) Analysis and architecture design of an

HDTV720p 30 frames/s H.264/AVC encoder. IEEE Trans Circuits Syst Video Technol 16(6):673–688
Cheung N-M, Fan X, Au OC, Kung M-C (2010) Video coding on multicore graphics processors. Sig Process Mag IEEE

27(2):79–89
Chiariglione L (2012) The MPEG representation of digital media. Springer, New York
Fernandez J-C, Malumbres MP (2002) A parallel implementation of H. 26l video encoder. In: Euro-Par 2002 parallel pro-

cessing. Springer, Berlin Heidelberg, pp 830–833
Fu J-S (2008) Fault-free hamiltonian cycles in twisted cubes with conditional link faults. Theoret Comput Sci

407(1):318–329
Ghanbari M, De Faria S, Goh I, Tan K (1995) Motion compensation for very low bit-rate video. Sig Process Image Commun

7(4):567–580
Grama A, Gupta A, Karypis G, Kumar V (2002) Introduction to parallel computing, 2nd edn. Addison-Wesley Longman

Publishing Co., Inc, Boston
Hsiao H-F, Wu C-T (2013) Balanced parallel scheduling for video encoding with adaptive gop structure. IEEE Trans Parallel

Distrib Syst 24(12):2355–2364
Hsieh S-Y, Lee C-W (2010) Pancyclicity of restricted hypercube-like networks under the conditional fault model. SIAM J

Discret Math 23(4):2100–2119
Huang C-L, Hsu C-Y (1994) A new motion compensation method for image sequence coding using hierarchical grid

interpolation. IEEE Trans Circuits Syst Video Technol 4(1):42–52
Huang H, Woods JW, Zhao Y, Bai H (2013) Control-point representation and differential coding affine-motion compensa-

tion. IEEE Trans Circuits Syst Video Technol 23(10):1651–1660
Jung B, Jeon B (2008) Adaptive slice-level parallelism for H.264/AVC encoding using pre macroblock mode selection. J Vis

Commun Image Represent 19(8):558–572 (Special issue: resource-aware adaptive video streaming)
Kim J, Park T (2009) A novel VLSI architecture for full-search variable block-size motion estimation. IEEE Trans Consum

Electr 55(2):728–733
Konstantopoulos C, Svolos A, Kaklamanis C (2000) An efficient parallel algorithm for motion estimation in very low bit-

rate video coding systems. Concurr Pract Exp 12(5):289–309

Page 20 of 20Konstantopoulos. ﻿SpringerPlus (2015) 4:288

Kordasiewicz RC, Gallant MD, Shirani S (2007) Affine motion prediction based on translational motion vectors. IEEE Trans
Circuits Syst Video Technol 17(10):1388–1394

Kung MC, Au OC, Wong PH-W, Liu C-H (2008) Block based parallel motion estimation using programmable graphics
hardware. International conference on audio, language and image processing, 2008. ICALIP 2008, pp 599–603

Kuo C-N, Chou H-H, Chang N-W, Hsieh S-Y (2013) Fault-tolerant path embedding in folded hypercubes with both node
and edge faults. Theoret Comput Sci 475:82–91

Lai C-N (2012) Optimal construction of all shortest node-disjoint paths in hypercubes with applications. IEEE Trans Paral-
lel Distrib Syst 23(6):1129–1134

Leighton FT (1992) Introduction to parallel algorithms and architectures: array, trees, hypercubes. Morgan Kaufmann
Publishers Inc, San Francisco

Li D-X, Zheng W, Zhang M (2007) Architecture design for H. 264/AVC integer motion estimation with minimum memory
bandwidth. IEEE Trans Consum Electr 53(3):1053–1060

Lin Y-K, Lin C-C, Kuo T-Y, Chang T-S (2008) A hardware-efficient H. 264/AVC motion-estimation design for high-definition
video. IEEE Trans Circuits Syst I Regul Pap 55(6):1526–1535

Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low-complexity transform and quantization in H.264/AVC. IEEE
Trans Syst Video Technol 13(7):598–603

Mokraoui A, Munoz-Jimenez V, Astruc J-P (2012) Motion estimation algorithms using the deformation of planar hierarchi-
cal mesh grid for videoconferencing applications at low bit-rate transmission. J Signal Process Syst 67(2):167–185

Muhit AA, Pickering MR, Frater MR, Arnold JF (2010) Video coding using elastic motion model and larger blocks. IEEE
Trans Circuits Syst Video Technol 20(5):661–672

Muhit AA, Pickering MR, Frater MR, Arnold JF (2012) Video coding using fast geometry-adaptive partitioning and an
elastic motion model. J Vis Commun Image Represent 23(1):31–41

Nakaya Y, Harashima H (1994) Motion compensation based on spatial transformations. IEEE Trans Circuits Syst Video
Technol 4(3):339–356

Nosratinia A (2001) New kernels for fast mesh-based motion estimation. IEEE Trans Circuits Syst Video Technol
11(1):40–51

Ou C-M, Le C-F, Hwang W-J (2005) An efficient VLSI architecture for H. 264 variable block size motion estimation. IEEE
Trans Consum Electr 51(4):1291–1299

Pieters B, Hollemeersch CF, Lambert P, Van de Walle R (2009) Motion estimation for H. 264/AVC on multiple GPUs using
NVIDIA CUDA. Proc SPIE 7443:74430X–74430X-12

Pourazad MT, Doutre C, Azimi M, Nasiopoulos P (2012) HEVC: the new gold standard for video compression: how does
HEVC compare with H. 264/AVC? Consum Electr Mag IEEE 1(3):36–46

Ranka S, Sahni S (2012) Hypercube algorithms: with applications to image processing and pattern recognition, 1st edn.
Springer, New York

Rao KR, Kim DN, Hwang JJ (2014) Video coding standards. Springer, The Netherlands
Ren J, Wen M, Zhang C, Su H, He Y, Wu N (2010) A parallel streaming motion estimation for real-time HD H.264 encoding

on programmable processors. 5th international conference on Frontier of computer science and technology (FCST),
2010, pp 154–160

Ruiz GA, Michell JA (2011) An efficient VLSI processor chip for variable block size integer motion estimation in H. 264/
AVC. Sig Process Image Commun 26(6):289–303

Sayed M, Badawy W (2004) A novel motion estimation method for mesh-based video motion tracking. In: IEEE interna-
tional conference on acoustics, speech, and signal processing, 2004. Proceedings (ICASSP’04), vol 3, p 337. IEEE

Sayed M, Badawy W (2006) An affine-based algorithm and SIMD architecture for video compression with low bit-rate
applications. IEEE Trans Circuits Syst Video Technol 16(4):457–471

Sayood K (2012) Introduction to data compression. Morgan Kaufmann Publishers, San Francisco
Sharaf A, Marvasti F (1999) Motion compensation using spatial transformations with forward mapping. Sig Process Image

Commun 14(3):209–227
Shih L-M, Chiang C-F, Hsu L-H, Tan JJ (2008) Strong menger connectivity with conditional faults on the class of hyper-

cube-like networks. Inform Process Lett 106(2):64–69
Su H, Wen M, Wu N, Ren J, Zhang C (2014) Efficient parallel video processing techniques on GPU: from framework to

implementation. Sci World J 2014:716020. doi:10.1155/2014/716020
Sullivan GJ, Ohm J, Han W-J, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans

Circuits Syst Video Technol 22(12):1649–1668
Sundar H, Malhotra D, Biros G (2013) Hyksort: a new variant of hypercube quicksort on distributed memory architectures.

In: Proceedings of the 27th international ACM conference on international conference on supercomputing, pp
293–302. ACM

Tekalp AM (1995) Digital video processing. Prentice-Hall Inc, Upper Saddle River
Utgikar A, Badawy W, Seetharaman G, Bayoumi M (2003) Affine schemes in mesh-based video motion compensation. In:

IEEE workshop on signal processing systems, 2003. SIPS 2003, pp 159–164. IEEE
Wolberg G (1990) Digital image warping, vol 10662. IEEE computer society press, Los Alamitos
Zhang L, Gao W (2007) Reusable architecture and complexity-controllable algorithm for the integer/fractional motion

estimation of H. 264. IEEE Trans Consum Electr 53(2):749–756
Zhou Q, Chen D, Lu H (2015) Fault-tolerant hamiltonian laceability of balanced hypercubes. Inf Sci 300:20–27

http://dx.doi.org/10.1155/2014/716020

	A parallel algorithm for motion estimation in video coding using the bilinear transformation
	Abstract
	Background
	Related work
	Spatial transformations and motion estimation
	Bilinear transformation

	The parallel algorithm
	The RAR operation
	X-routing
	Y-routing

	The second phase of the RAR operation

	Conclusions
	Acknowledgements
	Received: 25 February 2015 Accepted: 13 May 2015References

