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Abstract

Various properties have been advocated for biological evenness indices, with some properties being clearly desirable
while others appear questionable. With a focus on such properties, this paper makes a distinction between properties
that are clearly necessary and those that appear to be unnecessary or even inappropriate. Based on Euclidean distances
as a criterion, conditions are introduced in order for an index to provide valid, true, and realistic representations of the
evenness characteristic (attribute) from species abundance distributions. Without such value-validity property, it is
argued that a measure or index provides only limited information about the evenness and results in misleading
interpretations and evenness comparisons and incorrect results and conclusions. Among the overabundant variety of
evenness indices, each of which is typically derived by rescaling a diversity measure to the interval from 0 to 1 and
thereby controlling or adjusting for the species richness, most are found to lack the value-validity property and some lack
the property of strict Schur-concavity. The most popular entropy-based index reveals an especially poor performance with
a substantial overstatement of the evenness characteristic or a large positive value bias. One evenness index emerges as
the preferred one, satisfying all properties and conditions. This index is based directly on Euclidean distances between
relevant species abundance distributions and has an intuitively meaningful interpretation in terms of relative distances
between distributions. The value validity of the indices is assessed by using a recently introduced probability distribution
and from the use of computer-generated distributions with randomly varying species richness and probability
(proportion) components.
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Introduction
There has become an embarrassment of riches for indi-
ces used to measure the evenness or uniformity of spe-
cies distributions in biology. A researcher seeking an
evenness index to use in a particular study is faced with
a bewildering choice. Also, there does not appear to be
any general agreement as to which index is to be pre-
ferred over others. Extensive reviews of such indices and
their properties have been provided by Smith and
Wilson (1996) and Tuomisto (2012). Table 1 summarizes
proposed evenness indices that take on values over the
interval from 0 to 1 (including a new index E11).
Evenness indices are typically functions of some diver-

sity measure and the number of individuals in a species
sample or collection, called species richness and denoted
by S, i.e.,
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where the function f is generally such that the evenness
index ranges in value from 0 to 1. While there is a pleth-
ora of measures of species diversity and no consensus
about which measure is “best” (e.g., Magurran 2004, Ch. 4;
Grassle et al. 1979; Tuomisto 2012), the present paper is
confined to the measurement of species evenness with the
focus on the properties of such measures or indices.
A variety of properties have been imposed on evenness

indices (see, e.g., Smith and Wilson 1996; Taillie 1979;
Engen 1979; Tuomisto 2012; Gosselin 2001; Ricotta
2004). Some of these appear to be entirely appropriate
and generally agreed upon, while others seem to be un-
necessary and even unreasonable. This paper starts off
with a discussion of properties that are considered to be
necessary for any acceptable evenness index, followed by
comments about some dubious properties. One of the
properties introduced as necessary is the value-validity
property, which basically requires that an evenness index
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Table 1 Proposed evenness indices varying over the interval from 0 to 1 and based on the species abundance
probabilities (proportions) p1,…, pS and species richness S

Designation Formula Reference Notes

E1 H=logS ¼ −
XS
i¼1

pi log pi=logS Pielou (1966)

E2 (eH − 1)/(S − 1) Heip (1974) a

E3 ð1−
XS
i¼1

p2i Þ= 1−1=Sð Þ Smith and Wilson (1996)

E4 −log
XS
i¼1

p2i =logS Smith and Wilson (1996)

E5 ð1=
XS
i¼1

p2i −1Þ= eH−1ð Þ Alatalo (1981) a

E6

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiXS
i¼1

p2i

s !,
1−

ffiffiffiffiffiffiffi
1=S

p� �
Pielou (1969)

E7 ð1=
XS
i¼1

p2i −1Þ= S−1ð Þ Kvålseth (1991)

E8

 XS
i¼1

min pi; 1=Sf g−1=S
!
= 1−1=Sð Þ Bulla (1994)

E9 1− S
XS
i¼1

p2i −1

 !,
S−1ð Þ

" #1=2
Williams (1977) b

E10 2
XS
i¼1

ði−1Þpi= S−1ð Þ Solomon (1979) c

E11 1−
XS
i¼1

pi=i

 !,
1− 1=Sð Þ

XS
i¼1

1=i

" #
New c

Notes: a. The H stands for the Shannon (1948) entropy defined for E1 and with base-e (natural) logarithms (E1 and E4 are indifferent as to which logarithm is used).
b. Engen (1979) attributed this index to F.M. Williams (1977) in an unpublished manuscript.
c. The pi’s are here in descending order (p1 ≥ p2 ≥… ≥ pS).
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takes on values that are all reasonable with respect to an
acceptable criterion. It is argued that this property, which
nearly all proposed evenness indices lack, is necessary in
order for comparisons between differences in evenness
values to be valid. An index lacking this property may
cause misleading results and incorrect conclusions.
The value-validity requirement of an index is based on

the recently introduced lambda distribution (Kvålseth
2011) and a criterion involving Euclidean distances between
species abundance distributions. The assessment of whether
or not an index meets this requirement is then done analyt-
ically using the lambda distribution and empirically using
computer-generated random species abundance distribu-
tions. It is also proved that some well-known indices are
not valid since they lack the essential strict Schur-concavity
property and hence do not preserve the Lorenz order.

Properties of evenness indices
Let E(Ps), or simply E, represent the value of a generic
evenness index for the species abundance distribution
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PS = (p1,…, pS) where pi is the probability (proportion) of

the i th species, with pi ≥ 0 for i = 1,…, S and
XS
i¼1

pi ¼ 1.

If each pi is based on a sample or collection as opposed to
unknown population probabilities, then pi = ni/N where ni
is the frequency of individuals in species i, i = 1,…, S, and

N ¼
XS
i¼1

ni is the sample size. The extreme distributions

are then

P1
s ¼

1
S
;…;

1
S

� �
;P0

s ¼ 1; 0;…; 0ð Þ ð2Þ

for which E is expected to take on its extremal values for
any given species richness S. In the case of a censused
community or collection of species, the most uneven spe-
cies abundance distribution becomes (1 − (S − 1)/N, 1/N,
…, 1/N) and the most even distribution equals P1

S in (2)
only when N/S is an integer. However, when the sample
size N is large, these two extreme distributions become ef-
fectively equivalent to those in (2).
Based on this notation, the various potential properties

of an evenness index E will be discussed, starting with an
outline and explanation of those properties that are sug-
gested as being indeed necessary. Subsequent sections of
this paper will discuss the value-validity property neces-
sary for making appropriate comparisons and interpreta-
tions of E-values.

Necessary properties
(P1) Continuity: E is a continuous function of each of
the pi, i = 1,…, S, for any given S.
(P2) Symmetry: E is (permutation) symmetric in p1,…, pS

so that the value of E is invariant with respect to all permu-
tations of the pi’s.
(P3) Normalization: E takes on values between 0 and 1.
(P4) Schur-concavity: E is strictly Schur-concave. In

order to explain this property, the concept of majorization
needs to be first defined. The rather vague notion that the
components of PS = (p1,…, pS) are “less spread out”, “more
nearly equal”, or “more even” than are the components of
the distribution QS = (q1,…, qS) can be expressed as “PS
being majorized by QS” and denoted by Ps ≺ QS. Thus, if
the pi (i = 1,…, S) are ordered such that

p1 ≥ p2 ≥ … ≥ pS ð3Þ
with QS being similarly ordered, then, by definition,

PS≺QS if
Xi
j¼1

pj ≤
Xi
j¼1

qj; i ¼ 1;…; S−1 ð4Þ

and with
XS
i¼1

pi ¼
XS
i¼1

qi ¼ 1 . Then, by definition, E is

strictly Schur-concave if

PS≺QS implies E PSð Þ > E QSð Þ ð5Þ
and PS is not a permutation of QS (Marshall et al.
2011, pp. 8, 80).
As a simple numerical example, consider the two distri-

butions P4 = (0.40, 0.30, 0.20, 0.10) and Q4 = (0.70, 0.15,
0.10, 0.05) where the components have been ordered as in
(3). It is readily apparent from (4) that P4 is majorized by
Q4, i.e., P4 ≺ Q4 Then, since the evenness index E is re-
quired to be strictly Schur-concave, E(P4) > E(Q4) from
(5). Clearly, the components of P4 are “more evenly dis-
tributed” or “more nearly equal” than those of Q4 and the
evenness based on P4 should be greater than that based
on Q4. This is precisely what Property P4 requires.
(P5) Value Validity: E takes on values that are all valid

representations of the true extent of the species evenness
characteristic.
This last property, which is considered necessary for

making appropriate evenness difference comparisons, is
explained in detail in subsequent sections of the paper.

Comment on property P1
The continuity requirement ensures that, for any given
or fixed S, small changes in some of the pi ’s cause only
a small change in the value of E. However, since E may
be a function of both the pi(i = 1,…, S) and S, a change
in S and hence changes in the pi’s will necessarily result
in a discontinuous change in E. In fact, if S is very small,
the addition of one more species may produce a sub-
stantial jump in the value of E. Such discontinuity with
varying S has been discussed by, for instance, Routledge
(1983), Jost (2010), and Ricotta (2004).

Other implications from property P4
The strict Schur-concavity Property P4 of E has some im-
portant implications. Since, for any Ps = (p1,…, ps), it is
readily apparent from the definition in (4) that P1

S≺PS≺P0
S

for the P1
S and P0

S in (2), it then follows from (5) that

E P0
S

� �
≤ E PSð Þ ≤ E P1

S

� � ð6Þ

with the inequalities being strict if PS is not a permuta-
tion of P0

S or P1
S . This can be expressed as the following

sub-properties:
(P4a) For any given species richness S, E attains its

minimum and maximum values for the species abun-
dance distributions P0

S and P1
S in (2), respectively.

Another consequence of Property P4 is that E satisfies
the principle of transfers, which, within the context of in-
come distributions, was introduced by Dalton (1920).
That is, if pi < pj in the species abundance distribution
PS = (p1,…, pS) and if an amount δ is transferred from
pj to pi, with δ < pj − pi, then the value of E increases.
This can be seen to follow from (3)-(5). See also
Marshall et al. (2011), pp. 6–8. That is, a sub-property
of E is as follows:
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(P4b) E satisfies the transfer property. As a simple
example, consider the four-species distribution
Q4 = (0.30, 0.15, 0.50, 0.05) with δ = 0.20 being trans-
ferred from p3 to p4 to produce the distribution
P4 = (0.30, 0.15, 0.30, 0.25). It is then clear from (3)-(4)
that P4 is majorized by Q4, so that, from (5) and the strict
Schur-concavity of E, E(P4) > E(Q4).
A third consequence of Property P4 may be stated in

terms of Lorenz curves as follows (see Marshall et al.
2011, pp. 5–6, 713–715):
(P4c) E preserves the Lorenz order. As an explanation,

the Lorenz curve for a distribution PS = (p1,…, pS) is typic-

ally based on the cumulative probabilities F ið Þ ¼
Xi
j¼1

p jð Þ

after the pi’s have been ordered such that p(1) ≤ p(2) ≤… ≤
p(S). The Lorenz curve (after Lorenz 1905) is then ob-
tained by joining the consecutive points (i/S, F(i)) for i = 0,
1,…, S and F(0) = 0 by successive line segments to connect
the origin (0, 0) with the point (1, 1). If the Lorenz curve
for PS is nowhere below and does not coincide everywhere
with the Lorenz curve for the distribution QS = (q1,…, qS),
this is equivalent to the majorization in (3)-(4) so that,
from (5), E(PS) > E(QS). The Lorenz curve for the uniform
or completely even distribution P1

S in (2) is the straight
line between the two points (0, 0) and (1, 1) so that the
value E(PS) increases as the Lorenz curve for PS gets closer
to this straight line.

Introductory comments on value validity
The motivation behind the need for an evenness index to
have value validity can perhaps be best illustrated by means
of some simple numerical examples. Consider, for instance,
the species abundance distributions P2 = (0.75, 0.25) and
Q5 = (0.60, 0.10, 0.10, 0.10, 0.10) and the Pielou index E1 in
Table 1 for which E1(P2) = 0.81 and E1(Q5) = 0.76. Both of
these results would seem to indicate a “high” degree of
evenness, with P2 indicating a more even distribution than
Q5 of about 7%. However, the components of each of these
two distributions are equally far from the corresponding
components of the respective pairs of extreme distribu-
tions P0

2 and P1
2 and Q0

5 and Q1
5 defined in (2) so that the

only reasonable evenness values should be 0.50 for both
P2 and Q5. Furthermore, if, say,

ffiffiffiffiffi
E1

p
or more generally Eα

1

α > 0ð Þ were to be considered as alternative indices,
which can be shown to have the same Properties P1-P4 as
E1, the results could be even more unreasonable such asffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 Q5ð Þp ¼ 0:87.
Of course, the purpose of using an evenness index E is

to compare the degree or extent of evenness of different
species abundance distributions. Thus, in simplified no-
tation, if e1, e2,… denote values of the index E for differ-
ent species distributions, the various comparisons of
potential interest may be defined as follows:
Size orderð Þ comparisons : e1 > e2 ð7aÞ
Difference comparisons : e1−e2 > e3−e4 ð7bÞ
Proportional difference comparisons : e1−e2
¼ c e3−e4ð Þ ð7cÞ

where c is some constant. Even the above interpretation
of E1(0.75, 0.25) = 0.81 as indicating a “high” degree of
evenness is basically a difference comparison as in (7b),
with 0.81 − 0 > > 1 − 0.81, i.e., the 0.81 value is much fur-
ther from the minimum E1 -value of 0 than it is from
the maximum E1 -value of 1. Similarly, the above state-
ment that E1(0.75, 0.25) = 0.81 exceeds E1(0.60, 0.10,…,
0.10) by about 7% is equivalent to e1 = 0.81, e2 = e3 =
0.76, e4 = 0, and c = 0.07 in (7c).
When making such comparisons, it is essential that

they are not limited to the evenness index itself, but that
they provide true representations of the attribute (char-
acteristic) being measured. Otherwise, the results ob-
tained may be invalid and misleading, which is not
uncommon in the published literature. What is needed
of the index E is that it takes on values throughout its
range that are all accurate, true, or valid representations
of the evenness attribute. That is, E has to have value
validity (Property P5). In measurement theory, the term
validity of a measurement procedure means that it does
in fact measure what it purports to measure. While sev-
eral different types of validity have been defined (see,
e.g., Hand 2004, pp. 129–134), value validity as used
here applies specifically to the requirement that all po-
tential numerical values of a measure have to be appro-
priate or reasonable with respect to some generally
acceptable criterion as explained in the next subsection
of this paper.
The importance of a concept such as value validity

does not appear to have been the subject of rigorous at-
tention in the numerous publications involving evenness
measurement and indices. Some have commented that
certain evenness indices “tend to strongly overestimate
evenness” or “give unreasonably high values of evenness”
(Bulla 1994, pp. 167, 169). The results from computer-
generated combinations of species frequencies by Fager
(1972) implied that indices such as Pielou’s E1 and Smith
and Wilson’s E3 in Table 1 tended to overstate evenness
and had “strongly skewed distributions…” indicating that
those indices “would give poor discrimination over much
of the range of samples (p. 301).” Molinari (1989) did
consider the importance of reasonable intermediate
values of an evenness index, focusing on the case of
two-species communities, and Smith and Wilson (1996)
as well as Jost (2010) emphasized the need to consider
intuitively reasonable intermediate index values. How-
ever, no specific value-validity conditions appear to have
been formulated.
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Conditions for value validity
In order to establish value-validity conditions on E
(Property P5), it will be convenient to use the following
lambda distribution recently introduced by this author
(Kvålseth 2011, 2014):

Pλ
S ¼ 1−λþ λ

S
;
λ

S
;…;

λ

S

� �
; 0≤λ≤1 ð8Þ

where λ is a parameter and S denotes the species rich-
ness. The λ is basically an evenness or uniformity par-
ameter with λ = 1 for the completely even (uniform)
distribution P1

S in (2) and λ = 0 for the degenerate distri-
bution P0

S in (2). Note also that each component of Pλ
S

can be considered the weighted mean of components of
P0
S and P1

S , i.e.,

Pλ
S ¼ λP1

S þ 1−λð ÞP0
S ð9Þ

Since the strict Schur-concavity of E ensures that the
inequality in (6) holds for all distributions PS = (p1,…,
pS), it also holds for Pλ

S and all S and λ. Therefore, for
any given PS, there exists one, and only one, value of λ
such that

E PSð Þ ¼ E Pλ
S

� �
for any given PS and one unique λ‐value

ð10Þ
Of course, for any given S, there may be any number of
different PS -distributions for which the value of E
would be the same and hence for which (10) would
apply. Because of (10), the value validity of E and ap-
propriate conditions can be considered in terms of the
Pλ
S -distribution in (8).
Consider now that each distribution PS is a point or

vector in S-dimensional Euclidean space with Cartesian
coordinates p1,…, pS. The Euclidean distance between the

points PS and QS is given by d PS;QSð Þ ¼
XS
i¼1

pi−qið Þ2
" #1=2

.

A most logical requirement for value validity based on Eu-
clidean distances may then be formulated as the following
equality between distance ratios:

E Pλ
S

� �
−E P1

S

� �		 		
E P0

S

� �
−E P1

S

� �		 		 ¼ d Pλ
S;P

1
S

� �
d P0

S;P
1
S

� � ð11Þ

for the P0
S; P1

S; Pλ
S defined in (2) and (8). Since the right-

hand side ratio in (11) can be seen to equal 1 − λ and from
the Schur-concavity Property P4, specifically (6), the rela-
tionship in (11) can equivalently be expressed as

E Pλ
S

� � ¼ λE P1
S

� �þ 1−λð ÞE P0
S

� �
; 0≤λ≤1 ð12Þ

¼ λ for E P1
S

� � ¼ 1 and E P0
S

� � ¼ 0 ð13Þ
The distance-based condition in (12) is also a logical im-
plication from (9). That is, the evenness value in (12)
consists of a weighted mean equivalent to that of the
underlying species distributions in (9).
The condition in (11) and hence in (12)-(13) applies spe-

cifically to the lambda distribution Pλ
S in (8). However,

because of (10), it seems entirely reasonable to also require
that (11) should generally provide a good (close) approxi-
mation when Pλ

S is replaced by any species distribution
PS = (p1,…, pS). Therefore, for any distribution PS, the ap-
proximation corresponding to (13) becomes

E PSð Þ≈1− d PS;P1
S

� �
d P0

S;P
1
S

� � ð14Þ

so that, with E P0
S

� � ¼ 0 and E P1
S

� � ¼ 1, (13) and (14) be-
come conditions for value validity of the evenness index E.

Further property comments
Distance criterion
The Euclidean distance is the metric being used as the
basic criterion for the value-validity conditions in (11)-(14).
Other metric distance functions could have been consid-
ered such as alternative members of the Minkowski family

dα PS;QSð Þ ¼
XS
i¼1

pi−qij jα
" #1=α

for parameter α ≥ 1, with

α = 2 being the Euclidean metric and α = 1 being the so-
called city-block or Manhattan metric (e.g., Upton and
Cook 2008, pp. 118–119). While it is easily seen that, if any
member of this distance family is used in (11), the expres-
sions in (12)-(13) would still apply, but the right-hand side
of (14) would generally differ for different values of α. The
Euclidean distance is used here since it is the standard or
ordinary measure of distance used in mathematics and the
various sciences. The use of any other alternative distance
metric or function would seem to require some particular
justification or explanation.
Also, it is of importance to note that the right-hand

side of (14) based on the Euclidean distance is strictly
Schur-concave whereas, had it been based on the
city-block distance, the corresponding expression would
have been Schur-concave, but not strictly Schur-concave.
This follows from the fact that (a) the Euclidean dis-
tance between PS and P1

S is strictly Schur-convex while
the city-block distance is Schur-convex, but not
strictly so (Kvålseth 2011), and (b) the right-hand side
of (14) is a strictly decreasing function of those two
alternative distance metrics (Marshall et al. 2011, pp.
88–91, 138–139).

Bounds on E
For a censused community with species abundance
frequencies n1,…, nS and total number of individuals
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N ¼
XS
i¼1

ni , the most uneven species abundance distribu-

tion becomes P0þ
S ¼ 1− S−1ð Þ=N ; 1=N ;…; 1=Nð Þ and the

most even distribution P1−
S equals P1

S in (2) only if N/S is
an integer. For these extremal distributions, none of the
evenness indices in Table 1 can attain the lower and upper
bounds of 0 and 1 since Ei P0þ

S

� �
> 0 and Ei P1−

S

� �
< 1. Of

course, when N is large, P0þ
S and P1−

S become effectively
equal to the distributions in (2) and Ei P0þ

S

� �
≈0 and Ei

P1−
S

� �
≈1.

As a simple example, consider S=5 and N= 98. Then, from
the above definition, P0þ

5 ¼ 1−4=98; 1=98;…; 1=98ð Þ
for the frequencies ni = 94, 1,…, 1 and P1−

5 ¼
20=98; 20=98; 20=98; 19=98; 19=98ð Þ . For, say, the
Williams’ E9 in Table 1, the values for these two ex-
treme distributions are found to be E9 P0þ

5

� � ¼ 0:05

and E9 P1−
5

� � ¼ 0:99 as compared to E9 P0
5

� � ¼ 0 and E9

P1
5

� � ¼ 1 for the P0
5 and P1

5 in (2).
Some (e.g., Fager 1972) have suggested that an evenness

index should be able to attain the values 0 and 1 for any S
and N while others do not impose such requirement as
long as an index takes on values near 0 and 1 when the
species distribution is as uneven or even as possible for
any given S and N (e.g., Smith and Wilson 1996). Of
course, an index E with E P0þ

S

� �
> 0 and E P1−

S

� �
< 1 can

easily be rescaled to the interval [0,1] by defining

E• PSð Þ ¼ E PSð Þ−E P0þ
S

� �
E P1−

S

� �
−E P0þ

S

� � ð15Þ

In the above example, with S = 5 and N = 98, consider
ni = 20, 5, 60, 10, 3 for which the value of E9 in Table 1
becomes E9(P5) = 0.46 whereas, from (15), E•

9 P5ð Þ ¼
0:46−0:05ð Þ= 0:99−0:05ð Þ ¼ 0:44.
However, there seems to be no particular basis for im-

posing such a rescaling requirement on an evenness
index. In fact, on intuitive grounds, it seems unreason-
able. To suggest that the above distribution P1−

5 ¼
20=98; 20=98; 20=98; 19=98; 19=98ð Þ indicates complete
evenness is simply not appropriate. Rather, this P1−

S is as
even as it can be when S = 5 and N = 98. Similarly, the
above distribution P0þ

5 ¼ 94=98; 1=98;…; 1=98ð Þ is as
uneven as possible for given S = 5 and N = 98, but it
should not be considered to imply perfect unevenness.
The above value, E9 P0þ

5

� � ¼ 0:05 rather than zero,
would seem to provide a reasonable representation of
the evenness.

Independence of S
It has been argued strongly by some that an evenness
index E should be independent of the species richness S
(e.g., Peet 1975; Hill 1973; Heip et al. 1998). Such a re-
quirement would eliminate all indices in Table 1 for an
insufficient reason. It is probably inevitable that any E
with the above Properties P1-P5 will to some extent de-
pend on S. This dependence has also been discussed
more recently by Gosselin (2006) and Jost (2010).
It can certainly be argued that the dependence of E

on S is not by itself an undesirable property. The pur-
pose of an evenness index E is to measure how evenly
(uniformly) the relative abundances pi(i = 1,…, S) are
distributed across the S different species, irrespective of
the value of S. The reason for normalizing (rescaling)
an evenness index such that the values of E all fall
within the interval from 0 to 1 (or nearly so) is simply
to be able to properly compare values of E for species
distributions with differing S -values. That is, the nor-
malized E controls or adjusts for S. Without such con-
trol or adjustment of S, an evenness index would be a
confounded representation of species richness S and
the form of the species distribution. For such an index,
one would not be able to tell whether different index
values were due to differences in S -values or differ-
ences in the form of species distributions or both. An
evenness index E ∈ [0, 1] is only supposed to measure
the form of the species distribution, thereby requiring
the control (adjustment) for S, and thus making E a
function of both pi,…, pS and S.
In statistical analysis of categorical data, an even-

ness index such as E3 in Table 1 has been used as a
measure of variation and referred to as the index of
qualitative variation (IQV) (e.g., Mueller and Schuess-
ler 1977, pp. 175–181; Reynolds 1984, pp. 61–64).
For such measurement, the fact that the normalized
E3 ∈ [0, 1] depends on the number of categories S
does not appear to be much of an issue of concern,
while papers on biological evenness seem to have
made the dependence on S into an unnecessary issue.
Just as it is for a measure of qualitative variation, in-
clusion of S into the formulation of E ∈ [0, 1], besides
the ease of interpretation, is precisely for the purpose
of obtaining an evenness index that can be used to
compare the evenness of different species distribu-
tions of differing S.
One type of situation in which there is reason for

genuine concern about E depending on species richness
is when the relative species frequencies pi = ni/N (i = 1,

…, S) and sample size N ¼
XS
i¼1

ni are based on random

observations from a population of species and when the
computed (sample) value E(n1/N,…, nS/N) is used to
make statistical inferences about the corresponding un-
known population index Ep. Such statistical inferences
would include (a) the use of the sample value of E as an
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appropriate estimate of Ep and (b) the construction of
confidence intervals for Ep. However, the necessary con-
ditions for making such statistical inferences are rarely
met in biological studies. It is typical for such sampling
data that neither the total number of species Sp in the
defined population nor all the specific types of species
are known, with S < Sp and S depending to some extent
on the sample size N. It is then most prudent to confine
the evenness measurement to the sample itself.

Replication principle
A measurement property that has also been referred to as
the “replication property” or “replication principle” was in-
troduced by Dalton (1920) for the measurement of eco-
nomic inequality. Thus, if (x1,…, xn) denotes the set of
incomes of n individuals and if another set of identical in-
comes for n other individuals are combined to produce
the set of incomes (x1, x1, x2, x2,…, xn, xn) for 2n individ-
uals, then a measure of income inequality should have the
same value for (x1, x1,…, xn, xn) as for (x1,…, xn). Any
number of such replications should produce the same re-
sult. Dalton (1920) called this the “principle of proportion-
ate additions to persons”, while others (e.g., Cowell 2011,
pp. 63–64) have referred to it as the “principle of popula-
tion”. The term “replication” property or principle, as also
used for biological evenness measures (e.g., Taillie 1979;
Tuomisto 2012), would seem to be most descriptive and
will be used here.
However, it may perhaps be questionable if such a repli-

cation property should be considered necessary or even
desirable, especially when the underlying data are categor-
ical such as biological species frequencies (counts) as op-
posed to quatitative data such as personal incomes. Even
when measuring income inequality, some feel that the de-
sirability of this property is debatable and not self-evident
(Cowell 2011, pp. 63–64), while others do not even men-
tion this property when discussing inequality measures
(Bellù and Liberati 2006; Marshall et al. 2011, Sec 13F).
For quantitive data, it does at least make realistic sense

to consider a replication (x1, x1,…, xn, xn). However, for
categorical data such as a set of biological species abun-
dance frequencies (counts) (n1, n2,…, nS), a replication
(n1, n1, n2, n2,…, nS, nS) would seem to be an unrealistic
and intuitively meaningless concept. Each ni has to be
identified with a specific species (or category) within a
set of mutually exclusive and exhaustive set of species of
size S. If, say, (n1,…, nS) are the frequencies for a set of S
different types of apple trees in one geographic area and
if exactly the same frequencies are observed for the same
set of S apple trees in an adjacent area, it would make
no sense to determine an evenness value based on the
data (n1, n1,…, nS, nS) for the two combined areas. Such
determination should be based on (2n1,…, 2nS). Other-
wise, one would be “comparing apples and oranges”.
One situation in which it does make sense to consider
replication would be when a set of S different species
with frequencies (n1,…, nS) are split into males and
females, resulting in the species-sex frequencies (n1/
2, n1/2,…, nS/2, nS/2). The S “species” categories have
been split into 2S “species-sex” categories. These are two
different sets of categories for which there would seem
to be no basis for requiring that the evenness should be
the same.
Jost (2010) has also argued against the requirement

that an evenness index should possess the replication
property. In fact, he argues that replication invariance
would be an undesirable property for an evenness
index E ∈ [0, 1].
Any proposed condition such as the one involving repli-

cation also has to make some intuitive sense when simply
looking at the data, both in terms of frequencies ni and
proportions (relative frequencies) pi = ni/N for i = 1,…, S

and N ¼
XS
i¼1

ni . For instance, consider two sets of data:

frequencies (80, 20) or proportions P2 = (0.80, 0.20) versus
the replicated (80, 80, 20, 20) or Q4 = (0.40, 0.40,
0.10, 0.10). It would be hard to justify the proposition that
both data sets reveal the same degree of evenness, espe-
cially when considering the P2 versus the Q4. Clearly, Q4

indicates greater evenness than P2 since the components
of Q4 differ less than those of P2.
As an example of a replication-invariant evenness

index producing such intuitively unreasonable values,
consider

ET ¼ 1
S

2
XS
i¼1

ipi−1

 !
∈

1
S
; 1


 �
ð16Þ

where p1,…, pS are ordered as in (3) (Taillie 1979, p. 56).
This ET represents a slight modification of Solomon’s E10 in
Table 1. Because of its lower bound 1/S, an interpretation
such as ET(1, 0) = 0.50 showing more than twice the even-
ness of ET(1, 0, 0, 0, 0) = 0.20 makes no intuitive sense. Simi-

larly, in terms of frequencies n1,…, nS, with N ¼
XS
i¼1

ni; it

is found from (16) with pi = ni/N (i = 1,… S) that

ET N−S þ 1; 1;…; 1ð Þ ¼ 1
S
þ S−1

N

with such unreasonable results as ET(99, 1) = 0.51 and

ET(96, 1, 1, 1, 1) = 0.24. By comparison, from the E9 in

Table 1, E9(99, 1) = 0.02 < E9(96, 1, 1, 1, 1) = 0.05, an intui-

tively reasonable result.
From the definition of the Lorenz curve under Pro-

perty P4c, it is readily seen that the Lorenz curve of, say,
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P2 = (0.80, 0.20) and Q4 = (0.40, 0.40, 0.10, 0.10) coincide
(one curve with two more points than the other), a re-
sult that holds for all replication situations. However,
considering the preceding arguments, such a Lorenz-
curve fact would not be sufficient to argue for a propo-
sition that an evenness index should be invariant with
respect to replication.
Assessment of proposed indices
Based on the above discussion of appropriate properties
for an evenness index, the validity of various proposed
indices may now be assessed. All of the indices listed in
Table 1 can be seen to meet the requirements for con-
tinuity, symmetry, and normalization, i.e., Properties P1-
P3. However, as will be explained next, some of those
indices are not strictly Schur-concave (Property P4) and
most do not satisfy the conditions for value validity
(Property P5).
Schur-concavity
Alatalo’s index E5 in Table 1 is not Schur-concave.
This is rather apparent since the denominator of E5
is strictly Schur-concave because (a) the entropy H is
strictly Schur-concave and (b) a strictly increasing
function of a strictly Schur-concave function is strictly
Schur-concave (Marshall et al. 2011, pp. 89, 101).
Also, as an example, consider the distributions P3 = (0.80,
0.10, 0.10) and Q3 = (0.80, 0.19, 0.01) for which E5(P3) =
0.58 exceeds E5(Q3) = 0.67 even though P3 is majorized by
Q3 so that E5 cannot be Schur-concave (see (3)-(5)). Con-
sequently, E5 is not a valid evenness index.
Bulla’s index E8 in Table 1 is Schur-concave, but it

is not strictly Schur-concave as required by Property
P4. A proof of the Schur-concavity of E8 is given
below in Appendix A. The fact that this index is not
strictly Schur-concave can be verified by the follow-
ing counterexample: E8(0.80, 0.15, 0.05) = E8(0.80, 0.10,
0.10) = 0.30 even though (0.80, 0.10,0.10) is majorized
by (0.80,0.15,0.05) as can be seen from (3)-(4). Con-
sequently, from (5), E8 cannot be strictly Schur-
concave.
Among other proposed evenness indices, Smith and

Wilson (1996) introduced one as a strictly decreasing
function of the variance V of the logged frequencies,

i.e., V ¼
XS
i¼1

logni−
XS
i¼1

lognið Þ=S
" #2

=S . However, since

V is not Schur-convex and a decreasing function of
V is therefore not Schur-concave (Marshall et al.
2011, pp. 89, 561), the index proposed by Smith and
Wilson (1996) is not Schur-concave and is therefore
not a valid evenness index.
Hill (1973) proposed a family of evenness indices as
EHαβ ¼ Nα

Nβ
; Nα ¼

XS
i¼1

pαi

 !1= 1−αð Þ
; Nβ

¼
XS
i¼1

pβi

 !1= 1−βð Þ
ð17Þ

with no restriction on the parameters α and β. However,
in order for a member of this family to be strictly
Schur-concave, it is necessary that α > 0 and β < 0. These
parameter ranges do not include the specific member
EH2,1 for α = 2 and β = 1 in (17) mentioned by Hill (1973)
and of which the E5 in Table 1 is a slight modification.
Also, EHαβ in (17) is undefined for β < 0 unless it is as-
sumed that all pi are positive. A proof of these parameter
restrictions is given below in Appendix B.
Hill (1997) also proposed the evenness index

N3

N2

� �2

¼

XS
i¼1

p2i

 !2

XS
i¼1

p3i

where N2 and N3 are defined from (17). This index is
replication invariant and relatively independent of S, but,
as can be inferred from the preceding paragraph, it can-
not be Schur-concave since it is a ratio of Schur-convex
functions. The fact that this index is not Schur-concave
and therefore not a valid evenness index is also evident
from, for instance, the two distributions (0.6, 0.4) and
(0.99, 0.01) for which this Hill’s index takes on the respect-
ive values 0.97 and 0.99. This is clearly an absurd result
since the components of (0.6, 0.4) are more even than
those of (0.99, 0.01), i.e., (0.6, 0.4) is majorized by (0.99,
0.01) (see (3)-(4)).
Ricotta (2004) made an interesting attempt to formu-

late an evenness index by using a fuzzy set theory ap-
proach. With the pi’s ordered as in (3), this index is
defined as

ER ¼ 1−
XS
i¼1

pi−piþ1

i

� �

where pS + 1 = 0. However, this index is not Schur-
concave (nor is it Schur-convex) and is therefore not a
valid evenness index. This fact can be proved by using a
counterexample such as the two species distributions P3 =
(0.6, 0.2, 0.2) and Q3 = (0.6, 0.3, 0.1) where Q3 is derived
from P3 by means of the transfer of 0.1 from p3 to p2.
From the definition in (4), it is clear that P3 is majorized
by Q3, but ER(P3) = 0.53 < ER(Q3) = 0.57 so that, from (5),
ER is not Schur-concave.



Table 2 Values of the evenness indices in Table 1 for the
lambda distribution PλS in (8) with different λ and S values

S λ E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

2 0.2 0.47 0.38 0.36 0.29 0.57 0.61 0.22 0.20 0.20 0.20 0.20

2 0.5 0.81 0.75 0.75 0.68 0.79 0.72 0.60 0.50 0.50 0.50 0.50

2 0.8 0.97 0.96 0.96 0.94 0.96 0.95 0.92 0.80 0.80 0.80 0.80

5 0.2 0.41 0.23 0.36 0.21 0.43 0.28 0.10 0.20 0.20 0.20 0.20

5 0.5 0.76 0.60 0.75 0.57 0.62 0.66 0.38 0.50 0.50 0.50 0.50

5 0.8 0.96 0.92 0.96 0.91 0.90 0.94 0.83 0.80 0.80 0.80 0.80

10 0.2 0.38 0.15 0.36 0.17 0.35 0.26 0.05 0.20 0.20 0.20 0.20

10 0.5 0.73 0.48 0.75 0.49 0.48 0.63 0.23 0.50 0.50 0.50 0.50

10 0.8 0.94 0.87 0.96 0.87 0.81 0.92 0.71 0.80 0.80 0.80 0.80

20 0.2 0.35 0.10 0.36 0.14 0.28 0.24 0.03 0.20 0.20 0.20 0.20

20 0.5 0.70 0.37 0.75 0.42 0.35 0.60 0.13 0.50 0.50 0.50 0.50

20 0.8 0.93 0.80 0.96 0.81 0.68 0.91 0.55 0.80 0.80 0.80 0.80

30 0.2 0.34 0.07 0.36 0.13 0.25 0.24 0.02 0.20 0.20 0.20 0.20

30 0.5 0.68 0.32 0.75 0.38 0.29 0.58 0.09 0.50 0.50 0.50 0.50

30 0.8 0.92 0.76 0.96 0.77 0.58 0.89 0.44 0.80 0.80 0.80 0.80
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Value validity (condition (13))
Of the evenness indices identified so far in this paper,
most of them lack the value validity property as defined
and discussed above. Those indices cannot therefore be
used to make valid difference comparisons as in (7b)-(7c)
and their numerical values cannot be used as valid indica-
tors of the true extent of evenness from a data set. Only
“larger than” comparisons as in (7a) may be valid for those
indices. Among the indices defined in Table 1, only
E8, E9, E10, and E11 can be seen to meet the condition in
(13) for value validity. However, as proved above, Bulla’s
E8, while being Schur-concave, lacks the strict Schur-
concavity property. As a demonstration of such lack of
value validity, consider the results in Table 2 giving the
values of the measures in Table 1 for the lambda distribu-
tion Pλ

S in (8) with some different values of λ and S.
It is clearly indicated by these results that, except for

E8,…, E11, the various indices violate the condition in

(13) that E Pλ
S

� � ¼ λ, some more so than others. For some

of the indices, their values for the distribution Pλ
S exceed

the λ -values, i.e., they overstate the extent of evenness,
while such bias is reversed for other indices, depending
upon the values of λ and S. Although these results are

based on the specific distribution Pλ
S in (8), they have def-

inite implications for species distributions PS = (p1,…, pS)
in general because of the relationship in (10).
It is then apparent from Table 2 together with (10)

that the general tendency for each of the E1,…, E6 is to
overstate the degree of evenness, especially when the
species richness S is small. The indices E1, E3, and E6
appear to consistently overstate the evenness. In terms
of the value bias of an evenness index E (VBE) (as dis-
tinct from statistical bias of an estimator) defined as

VBE Pλ
S

� � ¼ E Pλ
S

� �
−λ ð18Þ

E1, E3, and E6 appear to have such a consistent positive
bias for all Pλ

S and hence generally for all PS = (p1,…, pS)
from (10). Interestingly, such positive bias for E3 does
not depend explicitly on S since, from (18) and the ex-
pression for E3 in Table 1, this bias is found to be VBE3

Pλ
S

� � ¼ λ 2−λð Þ−λ ¼ λ 1−λð Þ , which also is clearly max-
imal for λ = 0.5. Note also in Table 2 for S > 2 the ex-
tremely large negative value bias for the index E7
proposed by this author (Kvålseth 1991), making it en-
tirely invalid for the difference comparisons in (7b)-(7c).
For the evenness indices E9, E10, and E11, which all have

Properties P1-P4 and which meet the condition in (13), it
remains to be determined if those indices also meet the
value-validity condition in (14). This is considered next.

Value validity (condition (14))
The Williams’ E9 meets the condition in (14) exactly since

E9 ¼ 1−
d PS; P1

S

� �
d P0

S; P
1
S

� �

¼ 1−

XS
i¼1

pi−1=Sð Þ2

1−1=Sð Þ2 þ S−1ð Þ 1=Sð Þ2

0
BBBB@

1
CCCCA

1=2

¼ 1−

S
XS
i¼1

p2i −1

S−1

0
BBBB@

1
CCCCA

1=2

ð19Þ

which equals E9 in Table 1. The E9 is also equivalent to
the coefficient of nominal variation (CNV) proposed by
Kvålseth (1995) as a measure of variation for nominal
categorical data. It can also be expressed as a linear
function of the standard deviation sS of p1,…, pS (with
devisor S), i.e.,

E9 ¼ CNV ¼ 1−
Sffiffiffiffiffiffiffiffi
S−1

p sS

This is so rather obvious an evenness index that un-
doubtedly others have also thought of it.
The determination of whether or not Solomon’s E10

and this author’s E11 comply with the requirement in
(14) then becomes a comparison of E10 and E11 with the
‘gold standard’ E9 for different distributions PS = (p1,…,
pS). The E11 is presented as an interesting alternative to
E10, both of which are based on the ordering p1 ≥ p2 ≥



Table 3 Values of indices E1, E9, E10, and E11 defined in
Table 1 for species distributions PS = (p1,…, pS) with
randomly generated S and pi(i = 1,…, S)

Data set S E9 E10 E11 E1

1 15 0.27 0.22 0.25 0.44

2 7 0.88 0.81 0.87 0.98

3 18 0.45 0.24 0.44 0.53

4 2 0.15 0.15 0.15 0.39

5 4 0.29 0.22 0.26 0.51

6 12 0.35 0.11 0.28 0.42

7 17 0.92 0.91 0.92 0.99

8 14 0.32 0.30 0.31 0.51

9 8 0.85 0.77 0.84 0.97

10 17 0.63 0.56 0.61 0.82

11 29 0.84 0.84 0.84 0.95

12 5 0.19 0.10 0.15 0.33

13 30 0.38 0.30 0.35 0.53

14 5 0.32 0.18 0.28 0.49

15 27 0.82 0.69 0.79 0.92

16 2 0.29 0.29 0.29 0.59

17 5 0.52 0.40 0.50 0.74

18 30 0.31 0.15 0.24 0.39

19 10 0.57 0.42 0.53 0.75

20 26 0.95 0.91 0.94 0.99

21 19 0.67 0.61 0.66 0.84

22 19 0.77 0.76 0.76 0.91

23 17 0.46 0.40 0.44 0.65

24 12 0.74 0.70 0.73 0.91

25 2 0.50 0.50 0.50 0.81
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… ≥ pS. The E11 is based on the complement of the
homogeneity (dominance, concentration) measureXS
i¼1

pi=i proposed by Kvålseth (1993) and normed to the

[0, 1] -interval. For large S, the denominator of E11 can
more conveniently be computed as 1 − (logS + 0.5772)/S +
1/2S2, which is found to be accurate to four decimal places
when S > 11 (see, e.g., Knopp 1990, p. 538).
In order to obtain the necessary data to determine if

E10 and E11 comply with the requirement in (14), i.e., de-
termine the extent to which E10 and E11 approximate
E9, randomly generated distributions PS = (p1,…, pS)
were used. For each such PS, the value of S was first gen-
erated as a random integer between 2 and 30 (inclusive)
and then each pi was generated in descending order
(p1 ≥ p2 ≥… ≥ pS) as random numbers (to 6 decimal
places) within the following intervals:

1
S

≤ p1 ≤ 1

1−p1
S−1

≤ p2 ≤min p1; 1−p1f g
⋮

1−
XS−2
j¼1

pj

S− S−2ð Þ≤ pS−1 ≤min pS−2; 1−
XS−2
j¼1

pj

( )

pS ¼ 1−
XS−1
j¼1

pj

For each of the 25 such computer-generated distribu-
tions PS, the values of E9, E10, and E11 were computed as
were the values of Pielou’s E1 in Table 1. Some (five)
generated data sets were excluded since the index values
were all nearly equal to 0 or 1. The normalized entropy
E1 was included, although it clearly violates (13), since
this entropy-based index appears to be the most popular
evenness index. The results are summarized in Table 3.
As expected from the results in Table 2 together with

(10), Table 3 shows that E1 substantially and consistently
violates the value-validity condition in (14) since its
values generally differ considerably from those of the
‘gold standard’ E9. The overstatement (positive value
bias) of evenness by Pielou’s E1 appears to be as large as
up to about 150 percent. By comparison, the approxima-
tion in (14) is much better for E10 and E11, i.e., the
values of E10 and E11 in Table 3 are generally much
closer to the corresponding values of E9 than are those
of E1. This is especially the case for E11.
In the case of Solomon’s E10, the data in Table 3 indi-

cate that values of E10 tend to be systematically and
sometimes considerably smaller than those of E9. For
data Sets 3, 6, 12, 14, and 18, the E10 values are half or
less of the E9 values. If E9 is used to predict E10 as Ê10 =
E9, then the coefficient of determination (when properly
computed; see Kvålseth 1985) is found from Table 3 to
be R2 = 1 − ∑(E10 − E9)

2/∑(E10 − Ē10)
2 = 0.86. Similarly,

the root mean square difference (RMSD) between the
values of E10 and E9 is found to be 0.10. When similarly
comparing E11 with E9, it turns out that R2 = 0.99 and
RMSD (E11, E9) = 0.03. That is, nearly 100% of the total
variation of E11 (about its mean) is explained by the ‘fit-
ted’ model Ê11 = E9 as compared to 86% in the case of
E10. Consequently, E11 cannot be rejected for lacking
value validity since it complies with the requirement in
(13) and seems to have a high degree of approximation
to E9 as required by (14). However, in the case of Solomon’s
E10, while it complies with (13), one could certainly
question its value validity since its approximation to E9
is rather marginal.

Concluding comments
As advocated in this paper and about which most re-
searchers seem to agree, an evenness index E should take
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on values over the interval from 0 to 1, with E P0
S

� � ¼ 0

and E P1
S

� � ¼ 1 for the distributions in (2). These fixed
bounds are preferable when comparing the evenness of
different species collections or communities with differing
species richness S. Some indices have been proposed,
however, for which the bounds depend on S such as E

P0
S

� � ¼ 1=S for indices ET in (16) by Taillie (1979) and EC
by Camargo (1993) defined as

EC ¼ 1−

XS−1
i¼1

XS
j¼iþ1

pi−pj
			 			

S

The ET is seen to be a simple transformation of E10 in
Table 1, i.e., ET = [(S − 1)E10 + 1]/S. The EC index has
been referred to as Camargo’s evenness index (e.g.,
Magurran 2004, p. 118) although it is the same as the ET
proposed earlier by Taillie (1979). The fact that EC = ET
follows directly from the equality

XS−1
i¼1

XS
j¼iþ1

pi−pj
			 			 ¼XS

i¼1

S þ 1−2ið Þpi

where p1,…, pS on the right-hand side are ordered as in (3).
Since all the indices in Table 1 can be seen to have

Properties P1-P4, with the exception of Alatalo’s E5
and Bulla’s E8 that are not strictly Schur-concave
(Property P4), those indices can reasonably be ex-
pected to provide valid size (order) comparisons as in
(7a). That is, for an evenness index E with Properties
P1-P4 and for which, say, E(PS) = 0.90 and E(QR) =
0.60, one can reasonably say that the species with
abundance distribution PS has higher evenness than
that with abundance distribution QR, but nothing
more can be said with validity. One cannot credibly
say that one has “considerably higher” evenness than the
other or that the 0.90 value shows a “very high” degree of
evenness even though the 0.90 value is near the top end of
the [0, 1] -interval over which E is defined. Such interpreta-
tions and the types of difference comparisons in (7b)-(7c)
require that E meets conditions (13)-(14) for value validity,
conditions which are only clearly satisfied by Williams’ E9
and the new index E11 in Table 1.
Of the two indices E9 and E11 with the Properties P1-P5,

there seems to be no particular reason for preferring E11
over E9. The E9 also has an intuitively appealing geometric
interpretation in terms of the Euclidean distances between
points in S-dimensional space in (19), i.e., E9 is the relative
extent to which the distance between P1

S in (2) and the
species abundance distribution (point) PS = (p1,…, pS) is
less than the distance between P1

S and P0
S defined in (2).

Alternatively, since PS is majorized by P0
S and since the
distance d PS; P1
S

� �
can be shown to be strictly Schur-

convex, the E9 in (19) can be expressed as

E9 ¼ 1−
d PS; P1

S

� �
max
PS

d PS; P1
S

� � ð20Þ

that is, E9 is the relative extent to which the distance be-
tween an observed PS and the P1

S is less than the maximum
such distance over all S -species distributions. For instance,
from the data by Magurran (2004), pp. 226–227 of the
abundances of 16 species of dung beetles around Bangalore,
India, (19) or (20) gives E9(P16) = 0.48, which means that
the distance between the dung beetle abundance distribu-
tions P16 and P1

16 is 48% less than its maximum possible
value for 16-species distributions. If, for these data with
S = 16 and total number of dung beetles N = 1745, one uses
P0þ
16 ¼ 1730=1745; 1=1745;…; 1=1745ð Þ and P1−

16 ¼
110=1745; 109=1745;…; 109=1745ð Þ instead of the P0

16
and P1

16 in (2) as discussed above, one obtains the distances
d P16; P1−

16

� � ¼ 0:5034 and d P0þ
16 ; P

1−
16

� � ¼ 0:9588 so that,
from (19), E9(P16) = 1 − 0.5034/0.9588 = 0.47.
In order to avoid misrepresentations and incorrect in-

terpretations by using evenness indices lacking import-
ant properties, the conclusion from the analysis in this
paper seems clear: E9 is the index of choice. Having all
of the necessary properties (Properties P1-P5), E9 is a
most informative index for which all of the comparisons
in (7a)-(7c) can reasonably be considered valid.

Appendices
Appendix A
In order to prove that Bulla’s E8 in Table 1 is Schur-
concave, but not strictly Schur-concave, consider the
function

Fα ¼
XS
i¼1

pαi þ 1=Sð Þα
2

� �1=α

¼
XS
i¼1

mαi

where α is some arbitrary parameter. This Fα is simply
the sum of arithmetic means mαi of order α and of
which E8 is the particular limiting member F− ∞ as α
goes to −∞. By taking the partial derivatives of mαi with
respect to pi, it is found that

∂2mαi

∂p2i
¼ α−1

4

� �
m1−2α

αi
1
S

� �α

pα−2i

which is negative for α < 1 so that mαi is a strictly con-
cave function of pi for α < 1 and fixed S. Thus, being a
sum of strictly concave functions, Fα is strictly Schur-
concave for α < 1 (Marshall et al. 2011, p. 92). However,
in the limit as α→ −∞, when (Fα − 1/S)/(1 − 1/S)
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becomes Bulla’s E8, the strict Schur-concavity does not
hold as demonstrated by the earlier counterexample.

Appendix B
As a proof of the parameter restrictions on Hill’s family
of evenness indices in (17), consider the partial deriva-
tive of N •

α ¼ logNα (which is the entropy family of Rényi
1961) with respect to pi, i.e.,

∂N •
α

∂pi
¼ α

1−α

� � XS
j¼1

pαj

 !−1

pα−1i

which shows that, if p1,…, pS are ordered as in (3), ∂N •
α=

∂pi is strictly increasing in i = 1,…, S (when pi > pi + 1 for
all i) for α > 0 and strictly decreasing if α < 0. Therefore,
N •

α and hence Nα are strictly Schur-concave for α > 0
and strictly Schur-convex for α < 0 (Marshall et al. 2011,
pp. 84, 89). Consequently, since the ratio of a strictly
Schur-concave function to a strictly Schur-convex func-
tion is strictly Schur-concave (Marshall et al. 2011, pp.
89, 145), the EHαβ in (17) is strictly Schur-concave for
α > 0 and β < 0. It can also be proved that this result
holds when either α = 0 or β = 0.
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