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Abstract

Hashing has yet to be widely accepted as a component of hard real-time systems and hardware implementations,
due to still existing prejudices concerning the unpredictability of space and time requirements resulting from
collisions. While in theory perfect hashing can provide optimal mapping, in practice, finding a perfect hash function is
too expensive, especially in the context of high-speed applications.

The introduction of hashing with multiple choices, d-left hashing and probabilistic table summaries, has caused a shift
towards deterministic DRAM access. However, high amounts of rare and expensive high-speed SRAM need to be
traded off for predictability, which is infeasible for many applications.

In this paper we show that previous suggestions suffer from the false precondition of full generality. Our approach
exploits four individual degrees of freedom available in many practical applications, especially hardware and
high-speed lookups. This reduces the requirement of on-chip memory up to an order of magnitude and guarantees
constant lookup and update time at the cost of only minute amounts of additional hardware. Our design makes
efficient hash table implementations cheaper, more predictable, and more practical.

1 Introduction

Efficient hashing in network applications is still a chal-
lenging task, because tremendously increasing line speed,
demand for low power consumption and the need for
performance predictability pose high constraints on data
structures and algorithms. At the same time, mem-
ory access speed has almost stayed constant, especially
because of the latency and waiting time between sequen-
tial repeated accesses. Hashing has yet to be widely
accepted as an ingredient in hard real-time systems and
hardware implementations, as prejudices concerning the
unpredictability of size and time requirements due to
collisions still persist.

Modern approaches make use of multiple choices in
hashing (Broder and Mitzenmacher 2001; Vocking 2003)
to improve load and the number of memory accesses.
Unfortunately, d-ary hashing requires d independent par-
allel lookups. To mitigate the need for high parallelism,
table summaries (Kirsch and Mitzenmacher 2008; Song
et al. 2005), based on (counting) Bloom filters (Bloom
1970; Fan et al. 1998) and derivates, further reduce the
number of table accesses to one with high probability
(w.h.p.) at the cost of fast but expensive on-chip memory
(SRAM). The summaries allow set membership queries
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with a low false positive rate and some approaches also
reveal the correct location of an item if present.

Although these improvements address space and time
requirements, they come at a high price. SRAM is
extremely expensive and, while external DRAM can be
shared, it must be replicated for every network processor.
In addition, numerous networking applications compete
for their slice of this precious memory. For many - like
socket lookups, Layer-2 switching, packet classification
and packet forwarding - tables and their summaries tend
to grow extremely large, up to the point where providing
enough SRAM is not applicable. Perfect hashing, on the
other hand, can lead to a near perfect match (Hagerup and
Tholey 2001) but only works on static sets, does not allow
updates and requires complex computations.

The options for a network application designer are
grim. With millions of lookups per second, even the most
improbable worst-case is likely to happen, slowing down
the entire application and leading to packet loss and net-
work congestion. Naive hash tables are too unpredictable
and yield too many collisions. d — ary hashing requires
high parallelism to minimize sequential lookups. Expen-
sive SRAM-based table summaries optimize the average
case performance but still require multiple lookups in the
worst case. Perfect hashing can potentially guarantee a
perfect match and a constant lookup performance but
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requires a static set. To be fully accepted in practical net-
work applications hashing needs to guarantee constant
lookup performance, require minimal on-chip memory,
and allow regular updates.

We propose mechanisms to construct an improved data
structure which we name Efficient Hash Table (EHT),
where efficient relates to both on-chip memory (SRAM)
usage and lookup performance. The design aggressively
reduces the amount of bits per item needed for the on-
chip summary, guarantees a constant lookup time and still
delivers adequate update performance for most applica-
tions, except those that require real-time updates. To the
best of our knowledge, the EHT is the only data structure
offering these characteristics.

Previous approaches suffer from the need for full gener-
ality. Careful observation of network applications reveals
certain degrees of freedom which can be exploited to
achieve significant improvements. These observations
lead to the following four key ideas:

e The update and lookup engines can be separated.
The on-chip summary need not to be exact.

e The summary’s false positive rate can be ignored, it is
irrelevant in respect to lookup performance.

® The summary can be de/compressed in real time.

e The load of a bucket can potentially be larger than
one without increasing memory accesses.

In concert, these concepts reduce SRAM memory size
up to an order of magnitude, but they can also be applied
and configured individually depending on the target appli-
cation.

The rest of this paper is organized as follows. Section 2
discusses related work with Section 2.1 reviewing hash
table summaries is greater detail. Section 3 introduces the
Efficient Hash Table and presents an overview. Section 4
shows how to separate the update and lookup engines.
Section 5 discusses the effect of the false positive rate
on the EHT. Section 6 presents multiple compression
schemes to improve SRAM memory footprint. Section 7
shows how to optimize bucket loads. The results are
evaluated and discussed in Section 8. Finally, the paper
concludes in Section 9.

2 Related work

A hash function % maps items of a set S to an array of
buckets B. Their natural applications are hash tables, or
dictionaries, that map keys to values. In theory, a perfect
hash function that is injective on S (Hagerup and Tholey
2001), could map # items to n buckets. While perfect
hashing for static sets is relatively easy (Fredman et al.
1984), finding a suitable hash function that requires con-
stant space and time to perform the mapping of a dynamic
set is infeasible in practice. As a result, hashing has to deal
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with collisions, where multiple items are hashed into the
same bucket. Naive solutions anchor a linked list or an
array of items to the overflown bucket or probe multiple
buckets according to a predefined scheme. The need for
collision resolution led to the persisting myth that hashing
has unpredictable space/time requirements.

Dietzfelbinger et al. 1994 extended the scheme of
Fredman et al. 1984 to store dynamic sets. Their dynamic
perfect hashing resolves collisions by random selection of
universal hash functions (Carter and Wegman 1977) for a
second-level hash table.

Azar et al. 1994 observed, that by allowing more pos-
sible destinations for items and choosing that destina-
tion with lowest load, both, the average as well as the
upper bound load, can be reduced exponentially. This
effect became popular as the “power of two choices”, a
term coined by Mitzenmacher in (Mitzenmacher 1996).
Vocking 2003 achieved further improvements by intro-
ducing the “always-go-left” algorithm, where the items
are distributed asymmetrically among the buckets. Broder
and Mitzenmacher 2001 suggest using multiple hash func-
tions to improve the performance of hash tables. The n
buckets of the table are split into d equal parts imag-
ined to run from left to right. An item is hashed d times
to find the d possible locations. It is then placed in the
least loaded bucket. Ties are broken by going left (d-left
hashing). A lookup requires examining the d locations.
Since the d choices are independent, lookups can be
performed in parallel or pipelined. A survey of multiple-
choice hashing schemes and their applications can be
found in (Mitzenmacher 2001a).

Bloom Filters (Bloom 1970) represent set memberships
of a set S from a universe U. They allow false positives,
that is, they can falsely report the membership of an item
not in the set, but never return false negatives. Basically,
a Bloom filter is a bit array of arbitrary length m where
each bit is initially cleared. For each item x inserted into
the set, k hash values {hq, ..., h;_1} are produced while
Vh € N : 0 < h < m. The bits at the k corresponding
positions are then set. A query for an item y just checks
the k bits corresponding to y. If all of them are set, y is
reported to be a member of S. A false positive occurs, if
all bits corresponding to an item not in the set are 1. The
probability that this happens depends on the number of
items # inserted, the array length m, and the number of
hash functions k as shown in Eq. 1.

kn k
e:(l—(l—;) ) (1)

The major drawback of Bloom filters is that they do
not allow deletions. Fan et al. 1998 addressed this issue
by introducing a counting Bloom filter (CBF). Instead of
a bit array, CBF maintains an array of counters C =
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{c0,.-.,Sm—1} to represent the number of items that are
hashed to its cells. Insertions and deletions can now be
handled easily by incrementing and decrementing the cor-
responding counters. Later, Bonomi et al. presented an
improved version of CBF based on d-left hashing (Bonomi
et al. 2006).

In (Mitzenmacher 2001b) Mitzenmacher proposes
arithmetic coding for Bloom filters used for exchanging
messages (web cache information) in distributed systems.
Recently, Ficara et al. 2008 introduced a compression
scheme for counting Bloom filters based on Huffman cod-
ing named MultiLayer Compressed Counting Bloom Filter
(ML-CCBF). The compressed counters are stored in mul-
tiple layers of bitmaps. Indexing requires perfect hash
functions since collisions must be avoided. The struc-
ture provides near optimal encoding of the counters but
retrieval is extremely expensive. The authors propose
splitting the bitmaps into equal sized blocks and using an
index structure to lower the cost of a counter lookup.

Bloom filters have since gained a lot of attention espe-
cially in network applications (Broder and Mitzenmacher
2002). Today, Bloom filters can be used as histograms
(Cohen and Matias 2003) and represent arbitrary func-
tions (Chazelle et al. 2004). In 2005 Song et al. 2005
suggested using Bloom filters as a hash table summary.
This idea was later refined in (Kirsch and Mitzenmacher
2005). Bloom filter-based summaries are also used for
minimal perfect hashing (Lu et al. 2006).

2.1 Review of hash table summaries

Our work is based on the schemes presented by Song et al.
2005 and Kirsch and Mitzenmacher 2005, which we will
now review for completeness.

Song et al. 2005 presented a new hash table design,
named Fast Hash Table, based on hashing with choices
and counting Bloom filter summaries that targets hard-
ware implementations and provides fast lookups by uti-
lizing on-chip memory to optimize performance. Their
scheme eliminates the need for parallel lookups usually
required by multiple-choice hashing. Each b-bit counter
(b = 3) in CBF summary corresponds to a bucket
in the hash table and represents the number of items
hashed into it. Note, that if b is small, the probability of
counter overflows can’t be neglected. Song et al. proposed
using a small CAM for overflown counters. There are a
total of m counters (and buckets) where m is calculated
using Eq. 2.

mppr = 2108¢ "] (2)

The constant ¢ needs to be sufficiently large to provide
low false positive and collision probabilities. It is set to
12.8 which is considered optimal. k independent hash
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functions, where k is derived by Eq. 3, are used to index
both CBF and the hash table.

k= {% In 2—‘ (3)

The Basic Fast Hash Table (BFHT) simply replicates all
inserted items to all k locations in the table and incre-
ments the counters. As an improvement the table can
be pruned leading to a Pruned Fast Hash Table (PFHT).
All replicas are removed except for the leftmost with the
lowest counter value (Figure 1). A lookup only requires
examining the least loaded bucket, i.e., the one with the
lowest counter value. While pruning improves lookup
time by reducing bucket loads, updates require an addi-
tional offline BFHT since items need to be relocated when
their associated counters change.

Following Eq. 2 the total amount of bits § needed for the
on-chip summary is dependent on the number of items
and defined as

Brur = 2M108¢71 . p (4)

The rather high requirement of SRAM has later been
addressed by Kirsch and Mitzenmacher . Their key idea
is to separate the hash table from its summary to allow
individual optimizations. They propose using a Multilevel
Hash Table (MHT) (Broder and Karlin 1990) consisting of
d = loglogn + 1 individual tables geometrically decreas-
ing in size. An occupancy bitmap is kept in on-chip
memory that allows efficient queries for empty buckets
(Figure 2).

The bitmap requires a number of bits equal to the
number of buckets 7 which is defined as

d
BMHT = MMHT = Z <C1 5t ”) (5)

i=1

with the constants ¢1, ¢y chosen such that ¢c; > 1, ¢y <
1, cica > 1. Considering only the number of buckets per
item the equation boils down to

BMHT = MIMHT =C- 1 (6)

The authors argue that ¢ = 6 buckets per item suf-
fice. Later in (Kirsch and Mitzenmacher 2010) the authors
refine the MHT by limiting the amount that items are
allowed to be moved during insertions. In the most
aggressive optimization schemes this can reduce the num-
ber of buckets per item to ¢ < 2 for n = 10% at the cost
of additional complexity. Note, that this does not affect
the on-chip requirements of the MHT summaries, since
they are deliberately separated from the actual hash table
and their size only depends on the number of items. It
has, however, an impact on the size of the occupancy (and
deletion) bitmap.
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Figure 1 The two fast hash tables. The Basic FHT (top) replicates every item. The Pruned FHT (bottom) only keeps the ‘leftmost (‘Left’ refers to the
table entry with the least index).
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Following Song et al. to eliminate parallel lookup over-  only the latter two summaries which are based on Bloom
head, Kirsch and Mitzenmacher present three summary filters. They are depicted in Figure 3.
structures, the interpolation search (IS), single filter (SF) The SF summary is a single Bloomier filter (Chazelle
and multiple Bloom filter (MBF) summaries. Since IS is et al. 2004) representing the type ¢ of an item where ¢ cor-
not applicable in our targeted environment we will cover  responds to the sub-table of the MHT where the item is
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Figure 3 Single filter (SF) and multiple Bloom filter (MBF) summaries. The SF is a single Bloomier filter representing the type of an item. The MBF is

an array of Bloom filters decreasing in size.
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located. In addition to false positives, it can also return
type failure. To keep the probability small the filter must
be sufficiently large. The number of cells 1 is defined as

m=n logn (7)
With log log log # bits per cell the number of bits needed is
Bsg = n logn (logloglog n) (8)

The MBF summary is constructed of an array of Bloom
filters B = {By, ..., B;—1}. Each filter B; represents the set
of items with type of at least i 4+ 1. Thus, a false positive
on B; is equal to a type i failure. This leads to the need
of extremely small false positive probabilities to guarantee
successful lookup. For a well designed MHT the number
of bits the MBF requires is

Bmer = n logn 9)

Both, the SF and MBF summaries, support only inserts.
To allow deletions, considerably more effort is required.
Kirsch and Mitzenmacher suggest two approaches. For
lazy deletions a deletion bitmap is kept alongside the occu-
pancy bitmap in on-chip memory with one bit for every
bucket in the MHT. On deletion, the corresponding bit is
set to 1. During lookup, items in buckets that have a set
deletion bit are ignored. The counter based deletions add
counters to the SF and MBF summaries to keep track of
the actual number of items. The authors do not suggest
specific values for the counter width nor provide evalu-
ation. They state however, that a counting MBF requires
about 3.3 times more space than a simple MBF, that is

Bmcee = 3.3 - nlogn (10)

With d choices and v wide counters the modified SF
requires

Bscc =v-d-nlogn (11)

bits.

A predecessor to the MHT is the Segmented Hash Table
(Kumar and Crowley 2005) that also divides the hash table
into multiple segments. Unlike the MHT, however, seg-
ments are equal sized. Each segment uses a Bloom filter
to support membership queries for an item. The false
positive probability needs to be extremely low to pre-
vent sequential or parallel probing of multiple segments.
A novel selective filter insertion algorithm minimizes the
number of non-zero counters by selecting that segment
for insertion that leads the most empty counters. Thus
false positive probability can be reduced. The authors
argue that 16 bits per item of on-chip memory and 16 or
more segments suffice to provide good performance. To
also support deletions, an additional counting Bloom filter
must be kept offline.

The authors later refine segmented hashing in (Kumar
et al. 2008) which they name peacock hash. As with the
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MHT the idea is to have multiple segments that geomet-
rically decrease in size according to a so called scaling
factor. Each table, except the biggest main table, has an
on-chip Bloom filter for membership queries. When an
item is searched the filters of the subtables are queried. If
lookup is unsuccessful, the main table is probed. Again,
the false positive probability needs to be extremely low to
prevent multiple table accesses. With a scaling factor of 10
(each successive table has a size of 10% of the former) and
following the observations in (Kumar and Crowley 2005),
about 2 bits per item are needed for the on-chip Bloom
filters.

The problem of non-deterministic lookup performance
is addressed in (Ficara et al. 2009). Here each item is asso-
ciated with a fingerprint that is cut into chucks and stored
in a small discriminator table. This table is used to index
the main table and is stored on-chip. Fingerprints must be
unique to prevent collisions. A genetic algorithm is sug-
gested to find the perfect mapping. The authors show that
a discriminator table with 4 bits per item can be found in
a reasonable amount of time. While it is possible to “build
a perfect match [...] with fewer [2] bits per item [...]
the effort [...] greatly exceeds the advantages” ((Ficara
et al. 2009), p.141.) Also, being a perfect hashing scheme,
it works only on static sets and the discriminator table can
only be built if the set of items is known a priori.

Recently, the construction of collision-free hash tables
has been discussed in (Li and Chen 2013). The authors
proposed the addition of an on-chip summary vector
between the Bloom filter summary and the hash table.
This summary vector allows deterministic lookup at the
cost of additional on-chip memory.

3 Efficient hash tables

We improve upon previously suggested solutions and
design an Efficient Hash Table (EHT). The EHT reduces
on-chip memory requirements, provides a constant
lookup performance and thus predictability, and, unlike
comparable perfect hashing schemes, it is still updatable
and works with dynamic sets.

This is achieved by exploiting degrees of freedom
present in many lookup intensive applications. Previous
work has shown that flexibility must be bought with
on-chip memory. By completely separating updates from
lookups, the lookup engine can be optimized indepen-
dently and precious on-chip memory saved. The offline
update engine precomputes all changes on the online
structures and only writes necessary changes (Section 4).
Further, we observe that the summary’s false positive rate
isirrelevant in respect to lookup performance. By ignoring
the false positive rate, the length of the on-chip summary
can be aggressively reduced (Section 5). However, this
leads to an increased rate of collisions and multiple items
compete for the same bucket. In order to prevent multiple
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lookups, clever fingerprinting and verification can reduce
the sizes of items and allow multiple entries per bucket
(Section 7). To further reduce the on-chip summarie’s
memory cost, we suggest a Huffman compression scheme
suitable for real-time (de)compression (Section 6).

The following sections explain the different components
in great detail. We start by separating the update and
lookup engines in Section 4. Next, we explore the effect
of the false positive rate on expected counter values and
number of collisions - bucket load - in Section 5. Then we
show how to further reduce on-chip memory cost by using
Huffman compressed Bloom filter summaries (Section 6).
Finally, Section 7 shows how to achieve a guaranteed con-
stant lookup time through clever hashing and multi-entry
buckets.

Table 1 explains the parameters and equations that are
important in the creation of an EHT.

4 Separate update and lookup engines

Previous suggestions have shown that support for updates
is accompanied by enormous overhead to the tables and
their summaries. The PFHT needs an additional offline
BFHT to identify entries that have to be relocated. The
MHT requires an occupancy bitmap and the summaries
require either a deletion bitmap for lazy deletions or
counting filters.

In most real-world applications, especially those that
require fast lookups, updates are much rarer than lookups.
By completely separating update and lookup engines, on-
chip requirements can be reduced. The idea is to keep
two separate summaries. One is kept online in on-chip
memory and is optimized for lookups. It does not need
to be exact and can be different from the update sum-
mary which is kept offline. Keeping only an approximate
online summary allows individual optimization and more
efficient encoding. The update engine precomputes all
changes and sends modifications to the online structures.
This architecture limits the applicability of the EHT to
applications that are not update extensive and do not

Table 1 EHT parameters and equations

Symbol Description Effects

n number of items in table m, k

c multiplier for number of m, k
buckets

m = 2M°9¢nT number of buckets k

k=[%1In2]  number of hashfunctions/  num. of exp. items per
choices bucket

X max allowed countervalue  compression rate y, exp.

num of CAM entries

|w| on-chip mem word size acompression rate y

[bits]
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require real-time updates. That is, we buy optimized
lookup performance with decreased update flexibility.
That also holds for all previously mentioned summary-
based hash tables as well as perfect hashing schemes.
We will show that the update complexity of the EHT is
comparable to that of its predecessors.

Although, some of the techniques we describe are appli-
cable to different table and summary structures such as
the FHT and MHT, we concentrate on optimizing the
scheme of Song et al. 2005, which we argue has most room
for improvement. Figure 4 shows a simplified overview of
our design. It is relatively similar to the FHT (Song et al.
2005) with some changes in components (shaded grey in
the figure). Components are an offline CBF and BFHT,
an online on-chip compressed CBF summary (CCBF),
the online multi-entry bucket PFHT in off-chip mem-
ory, a verifier hash engine, and a small extra memory
(CAM, registers) for overflown entries (we will refer to
the overflow memory as CAM in the following). Strictly,
the offline CBF is not needed, the counter values could
also be computed by examining the length of the linked
list. However, this would lead to significant overhead
when querying counters, so we keep the offline CBF for
performance reasons.

4.1 Maximum counter value

A lookup requires retrieving the leftmost smallest counter
in the CBF summary. Successful lookup is guaranteed as
long as not all counters corresponding to a key are over-
flown. If all the counters are overflown, it is not possible to
identify the correct bucket. The goal is to identify a max-
imum allowed counter value x where the probability that
all ¥ < k chosen counters for an item equal x is appro-
priately small. In essence, choosing an appropriate value
for x is a trade-off between storage saved, the number of
counter overflows, and the number of expected lookup
failures.

(Song et al. 2005) gives an analysis of the probability
that in any k' < k chosen buckets the counter value has
a specific height s. The derivation of the equation is quite
complex and for simplicity left out at this point. Interested
readers are referred to the actual paper. Figure 5 shows
the expected smallest counter value in k' chosen counters
depending on the size m, or to be specific, the buckets per
item constant c. The constant ¢ is chosen to divide m by
multiples of 2. As expected the table size has significant
impact on the smallest counter value. That is, for smaller
¢ the probability of choosing a higher counter is higher.
When reducing ¢ the maximum counter value x must be
higher.

To be able to retrieve all entries the event that all chosen
k' < k counters equal x must be dealt with. The easi-
est solution is to move entries which cannot be retrieved
by calculating the counters to CAM. A small CAM must
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Figure 4 Efficient hash table design overview. The offline update engine precomputes all updates. The online lookup engine is optimized for
time/space efficient lookups. The on-chip summary is not exact and compressed. The online table is pruned and provides room for multiple entries
which optimized by the verification hash engine. A small extra memory is used for counter and entry overflows.

already be maintained for overflown buckets. If x is cho-
sen appropriately large the overhead is minimal.

The expected number of entries that are diverted to
CAM can easily be calculated. Let Pr{C = s} be the prob-
ability, that of k¥’ chosen counters the smallest counter
has value s and let / be the highest counter value to be
expected in the offline summary.

/
Ecam= Y _PriC=i}xn

i=x

(12)

The expected number of CAM entries for n = 10%,¢ =
{12.8,6.4,3.2,1.6,1} and x = {3,4,5} can be seen in
Table 2. The numbers can be used as a guideline for choos-
ing x. For example, with ¢ = 12.8 and x = 3, the expected
number of CAM entries is still 0. Without any additional

cost, the counter-width of the summary can be reduced
to 2 bits, achieving a reduction in size of 30%. By further
providing a small CAM for few entries, ¢ can be halved,
leading to a summary only % of the optimum in size. The
trade-off improves for increasing x. Consulting the num-
bers, each time x is incremented once, ¢ can be halved, at
the cost of few additional CAM entries.

4.2 Encoding

Limiting the counter range allows for better optimized
encoding of the summary. We follow a simple and
well known approach that is also used in (Kirsch and
Mitzenmacher 2008) to pack few counters into one Byte.
The difference is that we extend the scheme to an arbitrary
word size to achieve higher compression rates. We argue,

Tr—— n = 1e+06
S S0
T N
N c=18
N
=]
o o] c={3.2, 6.4, 12.8} \\
2 g N
o 5 \\
e 2 \\
e c=1.6 \
----- c=32
w | ——- c=64 \\
Tq - c=12.8 .
[
- T T T T T
1 2 3 4 5 6 7 8
smallest counter value
Figure 5 Counter value probabilities. Probability of smallest counter value in k' counters for different c.
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Table 2 Expected number of CAM entries for different ¢
and x with n = 108 inserted items

X
c 5 4 3
12.8 0 0 0
6.4 0 0 17
32 0 47 4183
1.6 285 5181 61110

that SRAM, being implemented on-chip, can potentially
have an arbitrary word size. Basically, the wider the mem-
ory, the more counters can be packed into one word and
the more bits can be saved. In reality, one will not find
memory widths > 128.

Counters that are limited in range can easily be encoded
in a specified number of bits. Let w be a memory word, |w|
be its width in bits, and counters be limited to the range
[0, x], then the number of counters that can be packed
into w is defined as

log 2°
y = —_—mm
P Llog ITx +1]1
We will also refer to y as the compression rate. Compres-

sion (Eq. 14) and decompression is trivial. Implemented in
hardware, all counters can be unpacked in parallel.

(13)

Vp_l

o= si-llx+1f (14)
i=0

We will introduce a more sophisticated Huffman com-
pressed summary in Section 6.

4.3 Updates

In our design we want to completely separate updates
from lookups to keep interference with the lookup pro-
cess as small as possible. When performing updates, the
offline table pre-computes all changes and applies them to
the online CCBF, PFHT and CAM.

There are three types of entries that must be distin-
guished. Offline entries are kept in the offline BFHT.
Due to overflows, each offline entry has a correspond-
ing online entry either in the online PFHT (table entry)
or in extra memory (cam entry). The update engine must
be able to identify which of the offline entries in affected
buckets are table entries, and which are cam entries. Else,
it would not be possible to compute relocations without
examining all possible locations in the online structure.
Since we want to minimize online table access all offline
entries are paired with a locator. In case the corresponding
entry is a table entry, the locator is simply the index of the
hash function used to store the table entry. If it is a cam
entry, the locator is set to co. An offline entry of item x
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thus is defined as Effline(x) < (k,v,i), where k denotes
the key, v the associated value, and i the locator.

Algorithm 1 shows the pseudocode for insertions. First
we initialize a relocation list R, a counter increment list L
and an update map M. The list is used to collect all entries
that are considered for relocation while the update map
maps online buckets to their new value. The hash values
for x are computed, counters are retrieved and the tar-
get location is identified. If all counters are equal to or
exceed the maximum allowed value x, the new entry must
be placed into CAM and the locator is set to co. Oth-
erwise the entry’s locator is set to the index of the hash
function used to store x. Note, that in any case we cre-
ate a new offline entry with a locator set to oo since we
cannot yet know where the item is placed. Only after relo-
cation we can be sure, whether the item is put to the table
or to CAM. We then collect all entries in affected buckets
that are also either table entries or cam entries, add the
new offline entry, and increment the counters. Note, that
the table entries are inserted at the head of the list, while
the cam entries are appended to the end. This is for bal-
ancing reasons. Online entries must be relocated prior to
CAM entries since it is possible that space becomes avail-
able to hold the entries from CAM. Next the collected
entries must be considered for relocation. For each col-
lected entry we compute the hash values, the new locator
and the new bucket address. We also collect all online
entries for the target bucket. If the new address is different
from the old address the entry r might be relocated. There
are 3 possible events:

1. The entry is moved inside the table. M is updated
with an empty entry at the old bucket. If the new
bucket has enough space left, M is updated with the
new bucket and 7, else r must be moved to cam and
M is updated with an oo bucket (indicating overflow
memory) and r.

2. The entry is moved from cam to table. If the new
bucket has enough space left, M is updated with {new
bucket,r} and {oo, r}. Else r can’t be moved to table
and M is not updated.

3. The entry is moved from table to cam. M is updated
with {new bucket,0} and {oo, r}.

In any case, the locator of a relocated offline entry must
be updated.

The actual update of the online structure is performed
by the procedure “UpdateOnline”. The update map M
contains bucket addresses and their associated content.
The buckets in M are simply replaced with their new
value. A special case is if bucket address is 0o, which indi-
cates overflow memory. In this case the overflow memory
is probed for the associated entries. If the entry is present,
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Algorithm 1: Insert
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Data: k: number of choices, B: offline BFHT, C: offline
CBE, x: maximum counter value
Input: x: the item to insert
Output: updated tables and summaries such that they
include x
procedure: insert (x) begin
R, L < 0;
M < map: {bucket, content};
H <« {h;j(x) for i < 0 to k};
¢ <« {CyVh € H};
l,a < oc;
if! (¢ > x) Vc € ¢ then
| < SmallestIndexOf (min(¢),¢);
L a < Hj;

// collect and insert

e < new offline entry(x, co);

for Vi € H do
R < insert TableEntries (By);
R < append CamEntries (By);
Bj < B, Ue;
ifC), < xthenL < LU Cy;

| G+ +

// compute relocations
for Vr € Rdo
compute new Hash values Hy,, counters zetay,
locator /,,, old and new bucket address a,, ap;
if a, # a,&&a,!= co then
// entry moved within table
if /SpaceLeft (B,,) then
L an = 00;
else
L M.Update ({a,, 0}, {a,, r});

ifa, # a,&&a, == oo then
// entry moved from cam to
table
if SpaceLeft (B,,) then
L M.Update ({oo, 7}, {an, r});

if a, # a,&&a, == oo then
// entry moved from table to
cam
M.Update ({ay, 0}, {oo,7}) ;

// calculate position of new item
if | # oo then
if SpaceLeft (By,) then
el=1;
if /H; € M then
L M.Update (TableEntries (Bg,) );

M. Update (Bp,e);

L UpdateOnline (M,L);
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it is removed, else it is inserted. The list L contains a list of
counter addresses that must be incremented.

The PFHT needs to be accessed only to write changed
buckets. Hence, the complexity is optimal and upper
bound by the number of changed buckets. With # items
stored in m buckets and k = °* log2 choices, the upper
bound is O(1 + k) = O(1 + log2). Similarly, the online
CCBF needs only be accessed for counters that actually
change, i.e. those that have not yet reached .

Deletions work similar to insertions with minor differ-
ences. The deleted entry x is removed from the offline
BFHT prior to collecting entries. Then all entries in
affected buckets buckets are collected and relocation
computed. Afterwards, the bucket from which the item is
removed is added to M if not already present. Then the
online updates are performed. Deletions have the same
complexity as insertions.

5 Ignore the false positive probability

Bloom filters are usually constructed to optimize the false
positive probability. In case of the MHT summaries having
a negligible small false positive rate is essential to prevent
type failure. In general, applications that require exact
knowledge about set membership are dependent on min-
imizing false positives. This inevitably leads to relatively
large filters.

We observe that applications using Bloom filter-based
summaries as an index into another data structure, like
the FHT, do not suffer from false positives, as long as
a successful lookup independent of the false positive
probability is guaranteed. The structure must provide a
predictable worst-case lookup performance. A false pos-
itive returned by the summary leads to a table lookup
that returns NULL. The worst-case performance is not
affected. In conclusion, Bloom filter-based summaries can
be potentially much smaller.

By reducing the address space of the summary while
keeping the number of entries n constant, counter val-
ues and the load of buckets are expected to increase.
There exists a trade-off between reducing on-chip mem-
ory requirements and the resulting counter values and
bucket loads.

5.1 Counter values

Counter values follow a binomial distribution. With m
possible locations and #nk insertions (each insertion incre-
ments k counters) the probability p; that a counter
received is incremented exactly i times can be calculated
using the following equation (Song et al. 2005).

nk\ [ 1\} 1\
p=(1) () (-3) )
l m m

This is not entirely accurate. The probability that, due
to collisions, less than k counters for an item can be
increased, is neglected. But the estimate is close enough
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to allow counter value predictions. Figure 6 shows the
counter distribution for different c. The constant c is cho-
sen to divide m into multiples of 2. As long as ¢ > 1.6
the counter distribution is not affected. For ¢ < 1.6 the
probability for higher counters increases. This is the result
of an overestimate of the number of choices k. Following
Eq. 3, k depends on the number of buckets per item 7.
As % — 2, k will lead an overestimate resulting in higher
counter values. In conclusion, as long as %% > 2 and k are
chosen optimally, the counter values are not affected by
smaller sized filters. Hence the counter width in terms of
bits is unaffected.

5.2 Bucket load

We follow (Azar et al. 1994) to predict the expected maxi-
mum load that occurs with high probability. With # items,
m buckets and k choices the expected maximum load is
defined as

Inlnm
Emaxload = W

(16)

The equation holds for any m — oo with n = m and
k > 2. In our design, however, m > n. The result leads
an overestimate of the maximum load, which in practice
should be smaller. To compensate we apply the floor func-
tion to round to the next lower integer. A special case
arises for k = 1. This happens when 7= — 1. Then the
expected maximum load is defined as
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Inn

Emaxload, k=1 (17)

- Inlnn

Table 3 shows the expected maximum load in respect
to different c. The results are surprisingly positive. Setting
¢ = 3.2 results in a summary size % of the optimum pro-
posed in (Song et al. 2005). The maximum load increases
from 1 to 2 w.h.p.. In other words, allowing two entries
per bucket leads to a reduction in on-chip memory size by
a factor of four. The trade-off even improves for ¢ = 1.6.
With three entries per bucket, the on-chip memory size
can be reduced to % of the previously suggested optimum.

The problem arising is how to deal with more than one
entry per bucket. A naive solution is to use E memory
backs, one for each possible entry, and query them in par-
allel. The additional cost is acceptable compared to the
saved SRAM. In Section 7 we will discuss this issue in
more detail and present techniques that allow multiple
entries per bucket but do not require parallel or sequential
memory accesses.

6 Summary compression

Section 4 introduced a simple word packing scheme for
counting Bloom filters where the counters are packed in
memory words. Another form of compressed counting
Bloom filters has been proposed by Ficara et al. in 2008.
Computing counter values in the ML-CCBF is expensive
due to the fact that all preceding cells must be evaluated
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Figure 6 Probability of smallest counter. Counter value probabilities for different c. For ¢ > 1.6 there is no effect on the counter distribution. For
¢ < 1.6 the probability for higher counters increases.
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Table 3 Expected maximum load for different ¢

c k E
128 12 1
6.4 6 2
3.2 3 2
1.6 2 3

1 1 5

and the bitmaps must be accessed using perfect hash func-
tions. These requirements render the ML-CCBF inappli-
cable as a summary for the EHT, since it needs to return
counter multiple values on every lookup to determine the
correct bucket of an item.

We propose another design for compressed counting
Bloom filters also based on Huffman compression, which
we name Huffiman compressed counting Bloom filter (HC-
CBF). Huffman compression is used for multiple reasons.
It yields optimal and prefix free codes with the distri-
bution of counter values. Compressed counters can be
easily and individually decompressed. As mentioned in
Section 4, counters are limited in range, for two reasons.
First, the resulting Huffman tree is finite and very small
in size. Second, the code bit-length is upper bound to the
maximum allowed value x + 1. Figure 7 shows an exam-
ple Huffman tree for y = 4. The tree, or codebook, can be
stored in very small dedicated hardware.

To achieve real-time de-/compression the counters
must be easily addressable. Storing the compressed coun-
ters consecutively is not feasible. Without the help of com-
plex indexing structures one could not retrieve a specific
value. When compressing the offline CBF we calculate the
maximum number of counters y}, that can be compressed
in one memory word, such that each word encodes exactly
¥h counters. A first approach to compress the counters is
shown in Algorithm 2.

The algorithm runs as long as not all counters have been
processed. It iteratively tries to fit as many counters into
a word w as allowed by the compression rate y}, which is
initialized to oo. If the bit-length of w would exceed the
word-size, everything is reset and restarted with yy set to
the last number of counters in w. This ensures, that every
word (except the last) has exactly y}, counters encoded and
allows easy indexing.

This algorithm has an obvious flaw. It depends heav-
ily on the sequence of counters, leading to an unpre-
dictable compression rate yy,. In addition, the compression
is wasteful in storage. Since y, depends on the sequence
of counter values, it is upper bound to the longest code
sequence it can compress in one word. Assume no com-
pression is used, then every counter will occupy three bits,
which equals the length of the Huffman code for ¢ = 2.

Page 12 of 19

Algorithm 2: Compress

Input: C: offline CBF, H: Huffman tree, x: maximum
counter value, b: word size in bits
Output: Z: online HCCBE, yy: compression rate
1 function: compress (C, x, b) begin

2 // Initialize compression rate,
CCBF, helpers

3 Yh < 0

4 Z «—0;

5 w,z,n < 0;

6 // While there still are counters

7 whilei < 0 < |C| do

8 // Get the Huffman code of the

counter

9 z < H[min(C[{], x)];

10 i<—i+1;

11 // Check if we have less counters

than the compression rate

12 if n < yj, then

13 // If there still is space in
the word add the compressed
counter, else reset
everything and start with
new, lower compression rate

14 if (Jw| + |z|) < b then

15 w<«—wUz);

16 n<n+1l;

17 else

18 y <« n;

19 7Z < 0;

20 w,i < 0;

21 else

22 // there are more counters,
write the word to CCBF and
create a new one

23 Z<«—ZUw;

24 w <~ zZ;

25 // append last word and return

26 Z<+—ZUw;

27 return Z, yy ;

Thus, if during compression a long sequence of counters
> 2 is found, the compression rate yy, will degenerate.

A better approach is to define y, in advance such that
a desired compression rate is achieved. In general, Huff-
man compression only achieves improvement over word
packed compression if y, > y}. Thus, y;, can be used as a
guideline for choosing y},. Since we force y}, in advance, it
can lead to word overflows, if the compressed yy, counters
do not fit into a word (in the following we will refer to this
scheme as hard compression).

Overflows can also occur during insertions. If a counter
¢ < x — 1 is incremented and the compressed word
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Figure 7 Example Huffman tree for x = 4.

already occupies all the available bits, then incrementing
the counter will shift one bit out of the word. As a result
the last counter value will not be retrievable.

There are different approaches of how to address word
overflows. One is to simply ignore the affected counters
and assume they have value x. As long as these counters
are not the smallest for any entry, the lookup process is
not affected. If, however, the actual counter value is crucial
to the lookup, the correct bucket of an entry can not be
computed.

Alternatively, the longest code in the word could be
replaced with a shorter overflow code, indicating that
an overflow occurred. However, this would increase the
length of nearly all counter codes and in return the prob-
ability of word overflows.

Probably the best solution is to keep a small extra mem-
ory, CAM or registers, to store the overflown bits. If
counters that are completely or partially overflown must
be retrieved, the remaining bits are read from the extra
memory. We will show in Section 8, that depending on 1,
and x the cost of additional memory is reasonably small.

With m counters, a compression rate of y counters per
word and an on-chip word-size of || bits, the summary
needs

m
BeHT = ’7—‘ ol
Y

bits in total.

(18)

7 Achieving deterministic lookups

A hash table bucket usually holds a single entry or a ref-
erence to a collection of entries. If more than one entry is
placed in a bucket, lookup might require multiple memory
reads by following pointers. This leads to more sophisti-
cated hash table constructions that try to limit the bucket
load to one with high probability.

We argue that by using intelligent hashing and wider
memory a bucket can hold more than a single entry with-
out the need of sequential or parallel memory accesses.
As a preliminary, we define that a bucket will never hold
reference to a collection of entries with variable size. A
bucket is defined as an array of entries of fixed size, where
every entry can be directly accessed.

7.1 Multiple entries per word
One solution is to allow more entries per memory word.
Let |wp| be the word size in bits and |e| be the size of
an entry in bits. If |e] < |wp|, a bucket can hold up to
L%J entries which can be read in one cycle. This holds
for applications, like QoS/CoS classification, flow-based
Server Load balancing or socket lookups, that store only
small entries. But many application require larger entries
(e.g. IPv6 lookup). While SRAM width is highly flexible,
the word size of DRAM is usually fixed, wider memory
might not be possible.

By using a hashing scheme similar to that proposed in

(Bonomi et al. 2006) the size of an entry can be decreased.



Zink and Waldvogel SpringerPlus (2015) 4:222

A class of hash functions can be used that perform trans-
formations of the key, producing k digests of a fixed size,
greater or equal to the size of the key. This is crucial to
prevent collisions and the hash function must be collision
resistant. The digest is imagined to be composed of two
parts, the index to the hash table, and the verifier of the
key. Let x be the key, H be the class of hash functions,
[ A] be the range of the table address space and [ V] be the
range of the remaining verifier.

H:U—[A] x[V] (19)

The verifier and the index are derived by bit-extraction.
,,,,, k—1} be the k digests, then V (/.. x—1)) produces
the verifiers and A (/o x—1}) extracts the bucket indexes,
or addresses. Instead of the key x only its verifier V (/;(x))
is stored in bucket A(#;(x)). To be able to identify which
verifier corresponds to a given key, an identifier must be
kept along the verifier, that states the hash function i that
produced the stored verifier V' (4;(x)). A table entry then
consists of the verifier, it’s identifier (which is the index
of the hash function), and the associated value v. Hence,
E(x) < (V(h;(x)),v,i). The total number of bits needed is
log k + (|JH| — |A|) + |v| where |y| denotes the length of y
in bits. Note, that the smaller |A| the larger |V|. Thus the
length of the table competes with the size of the entries.

7.2 Multiple words per bucket

An extension to the former scheme is to allow a bucket to
span multiple words. For simplicity, we assume the words
are consecutive, although this is not a precondition, as
long as there is a fixed offset between the words. A bucket
can now be seen as a matrix of r entries per word and w
words.
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In addition to the address and verifier, the hash function
must also lead the correct word, or row, of the bucket. Let
[ W] the range of words for each bucket.

H:U—[Alx[W]x[V] (20)

Note, that in practice [ W] will be very small, needing only
1 — 2 bits. Figure 8 shows the design and an example.

8 Results and discussion

In this section we present and discuss results of a con-
ceptual implementation of the EHT. The implementation
is conceptual in the sense that it does not fully resem-
ble the structure of the EHT but simulates it’s behavior
appropriately.

Table 1 shows the parameters and equations that play a
crucial role in evaluating the effects of different configu-
rations.

For simulations we use the following values for the
parameters:

n={10%10°};c = {3.2;1.6}; x = {4;5}; |w| = {64;128}

This leads to a total of 16 different parameter configu-
rations. The number of hash functions k is always chosen
optimally. In the following, when referencing the param-
eter configurations, we will use a single hexadecimal digit
p =10, F] representing the encoding depicted in Table 4.

On each simulation we perform ten trials, that is we
instantiate the EHT and fill it with » random keys and val-
ues. No updates are performed but the EHT is queried
for all # and additional 2n random keys to verify that
every key can be retrieved and to analyze the false-positive
probability. As summary we use HC-CBF. The compres-
sion rate yy is calculated using Algorithm 2. No hard
compression is used, since we want to evaluate the qual-
ity of the compression algorithm. The cost of using hard

k
h;_ (%) = {Ah;(x)),W(h;(x)),V(h;(x)}

/v{ hy=2.1.V(h;(x)
X
\A‘ h,= 0.0,V (h,(x)

Figure 8 Verifier hashing and buckets with multiple entries.

bucket
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Table 4 Parameter configurations p of the software
simulations

bit 3 2 1 0

parameter n c X 3]

0 10° 16 4 64
value

1 100 3.2 5 128

compression can be derived by examining the resulting
HC-CBF and is included in the analysis.

For each try, we calculate the size of the offline CBF,
the size of a CCBF and the size of the online HC-CBF.
We count the frequency of all counter values in the offline
summary and derive the number of overflown counters in
the online summary. Every compressed word in the HC-
CBF is analyzed for the number of bits that are actually
used to encode counters, resulting in a histogram of code-
lengths per word. In addition, the load of all online buckets
is calculated and the number of CAM entries counted.
Finally, we compare the on-chip requirements of the EHT
with the theoretical requirements of the MHT and FHT.

8.1 Constant lookups

We first evaluate the performance of the EHT with respect
to lookups. To achieve deterministic lookup performance,
it is crucial that counter value distribution and bucket
loads behave as expected. Counter distribution affects the
maximum allowed counter value, which in turn affects the
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effectiveness of summary compression and the number
of entries that have to be moved to CAM due to counter
overflows.

Counter distribution Since the parameters x and |w|
have no effect on the counter distribution, we count the
counter frequencies for n = {1E + 6, 1E + 5} with sizes of
¢ = {1.6,3.2} and also calculate the expected frequency for
each counter value. The results are shown in Figure 9. The
figure shows both the expected as well as the real proba-
bilities of counter value frequencies. The real frequencies
resemble the expected frequencies almost exactly. The
graphs of expected and real counter frequencies overlay
up until counter value 8.

Bucket load The maximum load depends on the num-
ber of choices k and the number of items n. We aggregate
the results of the combinations for # and ¢ and count the
number of entries in every online bucket. We then take the
maximum of the frequencies to evaluate the worst-case
behavior. The results are shown in Table 5.

In the worst-case there was only a single unexpected
bucket overflow, for tables with 7 = 10° and ¢ = 1.6. In all
other cases no bucket overflow occurs. Aslongasc > 1.6
no overflows are to be expected. Again, the experimental
results resemble the theoretical assumptions.
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Figure 9 Real and expected counter frequencies.
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Table 5 Entry distribution and expected maximum load
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Table 7 Compression rate

Load Vi bits
)4 E 0 1 2 3 4 n c X |lw| min  max avg Y max
0-3 3 167662 89728 5327 24 0 4 64 22 24 228 27 213 63.3
4—7 2 424659 99411 369 0 0 16 5 64 21 22 215 24 213 63.3
8—B 3 1184464 837562 80950 684 1 4 128 50 53 510 55 426 1264
C—F 2 3204894 980039 10438 1 0 106 5 128 47 51 495 49 426 1251
4 64 23 26 246 27 213 62.7
5 64 24 25 249 24 213 63.2
Overflow entries We aggregate the results for x accord- 3.2 4 18 6 o 577 55 46 1963
ing to n and ¢, calculate the average, and take the min-
imum/maximum values encountered. Following Eq. 12 > 128 > 8 069 49 M6 1263
we also calculate the expected number of CAM entries. 4 6425 27260 27 213 626
Table 6 shows the results. On average, the number of e O & 26 254 24 213 625
CAM entries closely resemble the theoretical expecta- 4 128 57 60 588 55 426 1266
tions. In general, only a small CAM is required. The only 18 55 60 578 49 426 1257
configurations that require a relatively large amount of 10° T o 3 6 %5 27 913 630
CAM are the tables with # = 10° and ¢ = 1.6. ' ' '
Once again, the results closely resemble the expecta- 2 Y 2 26 246 24213 62
tions. 4 128 57 60 583 55 426 126.9
5 128 56 59 570 49 426 125.8

8.2 On-chip memory

We now evaluate the required on-chip memory for the
EHT summary according to different parameter config-
urations and compare the results to related work. We
consider EHT summaries with no compression (yp), with
word-packed encoding (Section 4, y;,) and with Huffman
compression (Section 6, ).

Compression To analyze the achieved compression we
take the minimum, maximum and average y, and com-
pare that to y;, and the number of counters if no compres-
sion is used (denoted yp). We also include the maximum
number of bits actually used to compress the counters.
The numbers in Table 7 provide a lot of useful infor-
mation. With sufficiently large |w| or larger x, Huffman
compression performs better than word packing, even
without using hard compression. If |w| is small and x is

Table 6 Real and expected number of CAM entries

p min max avg E
0—1 144 209 177.95 178
2-3 2 1 6.05 6
4-5 0 1 0.15 0
6—7 0 0 0.00 0
8—-9 5017 5446 5194.05 5181
A—B 236 287 25820 265
c-D 40 61 47.00 47
E—F 0 0 0.00 0

also small, word packing is the better choice. In all cases,
compression yields an improvement over not using com-
pression. The counter limit x only slightly influences the
compression rate yy. It's impact on y;, is greater by far. The
reason probably is that the values for x differ only by 1. It
is expected that for higher differences yy, is more affected.

Another interesting aspect is the frequency of used bits
per word (Figure 10). The distribution follows a Poisson
binomial distribution, which is to be expected. The graphs
show a shift of the center depending on x, which is a result
of nearly equal y},, with different code lengths. The graphs
reveal potential to further reduce SRAM requirements.
The compression can be improved by reducing |w| while
keeping the same yj, thus, effectively resembling hard
compression. For example, by reducing |w| from 128 to 118
bits, 10 bits per word can be saved. Of course, this leads
to a higher number of word overflows. However, making
use of the frequency distribution the number of expected
overflows can be kept small. By providing CAM for an
additional few overflown words, some bits per on-chip
memory word can be saved.

On-chip requirement comparison We now compare
the on-chip requirements of different EHT configurations
to the summaries presented in Section 2.1. None of the
authors present evaluation of table sizes larger than 10*
entries. We are interested in much larger tables with n =
10°. Thus, we calculate the expected summary sizes using
the mathematical models presented in the respective orig-
inal papers. Eq. 4 is used for the FHT summary. Eq. 6
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Figure 10 Frequencies of used bits per compressed word for |w| = 128.

number of used bits

provides the number of bits needed for both the MHT
occupancy and deletion bitmaps. Care must be taken in
choosing the parameter c. The original paper (Kirsch and
Mitzenmacher 2005) suggests ¢ = 6. The later refine-
ment (Kirsch and Mitzenmacher 2010) determines that
with extensive optimization effort ¢ can be smaller than
two for n = 10% Unfortunately, there is no information
on the lower bound for ¢ with # = 10°. In our calculation
we therefore assume c to be optimal and set ¢ = 1. This is
not a fair comparison and clearly favors the MHT but due
to the lack of evidence we choose to rather be progressive.
For the MHT summaries we consider both lazy deletions
as well as counter-based deletions. For summaries with
lazy deletions both the occupancy and deletion bitmap
sizes are added to the summary size. For summaries with
counters, only the size of the occupancy bitmap is added.
We use Eq. 8 for SF with lazy deletions, Eq. 9 for MBF
with lazy deletions, Eq. 11 for counting SE, and Eq. 10
for counting MBF. For the segmented hash (Kumar and
Crowley 2005) and discriminator table (Ficara et al. 2009)
we assume a fixed number of bits per item (bpi) and a lin-
ear growth. This is a realistic assumption for the Bloom
filters used in segmented and peacock hash but there is no
evidence that this also holds for the discriminator table. So
we follow (Ficara et al. 2009) that suggests 4 bpi. For the
peacock hash (Kumar et al. 2008) we assume a main table
equal in size to the segmented hash above. We then calcu-
late the size of all subtables with a scaling factor of r = 0.1.
All parameters not mentioned here are chosen optimally

as suggested by the respective authors. The resulting sizes
are shown in Table 8.

Peacock hash and discriminator table clearly require
the fewest bits-per-item of on-chip memory. However,
Peacock hashing requires a significant amount of hashing
and is not deterministic. It requires multiple sequential
or parallel lookups in the worst-case, which might not be
acceptable depending on the application. The discrimina-
tor table is a perfect hashing type of table that only works
with static sets and is not updatable. The Segmented
hash table outperforms all configurations of the MHT
summaries as well as the Fast Hash Table. Of the MHT
summaries, the MBF summaries are favorable over their
corresponding SF summaries. The FHT resides between

Table 8 Comparison of on-chip requirements of different
Bloom filter-based summaries for n = 10°

Summary Size (KiB) bpi Eq., parameter

FHT 6292 5033 4,c=128,b=3

SF lazy 5508 44,06 68.c=1

SF counting 30023 240.18 611,c=1,v=2d=6
MBF lazy 2742 21.93 69,c=1

MBF counting 8347 66.77 6,10,c=1

Segmented 2000 16

Peacock 223 1.78 r=0.1

Discriminator 500 4




Zink and Waldvogel SpringerPlus (2015) 4:222

the SF lazy and MBF counting schemes, with lookup and
update performance comparable to the MHT counting
summaries. In fact, if update (especially deletion) support
is important, one should rather use the FHT than the
MHT.

Table 9 shows the summary sizes of all EHT config-
urations with = 10° using no compression, word-
based encoding, and Huffman compression. Our EHT
summaries outperform all other summaries except the
peacock hash and discriminator table. However, the dis-
criminator table is not updatable and Peacock hash
requires is non-deterministic. It needs multiple sequen-
tial or parallel lookups in the worst-case, which might not
be acceptable depending on the application. The EHT is
the only solution that guarantees a deterministic and con-
stant lookup of O(1), allows near real-time updates, and
still requires only a few bits per item.

Summary. The results fully meet the expectations and
backup our theoretical analysis. We have shown that our
initial assumptions allow fundamental improvements over
previous suggestions. Experiments have shown that the
EHT performs as theoretically expected. This makes the
EHT highly predictable and allows easy configuration for
target applications. The effects of parameters on counter
distribution, bucket load, counter and bucket overflows
can easily be predicted. Evaluation shows, which hardware
configurations are required for specific parameter sets.
The effect of Huffman compression is much harder to
predict, since all possible combinations of counter values
per word would need to be predicted which is imprac-
tical. However, evaluation shows the effect of Huffman
compression compared to no compression and simple
word-based encoding.

In conclusion, when constructing an EHT, the following
aspects must be considered.

e Reducing the length m is achieved by ignoring the

false positive probability. As a result, bucket loads will

Table 9 On-chip requirements of EHT configurations with
n=10°

Configurationp  Uncompressed Packed Huffman

KiB bpi KiB bpi KiB bpi

8 622 4.97 737 5.89

9 611 4.88 659 5.26
787 6.29

A 700 5.59 781 6.24

B 685 548 679 542

C 1243 9.94 1367 1093

D 1221 9.76 1164 931
1573 12.58

E 1399 11.18 1348 10.78

F 1370 10.96 1180 9.44
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increase which can be compensated by parallel banks,
increasing the off-chip memory width or by better
hashing. Analysis has shown, that the expected
maximum load will not exceed 3 as long as % > 2.
Bucket overflows are extremely rare, even for a large
set of items. So only a very small extra overflow
memory is needed.

® By separating updates from lookups the lookup
summary can be optimized for smaller size and
performance. The lookup summary is not exact and
limited in counter range [ x]. Choosing x depends on
the fraction %%, Starting with x =5 for 2 < 7% < 2.5,
x can be decremented by one each time 7} is doubled
for a small overhead in terms of CAM. Performance
will degrade when 7 — 2.

e The effect of Huffman compression depends on the
word-size |w| and the counter limit x. Word packing
is favorable over Huffman compression both in
complexity as well as resulting size, unless |w| and x
are big. At the cost of few additional CAM cells, the
performance of Huffman compression can be
improved by reducing w| while keeping x constant.

Of course, the improvement in on-chip requirements
is not free and is bought with additional computational
complexity, wider memory and on-chip/online compres-
sion. Depending on the application and cost of hardware
components, some of the suggested optimizations might
not be applicable. They are, however, independent and can
be easily implemented individually to optimize the total
cost. A cost function can now be defined as follows. Let
as be a constant cost factor of on-chip memory, ap be
the equivalent for off-chip memory, w be the width of off-
chip memory in bits, E, be the expected number of bucket
overflows and «¢ be the cost of CAM cells.

JEHT = a5 X Bepy +ap X (m-w) +ac x (Ecam + Eo). (21)

Depending on the costs of the components the parame-
ters for the EHT can be chosen such that the total cost is
minimized.

9 Conclusion

We have proven that through relaxation of requirements
and exploitation of degrees of freedom on-chip mem-
ory requirements can be significantly reduced and lookup
performance improved at the cost of minimal additional
hardware. Based on four key ideas we have introduced
new techniques to design an Efficient Hash Table. Our
suggested improvements can be applied individually or in
concert and are fully customizable to meet the require-
ments of the target application and hardware. The costs
of each component is analyzed and evaluated and a cost
function is provided that allows calculating the overall
cost. The simulation results fully meet the expectations,
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backup our theoretical analysis and allow accurate predic-
tions. Furthermore, we presented a thorough evaluation of
the space requirements of not only multiple EHT config-
uration but also of its predecessors the FHT, MHT as well
as segmented and peacock hash, and discriminator table
in the presence of a million entries.

High amounts of on-chip memory can be traded in for
comparatively small amounts of off-chip memory, addi-
tional CAM, and some computational overhead. Cleverly
chosen hash functions allow the reduction of off-chip
memory size. Offloading update overhead to offline struc-
tures leads to a more optimized lookup engine and
allows improved encoding. We proposed two compres-
sion schemes for the summary that provide real-time
performance and are easy to implement. Combined, the
presented design achieves an improvement over previ-
ous solutions up to an order of magnitude, guarantees
constant lookup of O(1), and supports near real-time
updates while requiring only a few bits per item of on-chip
memory.
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