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Abstract

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of
nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using
a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and
compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a
powerful tool, capable to generate highly accurate rational solutions.
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Introduction
Solving nonlinear differential equations is an impor-
tant issue in sciences because many physical phenom-
ena are modelled using such equations (Vazquez-Leal
and Sarmiento-Reyes 2015). One of the most power-
ful methods to approximately solve nonlinear differ-
ential equations is the homotopy perturbation method
(HPM) (Aminikhah 2012; Barari et al. 2008; Biazar
and Eslami 2011; Biazar and Ghanbari 2012; Compean
et al. 2012; El-Sayed et al. 2012; Faraz and Khan 2011;
Fathizadeh et al. 2011; Filobello-Nino et al. 2012a,b;
He 2004, 2009; Khan et al. 2013, 2011a,b; Mohyud-Din
et al. 2012; Vazquez-Leal et al. 2012a; Wang et al. 2012).
Recently, HPM method was generalized by introducing
the Rational Homotopy Perturbation method (RHPM)
(Vazquez-Leal 2012; Vazquez-Leal et al. 2012b), multipa-
rameter and nonlinearities distribution HPM (Vazquez-
Leal et al. 2012c), fixed-term homotopy (Vazquez-Leal
et al. 2013), and the generalized homotopy method
(GHM) (Vazquez-Leal 2014). Using as inspiration the
RHPM method, we propose a rational expression as a
particular case of application of the GHM method. In
RHPM method, we consider that the approximate solu-
tion of a differential equation can be represented by the
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quotient of two power series of the homotopy parame-
ter; that quotient of power series transforms the nonlinear
differential equation into a series of linear differential
equations. Therefore, we propose a rational GHM ver-
sion of the RHPM method with the advantage of auto-
matically obtaining the numerator and denominator of
the rational solution. The main characteristic of rational
version of GHM is that obtains a Taylor series of the quo-
tient in terms of the homotopy parameter. The resulting
power series is used in the same fashion like the RHPM
or HPM methods, transforming a nonlinear differential
equation into a series of linear differential equations.
Once solved the system of differential equations, we use
the results to reconstruct the original rational expression
which increase the accuracy of the approximations. To
assess the potential of the proposed methodology, three
nonlinear problems will be solved and compared using
similar methodologies or numerical methods: a nonlin-
ear boundary valued problem (BVP) (Li and Liao 2005),
a heat radiation initial valued problem (IVP) (Ganji and
Rajabi 2006), and an epidemic model containing several
variables (Guerrero et al. 2011).
This paper is organized as follows. In Section ‘Basic

concept of GHM method’, we introduce the basic
concept of the rational version of GHM method. In
Section ‘Case studies’, we show the solution of three non-
linear differential equations of different kind. Numerical
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simulations and a discussion about the results are pro-
vided in Section ‘Numerical simulation and discussion’.
Finally, a brief conclusion is given in Section ‘Conclusions’.

Basic concept of GHMmethod
It can be considered that a nonlinear differential equation
can be expressed as

L(u) + N(u) − f (r) = 0, where r ∈ �, (1)

having as boundary condition

B
(
u,

∂u
∂η

)
= 0, where r ∈ �, (2)

where L and N are a linear and a non-linear operator,
respectively; f (r) is a known analytic function, B is a
boundary operator, � is the boundary of domain �, and
∂u/∂η denotes differentiation along the normal drawn
outwards from � (Wang et al. 2012).
Now, a possible homotopy formulation is

H(v, p) = (1 − p) [L(v) − L(u0)] + p(L(v) + N(v) − f (r))
= 0, p ∈[ 0, 1] ,

(3)

where u0 is the initial approximation for (1) which satisfies
the boundary conditions and p is known as the homo-
topy parameter. When p = 0, (3) is reduced to a trivial
equation easy to solve, and when p = 1, (3) is reduced to
the original nonlinear differential Eq. 1 (Barari et al. 2008;
He 2004,2009; Khan et al. 2013; Vazquez-Leal et al. 2012a).
On one side, for the RHPMmethod (Vazquez-Leal 2012;

Vazquez-Leal et al. 2012b), we assume that solution for (3)
can be written as power series quotient of p

v = p0v0 + p1v1 + p2v2 + · · ·
1 + p1w1 + p2w2 + · · · , (4)

where v1, v2, . . . are unknown functions to be determined
by the RHPM method and w1,w2, . . . are known (arbi-
trary) functions of the independent variable.
On the other side, for the GHM method (Vazquez-

Leal 2014), using as reference (4), we propose the fol-
lowing two particular rational power series expressions

v = p0v0 + p1v1 + p2v2 + · · · + pWvW
1 + pW+1vW+1 + pW+2vW+2 + · · · + pMvM

,

W ≥ 0 M > W ,
(5)

whereM represents the order of the approximation, and

v = p0v0 + p2v2 + p4v4 + · · ·
1 + p1v1 + p3v3 + · · · , (6)

where the maximum order of the power of p employed is
considered as the order of the approximation.
In RHPM, we obtain only the unknown coefficients of

the numerator because the denominator is proposed by
user. However, the improvement in this work, is that GHM

obtains coefficients directly for numerator and denomina-
tor. In (5),W represents the order of the numerator, andM
the order of the denominator considering that the lowest
power of the denominator is W + 1. In (6), the numer-
ator is composed by even powers and the denominator
by odd powers. Here, it is important to remark that the
powers of p of the rational expressions (5) or (6), are in
fact not repeated in numerator and denominator, other-
wise, the GHM will not work properly. Therefore, this is a
restriction of GHM for rational expressions.
Next, we calculate Taylor series of (5) or (6), resulting

v = p0v0 + p1g1(v0, v1) + p2g2(v0, v1, v2)
+ p3g3(v0, v1, v2, v3) + · · · , (7)

where v0, v1, . . . are unknown functions to be determined
by the GHM method and gi are functions obtained by the
application of Taylor series method.
Equation (7) is substituted into (3), regrouping in terms

of p-powers and equating its coefficients to zero. The
resulting system of linear differential equations is solved
to obtain v0, v1, . . .. Next, substituting v0, v1, . . . into (5) or
(6) and calculating the limit, when p → 1, provides an
approximate solution for (1) in the form of

u = lim
p→1

v = v0 + v1 + v2 + · · · + vW
1 + vW+1 + vW+2 + · · · + vM

,

W ≥ 0 M > W ,
(8)

or

u = lim
p→1

v = v0 + v2 + v4 + · · ·
1 + v1 + v3 + · · · . (9)

Usually, a low order approximation is enough to obtain
a highly accurate result as depicted in the next section.
A study of convergence of GHM method was reported in
(Vazquez-Leal 2014).

Case studies
In the present section, we will solve three case studies to
show the utility of the GHM method to solve nonlinear
differential equations.

Nonlinear boundary value problem
As it is known, Gelfand’s equation (Li and Liao 2005)
(also known as Bratu’s problem in 1D) models the chaotic
dynamics in combustible gas thermal ignition. Therefore,
it is important to search for accurate solutions for this
equation.
The problem is expressed as

y′′ + κ exp(y) = 0, y(0) = 0, y(1) = 0, (10)

where prime denotes differentiation with respect to t and
κ is known as Gelfand’s parameter.
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In order to ease the application of the GHMmethod, we
approximate the exponential term by Taylor series (using
five terms), resulting the approximate Gelfand’s problem

y′′+ κ

(
1 + y + 1

2
y2 + 1

6
y3 + 1

24
y4

)
= 0,

y(0) = 0, y(1) = 0.
(11)

From (11), we establish the following homotopy
equations

(1 − p)
(
v′′ + nv + n

) + p
(
v′′ + κ

(
1 + v + 1

2
v2 + 1

6
v3

+ 1
24

v4
))

= 0,

(12)

From (5), we assume that solution for (12) has the
following form

v = v0 + v1p
1 + v2p2

, (13)

where Taylor series of (13) is

v = v0 + v1p + v0v2p2 + · · · . (14)

Substituting (14) into (12) and rearranging the terms of
the same order of p, we obtain

p0 : v′′
0 + κ = 0, v0(0) = 0, v0(1) = 0,

p1 : v′′
1 + κv0 + κv20/2 + κv30/6 = 0, v1(0) = 0, v1(1) = 0,

p2 : −v0v′′
2 − 2v′

0v′
2 − v′′

0v2 + κv0v1
+κv1 + κv20v1/2 = 0, v2(0) = 0, v2(1) = 0.

(15)

Considering κ = 1, we solve (15), resulting

v0 = − 1
2 t(t − 1),

v1 = 1
2688 t

8 − 1
672 t

7 − 1
480 t

6 + 11
960 t

5 + 1
32 t

4 − 1
12 t

3

+ 589
13440 t,

v2 = δ
3228825600t−3228825600 ,

δ = 31431757 + 4600596t5 + 32213181t4
−47167120t2 + 2247245t8 − 104104t9
−11791780t3 − 1471470t7 − 9811230t6
−1650t13 + 11550t12 + 1365t11 − 158340t10.

(16)

Substituting (16) into (13) and calculating the limit when
p → 1, we obtain the second order approximation

u(t) = limp→1(v) = v0+v1
1+v2 , t ∈[ 0, 1] . (17)

Heat radiation equation
The governing equation for heat transfer in a lumped
system of combined convective-radiative heat transfers
(Ganji and Rajabi 2006) is

θ ′ + θ + ε1θθ ′ + ε2θ
4 = 0, θ(0) = 1, (18)

where prime denotes differentiation with respect to τ and
ε1, ε2 are parameters of the equation.
From (18) we establish the following homotopy

equations

(1 − p)
(
v′ + v

) + p
(
v′ + v + ε1vv′ + ε2v4

) = 0. (19)

From (5), we assume that solution for (19) has the
following form

v = v0 + v1p
1 + v2p2 + v3p3

, (20)

where Taylor series of (20) is

v = v0 + pv1 − v0v2p2 + (−v0v3 − v1v2)p3 + · · · . (21)

Substituting (21) into (19) and rearranging the terms of
the same order of p, we obtain

p0 : v′′
0 + v0 = 0, v0(0) = 1,

p1 : v′′
1 + v1 + εv0v′

0 + ε2v40 = 0, v1(0) = 0,

p2 : −v0v′′
2 − v0v2 − v′

0v2 + εv0v′
1

+4ε2v30v1 = 0, v2(0) = 0,

p3 : −v0v′
3 − v′

0v3 − v0v3 − ε1v20v′
2+ε1v1v′

1 − v′
1v2 − v1v2 − v1v′

2
−4ε2v40v2 − 2ε1v0v′

0v2 + 6ε2v20v
2
1 = 0, v3(0) = 0.

(22)
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Then, we solve (22), resulting

v0 = exp(−τ),

v1 = (−ε1 exp(−τ)+ 1
3ε2 exp(−3τ) + ε1 − 1

3ε2
)
exp(−τ),

v2 = 1
36

(−48ε1ε2+16ε22
)
exp(−3τ) + 1

36
(
72ε21 − 24ε1ε2

)

exp(−τ) − 3
2ε

2
1 exp(−2τ) + 17

12ε1ε2 exp(−4τ) − 1
2ε

2
1

+ 7
12ε1ε2 − 2

9ε
2
2 exp(−6τ) − 2

9ε
2
2 ,

v3 = − 8
81ε

3
2 exp(−9τ) + 253

252ε1ε
2
2 exp(−7τ) + (− 8

9ε1ε
2
2

+ 8
27ε

3
2
)
exp(−6τ) − 31

12ε2 exp(−5τ)ε21 + (− 11
9 ε1ε

2
2

+ 11
3 ε21ε2

)
exp(−4τ) + ( 7

6ε
3
1 − 7

6ε
2
1ε2 − 8

27ε
3
2

+ 37
36ε1ε

2
2
)
exp(−3τ)+( 1

3ε
2
1ε2 − ε31

)
exp(−2τ) + 1

3ε
3
1

+ ( 1
12ε

2
1ε2 − 1

2ε
3
1 + 1

9ε1ε
2
2
)
exp(−τ)

+ 8
81ε

3
2 − 2

63ε1ε
2
2 − 1

3ε
2
1ε2.

(23)

Substituting (23) into (20), and calculating the limit
when p → 1, we obtain the third order approximation

u(τ ) = v0+v1
1+v2+v3 . (24)

Model for evolution of smoking habit in Spain
Recently, a model that describes the evolution of the
smoking habit in Spain has been presented (Guerrero
et al. 2011; Vazquez-Leal and Guerrero 2014). The system
of four equations is

ṅ − μ(1 − n) + βn(s + c) = 0,
ṡ − βn(s + c) − ρe − αc + (γ + λ + μ)s = 0,
ċ − γ s + (α + δ + μ)c = 0,
ė − λs − δc + (ρ + μ)e = 0,

(25)

where dots denote differentiation with respect to t.
The sub-populations included in the model are: n is

the proportion of the total population who has never
smoked, s is the proportion of people who smoke less than
20 cigarettes per day, c is the proportion of individuals
who smoke more than 20 cigarettes per day, and e is the
proportion of ex-smokers.
Parameter μ denotes birth rate in Spain; β denotes the

transmission rate due to social pressure to adopt smok-
ing habit; ρ express the rate at which ex-smokers return
to smoking; α is the rate at which an excessive smoker
becomes a normal smoker by decreasing the number of
cigarettes per day; γ is the rate at which normal smok-
ers become excessive smokers by increasing the number

of cigarettes per day; λ denotes the rate at which normal
smokers stop smoking, and δ is the rate at which excessive
smokers stop smoking.
The population is constant and it has been normalized

to unity, then

n + s + c + e = 1, (26)

for any instant of time.
We set the values of the parameters as reported in

(Guerrero et al. 2013) for Spain: μ = 0.01 years−1, ρ =
0.0425 years−1, β = 0.0381 years−1, α = 0.1244 years−1,
γ = 0.1175 years−1, λ = 0.0498 years−1 and δ = 0.0498
years−1. Moreover, the initial conditions are chosen as:
n(0) = 0.5045, s(0) = 0.2059, c(0) = 0.1559, and e(0) =
0.1337, as reported in (Guerrero et al. 2013).
According to the GHM (relation (3)), we can construct

the homotopy map as follows

(1−p)(v̇1 − ṅ0) + �p (v̇1 − μ(1−v1)+βv1(v2 + v3)) = 0,

(1 − p)(v̇2 − ṡ0) + �p (v̇2 − βv1(v2 + v3) − ρv4 − αv3
+(γ + λ + μ)v2) = 0,

(1 − p)(v̇3 − ċ0) + �p(v̇3 − γ v2 + (α + δ + μ)v3) = 0,

(1 − p)(v̇4 − ė0) + �p(v̇4 − λv2 − δv3 + (ρ + μ)v4) = 0,

(27)

where dots denote differentiation with respect to t and �

is a control parameter. Initial approximations are

v1,0(t) = n0(t) = n(0) = r1,
v2,0(t) = s0(t) = s(0) = r2,
v3,0(t) = c0(t) = c(0) = r3.
v4,0(t) = e0(t) = e(0) = r4.

(28)

From (6), we assume that the solution for (27) can be
written as

vi =
∑Q

j=0 p
2jvi,2j

1+∑Q
j=1 p2j−1vi,2j−1

, i = 1, 2, 3, 4, (29)

where the order of the approximation is choose as 2Q =
12.
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Then, Taylor series of order 2Q+ 1 is calculated, result-
ing

vi = vi,0 − vi,0vi,1p + (
vi,2 + vi,0v2i,1

)
p2 + · · ·

+ p2Q(· · · ), i = 1, 2, 3, 4, (30)

where vi,j (i, j = 1, 2, 3, . . . , 2Q) are functions yet to be
determined. Substituting (30) into (27) and rearranging
the coefficients of p-power, we have

v̇1,0 + (−v1,0v̇1,1 + (−1 + � − v1,1)v̇1,0
+�((μ + v2,0β + v3,0β)v1,0 − μ)

)
p + · · · = 0,

v̇2,0 + (−v2,0v̇2,1 + (−v2,1 − 1 + �)v̇2,0
+((γ + λ + μ − βv1,0)v2,0 − βv1,0v3,0 − ρv3,0
−αv3,0) �) p + · · · = 0,

v̇3,0 + (−v3,0v̇3,1 + (−1 + � − v3,1)v̇3,0
+�((α + δ + μ)v3,0 − γ v2,0)

)
p + · · · = 0.

v̇4,0 + (−v4,0v̇4,1 + (−v4,1 + � − 1)v̇4,0 + ((ρ + μ)v4,0
−δv3,0 − λv2,0)�)p + · · · = 0.

(31)

In order to obtain the unknowns vi,j(t) (i, j = 1, 2, 3, . . .),
we must construct and solve the following system of
equations, considering the initial conditions of vi,j(0) = 0
for i, j = 1, 2, 3, . . .

v̇1,0 = 0,
−v1,0v̇1,1 + (−1 + � − v1,1)v̇1,0 + �((μ + v2,0β
+v3,0β)v1,0 − μ) = 0,

...

v̇2,0 = 0,
−v2,0v̇2,1 + (−v2,1 − 1 + �

)
v̇2,0 + ((γ + λ

+μ − βv1,0)v2,0 − βv1,0v3,0 − ρv3,0 − αv3,0)� = 0,
...

v̇3,0 = 0,
−v3,0v̇3,1 + (−1 + � − v3,1)v̇3,0 + �((α + δ + μ)v3,0
−γ v2,0) = 0,

...

v̇4,0 = 0,
−v4,0v̇4,1 + (−v4,1 + � − 1)v̇4,0 + ((ρ + μ)v4,0 − δv3,0
−λv2,0)� = 0,

(32)

Therefore

v1,0(t) = n0(t) = r1,
v1,1(t) = (β(r3 + r2) + μ(1 − 1/r1))t�,

...

v2,0(t) = s0(t) = r2,
v2,1(t) = ((−βr1 − α)r3/r2+λ+γ +μ − βr1 − r4ρ/r2)t�,

...

v3,0(t) = c0(t) = r3,
v3,1(t) = (−γ r2/r3 + μ + δ + α)t�,

...

v4,0(t) = e0(t) = r4,
v4,1(t) = (ρ + μ + (−λr2 − δr3)/r4)t�,

...
(33)

We obtained v1,3, v2,3, v3,3, v4,3, and the succeeding
terms; nevertheless, because they are too cumbersome, we
skip them and will be used only in the final results. Now,
from (29), we obtain a 12-th order approximation; then,
considering p → 1, yields the approximate solution for
(25) as

Vi = limp→1 vi =
∑6

j=0 vi,2j
1+∑6

j=1 vi,2j−1
, i = 1, 2, 3, 4,

(34)

where n(t) = V1, s(t) = V2, c(t) = V3, and n(t) = V4.
Now, we need to determine the value of the parameter

� to obtain the best fit for the exact solution (25).
First, we obtain the Mean Square Error (Em), defined as

Em = 1
K

K∑
j=0

{[
n(j�t) − nr(j�t)

]2 + [
s(j�t) − sr(j�t)

]2
+ [

c(j�t) − cr(j�t)
]2 + [

e(j�t) − sr(j�t)
]2} ,

(35)

where K = 500, �t = 0.1; nr(·), sr(·), cr(·), and er(·)
are the numerical values obtained using the Fehlberg
fourth-fifth order Runge-Kutta method with degree four
interpolant (RKF45) (Enright et al. 1986; Fehlberg 1970)
solution (built-in function of Maple software). We consid-
ered an absolute error of 10−12 for the setup.
This means that Em is the residual error due to the dif-

ference between the GHM solution and the exact solution
within the interval 0 ≤ t ≤ 50 years. Therefore, Fig. 1
shows the minimum mean square error that corresponds,
approximately, to � = 0.265. Hence, we obtain
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Fig. 1 Error Em versus � calculated using (35)

n(t) = nn/nd,
nn = 0.5045 − 8.2592122 × 10−4t + 4.7606095

×10−5t2 − 1.0838343 × 10−6t3 + 1.4940822
×10−8t4 − 1.1878388 × 10−10t5 + 4.6583518
×10−13t6 + 3.4582175 × 10−16t7 − 1.3919721
×10−17t8 + 7.4384156 × 10−20t9 − 2.0139501
×10−22t10 + 2.8243714 × 10−25t11 − 1.5671658
×10−28t12,

nd = 1 + 0.0022273587t − 8.7277969 × 10−5t2
+2.0224303 × 10−6t3 − 2.5537127 × 10−8t4
+1.8449207 × 10−10t5 − 6.3603998 × 10−13t6
−3.9653010 × 10−16t7 + 1.3106707 × 10−17t8
−5.3438537 × 10−20t9 + 9.8379312 × 10−23t10
−7.1089183 × 10−26t11,

(36)

s(t) = sn/sd,
sn = 0.2059 − 0.0018488493t + 8.3523428 × 10−5t2

−2.2529388 × 10−6t3 + 5.6365667 × 10−8t4
−1.1087427 × 10−9t5 + 1.1295079 × 10−11t6
+2.4934539 × 10−14t7 − 1.9822222 × 10−15t8
+2.1647907 × 10−17t9 − 1.0696407 × 10−19t10
+2.2580400 × 10−22t11 − 9.1023225
×10−26t12,

sd = 1 + 0.012216812t − 4.0274518 × 10−4t2
+1.1094910 × 10−5t3 − 2.5292158 × 10−7t4
+4.5595306 × 10−9t5 − 4.3695722 × 10−11t6
−2.5909092 × 10−14t7 + 4.7726975 × 10−15t8
−4.3013487 × 10−17t9 + 1.5225447 × 10−19t10
−1.7433203 × 10−22t11,

(37)

Fig. 2 Numerical solution for (10) (solid circle) and its approximate GHM solution (17) (solid line) for different κ = 1
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Fig. 3 Absolute error (A.E.) of (17) with respect to numerical solution for (10)

c(t) = cn/cd ,
cn = 0.1559 − 0.0018686738t + 3.0147481 × 10−5t2

+1.4921561 × 10−6t3 − 7.2745605 × 10−8t4
+1.4000191 × 10−9t5 − 1.7423707 × 10−11t6
+2.1726271 × 10−13t7 − 2.7865047 × 10−15t8
+2.5689253 × 10−17t9 − 1.4582984 × 10−19t10
+4.8992736 × 10−22t11 − 7.8167718 × 10−25t12,

cd = 1 + 0.016307979t − 2.3394796 × 10−4t2
−8.1415825 × 10−6t3 + 4.2775216 × 10−7t4
−8.1604833 × 10−9t5 + 9.3265962 × 10−11t6
−9.5313836 × 10−13t7 + 9.8754118 × 10−15t8
−7.3067484 × 10−17t9 + 2.9521682 × 10−19t10
−5.2937190 × 10−22t11,

(38)

and

e(t) = en/ed,
en = 0.1337 + 0.0045434452t − 5.0496669 × 10−4t2

+0.000029362922t3 − 1.4018380 × 10−6t4
+5.1516170 × 10−8t5 − 1.4400901 × 10−9t6
+2.9965728 × 10−11t7 − 4.5474832 × 10−13t8
+4.8775075 × 10−15t9 − 3.5078219 × 10−17t10
+1.5229255 × 10−19t11 − 3.0439772 × 10−22t12,

ed = 1 − 0.046234542t + 0.0029901252t2 − 1.6907004
×10−4t3 + 7.082106 × 10−6t4 − 2.2407423
×10−7t5 + 5.1987627 × 10−9t6 − 8.6779824
×10−11t7 + 1.0113549 × 10−12t8 − 7.8296360
×10−15t9 + 3.6341190 × 10−17t10 − 7.7442950
×10−20t11.

(39)

Numerical simulation and discussion
For all case studies, we used built-in numerical rou-
tines from Maple 13 for comparison purposes. For the
BVP problem, it was utilized the scheme based on trape-
zoid combined with Richardson extrapolation. For the
IVP problems, it was used the Fehlberg fourth-fifth
order Runge-Kutta method with degree four interpolant
(RKF45) (Enright et al. 1986; Fehlberg 1970). For both
types of algorithms, it was used a tolerance of absolute
error (A.E.) of 10−12.
We obtained a highly accurate approximate solution

(17) for the nonlinear BVP Geldand’s problem (second
order) (Li and Liao 2005) (10) as depicted in Figs. 2 and 3.

Fig. 4 Numerical solution for (18) (diagonal cross) and its approximations obtained by: GHM (24) (solid line), HPM (Ganji and Rajabi 2006), and PM
(Ganji and Rajabi 2006) (solid circle)
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Fig. 5 Absolute error (A.E.) of approximations GHM (24) (solid line), HPM (Ganji and Rajabi 2006) (dash-dot), and PM (Ganji and Rajabi 2006) (dash)
with RKF45 solution for (18)

Thus, the GHM method can be useful for such kind of
problems that are commonly found in the area of Physics.
Additionally, we solved the heat radiation equation (18)

obtaining a highly accurate solution as depicted in Figs. 4
and 5. In the same figure, we can observe a compari-
son between HPM (Ganji and Rajabi 2006), PM (Ganji
and Rajabi 2006); noticing higher precision by the pro-
posed solution. The high precision of GHM method is
due to its ability to produce rich rational expressions that
can, potentially, fit a wider scope of non-linearities. For
instance, it is well know that Padé approximants (Bararnia
et al. 2012; Guerrero et al. 2013; Raftari and Yildirim 2011;
Torabi and Yaghoobi 2011), being rational expressions,
can represent more efficiently some approximate solu-
tions than simple series solutions.
Next, we approximated the multi-variable model (25)

for the evolution of the smoking habit in Spain (Guerrero
et al. 2011). Resulting approximations (36)-(39) are in

good agreement to numerical results (RKF45) for a period
of 50 years (See Figs. 6, 7, 8 and 9). Comparing Fig. 7 of this
work and Fig. 6 of a HAM solution reported in (Guerrero
et al. 2013), we can observe that the 12-th order GHM
solution (37) possesses wider domain of convergence than
the 20-th order HAM approximation (s(t)). A control of
convergence � is employed to increase accuracy of the
solution; it is done in similar fashion to the control of con-
vergence for HAM method (Guerrero et al. 2013; Li and
Liao 2005).
Thus, GHM method can potentially generate higher

accurate solutions in comparison than the well estab-
lished HAM method. In this example, we used the ratio-
nal series (6), instead of (5), to show the flexibility of
the GHM method. In fact, as long as the Taylor series
of the proposed rational series keeps the general form
(7), we can propose other combinations of p-powers
to obtain more accurate solutions. In order to extend

Fig. 6 Solution of GHM for n(t) (solid line), RKF45 solution (solid circle) for (25)
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Fig. 7 Solution of GHM for s(t) (solid line), RKF45 solution (solid circle) for (25)

the convergence of GHM method, this method may be
combined with others methods like those reported for
HPM or HAM: the nonlinearities distribution homo-
topy perturbation method (NDHPM) (Vazquez-Leal et al.
2012c), the variational homotopy perturbation method
(Matinfar et al. 2011; Noor and Mohyud-Din 2008), Padé
approximants (Bararnia et al. 2012; Guerrero et al. 2013;
Raftari and Yildirim 2011; Torabi and Yaghoobi 2011),
Laplace-Padé after-treatment (Bahuguna et al. 2009;
Ebaid 2011; Gökdoğgan et al. 2012; Jiao et al. 2002;
Khan and Faraz 2011; Merdan et al. 2011; Momani and
Ertürk 2008; Merdan et al. 2009; Sweilam et al. 2009;
Tsai and Chen 2010), fixed-term homotopy (Vazquez-Leal
et al. 2013), among others.
GHM and RHPM methods can generate highly accu-

rate rational solutions. Nonetheless, on one side, RHPM
(Vazquez-Leal 2012; Vazquez-Leal et al. 2012b) requires

the proposal of an arbitrary power series for the divi-
sor. Therefore, the RHPM solution procedure calculates
only the numerator. This feature implies the requirement
of adjustment parameters that should be recalculated for
each specific value of the parameters of the nonlinear
problem under study. On the other side, the rational ver-
sion of GHM method obtains automatically the solutions
for numerator and denominator. Therefore, this charac-
teristic converts the GHM method into a more attractive
tool due to its ability to generate general solutions.
The case studies where chosen in order to test the ability

of GHM for the solution of problems with different type
of nonlinearities and boundary conditions. For instance,
the first case study exhibits an exponential nonlinearity
and boundary valued conditions. Next, second case study
is an initial condition problem with a four order power
nonlinearity. Finally, in the last case study, we show that

Fig. 8 Solution of GHM for c(t) (solid line), RKF45 solution (solid circle) for (25)
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Fig. 9 Solution of GHM for e(t) (solid line), RKF45 solution (solid circle) for (25)

GHM can be applied to solve a system of nonlinear dif-
ferential equations with initial conditions. In the present
work, we choose arbitrary order approximations to depict
the basic procedure of GHM for rational solutions, result-
ing highly accurate solutions (see Figs. 1, 3, and 5). In the
same fashion as HPM, increasing the order of the GHM
approximations will increase the accuracy. However, it
is important to highlight that future work is required in
order to propose a systematic procedure to choose the
order of the GHM rational approximations.
In this manuscript, GHM is presented as a novel tool

to find rational solutions of different nonlinear differen-
tial equations. For instance, we can observe that (24) is
expressed in terms of the division of the sum of expo-
nential terms (see (23)) and the coefficients (ε1 and ε2)
of (18); this type of approximation is indeed very dif-
ficult to obtain (or impossible) with HPM, PM, HAM,
among other approximative methods. Thereupon, further
research is required to explore all the potential benefits of
this proposal.

Conclusions
This work introduced a rational version of the gener-
alized homotopy method (GHM) as a useful tool with
high potential to solve nonlinear differential equations.
We were able to obtain accurate and handy rational solu-
tions for different types of problems: a nonlinear BVP
problem, a highly nonlinear IVP problem, and an epi-
demic model. The high precision of the GHM solutions
is due to the generated rational expressions that can
potentially fit a wider scope of non-linearities. Also, a
comparison between the results of applying the proposed
method and PM/HPM/HAM was shown; concluding that
GHM method provided more accurate approximations.
Finally, further research can be focused on the application

of rational version of GHM method for the solution of
nonlinear differential algebraic equations, nonlinear frac-
tional differential equations, nonlinear partial differential
equations, among others.
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