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New method to determine proton trajectories in
the equatorial plane of a dipole magnetic field
Damaschin Ioanoviciu
Abstract

A parametric description of proton trajectories in the equatorial plane of Earth’s dipole magnetic field has been
derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The
radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric
functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons
trapped in Earth’s radiation belts, no numerical integration is needed. The results of exact and approximate
expressions were compared for a specific case and small differences were found.
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Background
The differential equations of the motion of charged
particles in a magnetic dipole field, as approximation of
the Earth’s magnetic field, were derived already by Stőrmer
(1907). Their solutions were obtained only numerically in
an attempt to explain the behaviour of aurora borealis.
The interest for charged particles trapped inside the dipole
magnetic field increased by the discovery of Van Allen
belts. A deep discussion of this topic can be found in Elliot
(1963). Alfven (1950) developed an approximation
splitting particle motion into guiding centre motion
and gyration. The method has been enriched by Northrop
(1961). Detailed studies of the motion of charged particles
in the meridian plane of magnetic dipole fields are due to
Markellos et al. (1978a) and (Markellos et al. 1978b).
The specific case of charged particle motion in the

equatorial plane of the dipole magnet allowed De Vogelaere
(1950) to obtain general periodic solutions of a Hill type
differential equation from two numerically found par-
ticular solutions. Dragt (1964) in a comprehensive
paper, describes a power series solution originating from a
double power series solution of Stőrmer (1955). Graef and
Kusaka (1938) obtained solutions for the motion in that
plane in terms of elliptic integrals of first kind. These
include a step of numerical calculation, no matter if the
elliptic integral is obtained by a subroutine of the trajectory
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Here parametric expressions of the proton coordinates

in the equatorial plane were derived. Both exact radial
and approximated angular coordinate expressions are
strictly speaking, analytical formulas including only basic
arithmetic operations and trigonometric functions. A
prescribed accuracy for the angular coordinate is obtained
from an exact formula by numerical integration, performed
with the desired degree of precision.
Results and discussion
Radial coordinate-exact expression
We use a cylindrical coordinate system, Figure 1, with
the polar coordinates r, θ in the equatorial plane of the
dipole magnetic field (that of paper). Therefore, the z
axis is directed along the dipole, the origin being located
in its middle. A proton, moving with the velocity v0 in
the equatorial plane will be pushed towards the origin if
the magnetic field lines are directed to enter inside the
paper, from outside the Earth’s body. In other words, we
are looking at the figure from the Earth’s North magnetic
pole. To determine the coordinate r we use two motion
constants: the velocity v0 and the angular momentum,
Eq. 3.35 from Miyamoto (2000), p.26.

v2 ¼ r
:2

þ r2θ
:2

¼ v20 ð1Þ
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Figure 1 Proton trajectory in the dipole magnet equatorial plane. Defined are the radial r, and angular θ, coordinates (polar coordinates),
the parameter ψ, the initial quantities v0, rC and ψi = π/2.
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mr2 θ
:
þqrAθ ¼ ct ð2Þ

“Point” means derivative with respect to the time.
ct is a constant. q and m are the proton charge and

mass respectively. Aθ is the only non vanishing vector
potential component. For z = 0 this is:

Aθ ¼ μ=r2 ð3Þ
with μ the Earth’s magnetic dipole moment.
Next we use Richardson’s (1947) parameter ψ, the

angle between the velocity and the theta velocity compo-
nent, by the substitution vθ = v0cosψ, earlier applied to
describe ion paths in “wedge” magnetic fields and ion
optical studies, see also Ioanoviciu (1989).

After substitution of Aθ and r θ
:
in (2) we have:

mr2 θ
:
þqμ=r ¼ ct ð4Þ

next we put:

r θ
:
¼ −v0 cosψ ð5Þ

and we obtain:

μq=r−mv0r cosψ ¼ ct ð6Þ
The constant ct results from the initial conditions:

r ¼ ri; r θ
:
¼ −v0 cosψi ð7Þ

when the parameter takes the value ψ = ψi.
μq=ri−mv0ri cosψi ¼ ct ð8Þ

Eliminating cl, between (6) and (8), next substituting r
by ρi = r/ri we have:

ρ2i cosψ−ρi cosψi þ ηi ρi−1
� � ¼ 0 ð9Þ

where:

ηi ¼ μq= mv0r
2
i

� � ð10Þ

Two solutions for ρi result:

ρi ¼ cosψi−ηi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi− cosψi

� �2 þ 4ηi cosψ
q� �

= 2 cosψð Þ

ð11Þ

Only the solution with “plus” sign offers physically
acceptable values.
From the above expressions we obtain the maxima and

minima of the proton radial coordinate by derivation with
respect to ψ. As ρi is a function ρi(cosψ) the derivative is
dρi/dψ = dρi/d(cosψ)(−sinψ) It vanishes for ψ = π and ψ =

2π values (if we limit to the first loop) that substituted in
the solutions for ρi give the searched extreme values:

ρi ¼ ηi− cosψi−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi− cosψi

� �2−4ηi
q� �

=2 ð12Þ

for cosψ = −1 ,
and



Table 1 First loop of a 60 MeV energy proton with the
basic radial distance

ρ θ in radians ( θ-θapp)/θ %

1.000000 0

0.99674778 2.046283×10−3 0.1213

0.991148 5.138577×10−3 0.0476

0.987785 1.048920×10−2 0.0209

0.987394 1.203098×10−2 0.0173

0.990058 6.310101×10−3 0.0381

0.995200 2.626267×10−2 0.0050

1.001655 2.707027×10−2 0.0048

1.007859 2.462010×10−2 0.0052

1.0122026 1.941538×10−2 0.0055

1.013494 1.272709×10−2 0.0045

1.011368 6.208492×10−3 0.0021

1.006424 2.552444×10−2 0.0050

1.000000 1.635483×10−3 0.1150

rC=1.5×6.378×10
6m, η=75.97.

Parametric calculated exact coordinates ρ=r/rC and θ, as well as the error,
(θ-θapp)/θ by using the approximate angular coordinate formula θapp,
were tabulated.
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ρi ¼ cosψi−ηi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηi− cosψi

� �2 þ 4ηi

q� �
=2 ð13Þ

for cosψ = 1
Further radial coordinate expression simplification can

be obtained if we select the observation starting point
for ψi = π/2:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η ηþ 4 cosψð Þ

p
−η

h i
= 2 cosψð Þ ð14Þ

Here the index “i” has been removed.
Now ρ = r/rC, η = μq/(prrC

2 ) with rC the radial distance
for ψi = π/2, pr the relativistic particle momentum

pr ¼ m0v0=
ffiffiffiffiffiffiffiffiffiffi
1−β2

q
;

The extreme values of ρ are then:

ρ ¼ η−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η η−4ð Þ

ph i
=2 ð15Þ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η ηþ 4ð Þ

p
−η

h i
=2 ð16Þ

We can use the simplified expressions by looking for
an equivalent equation connecting ri and ηi to rC and η.
By equating the maximum and the minimum of the
equation (12), (13) to those of eq. (15), (16) we obtain
the following equivalence:
The eq. (11) with “minus” sign, is identical with (14) if:.

rC ¼ ηiri= ηi− cosψi

� � ð17Þ
and

η ¼ ηi− cosψi

� �2
=ηi ð18Þ

The stability condition for the proton trajectories re-
sults from the equation of ρ. The condition to keep the
charged particle trapped inside the dipole magnetic field:
ρ must be real. This happens always if:

η > 4≥4 cosψ ð19Þ

or by detailing η:

pr < μq= 4r2C
� � ð20Þ

Angular exact coordinate expression
The angular coordinate, θ is obtained by an integration to
be performed numerically with the desired accuracy degree.

dθ ¼ dθ=drð Þdr ¼ θ
:
�:
r
dr

¼ −v0 cosψ=rð Þ= v0 sinψð Þdr ð21Þ
Finally we integrate over ψ from the beginning at ψ = π/2
to the current value of ψ:

θ ¼ −
Z

cosψ ρ sinψð Þdρ ¼ 1
2

Zψ

π=2

ffiffiffi
η

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ 4 cosψ

p −1
� �

dψ

ð22Þ
Approximating proton coordinates
Let’s estimate the η values for the Van Allen belts. For the
Earth, dipole moment μE = 7.906×1015 T.m3, equatorial
radius RE = 6.378×106m , the protons of 10÷100 MeV,
moving inside the inner belt concentrated around 1.5RE,

have η = 188.536 to 58.247 (Hess 1962; Fiandrini et al.
2004).
For the protons of 1 MeV located between 2.5 and 8RE

(second belt) the values of η=215.147 and 21.01 while
for those of 0.065 MeV η=844.087 and 82.43.
The enumerated η values suggest when the integral

giving θ (as r values result straightforward) can be obtained
with accuracy. We take the equation (9) and divide it by η.
Accounting for 1/η as small quantity, we substitute 1/η = α
and ρ = 1 + ε , both α and ε being assumed to be small
quantities. Then we obtain:

ρ2=η−ρ cosψi=η−1ð Þ= cosψ−1= cosψ ¼ 0 ð23Þ

That after the substitutions gives:

α cosψ 1þ εð Þ2 þ ε
� �

=α ¼ 0 ð24Þ
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By successive approximation, we obtain the following
expression for, ε after the third approximation step:

ε ¼ −α cosψ 1−2α cosψ þ 5α2 cos2ψ
� � ð25Þ

ρ obtained as 1 + ε has been substituted in the expres-
sion of dθ :

dθ ¼ − cosψ= 1þ εð Þ sinψ½ �dε ð26Þ
As dε has the form:

dε ¼ α sinψ 1−4α cosψ þ 15α2 cos2ψ
� �

dψ ð27Þ
to obtain θ we have to integrate ψ from π/2 to the

current ψ value.

dθ ¼ −α cosψ 1−3α cosψ þ 10α2 cos2ψ
� �

dψ ð28Þ
After integration it results:

θ ¼ α 1− sinψð Þ þ 3=2ð Þα2 sinψ cosψ þ ψ−π=2ð Þ

− 10=3ð Þα3 sinψ cos2ψ þ 2 sinψ−2
� �

ð29Þ

Application to a specific case
The case of a trapped 60 MeV proton oscillating
around the characteristic radial distance of 1.5 Earth
Figure 2 Three loops of a 60 MeV proton inside the Earth’s dipole ma
ordinate as function of the angle θ as abscissa. The three loops correspond
the second and 9π/2 to 13π/2 the third respectively.
radii was considered. The motion characterizing par-
ameter results then to be η = 75.97. The exact coordi-
nates ρ and θ, as well as the relative difference
between the exact and the approximated angular
coordinates (θ-θapp)/θ in percents were presented, for
a complete loop, in Table 1. The error is of the order
of 0.002% to 0.12%.
In Figure 2 the reduced radial distance r/rC exact

values were represented as function of θapp in abscissa,
for three consecutive complete loops, corresponding
to the intervals, ψ = π/2 to 5π/2, ψ = 5π/2 to 9π/2 and
ψ = 9π/2 to 13π/2 respectively.
Conclusion
The coordinates of the protons moving in the Earth’s
equatorial plane were derived as functions of a param-
eter. The use of the exact expressions assumes only basic
operations and trigonometric functions to be involved
for the radial coordinate calculation, while for the
angular coordinate a numerical integration is necessary.
Combining the exact radial formula with the approxi-
mated angular coordinate expression, an entirely analytic
set of formulas has been obtained. The accuracy of this
description has been shown on an illustrative example.
The amazing simplicity of the coordinate expressions
suggests possible developments by accounting for field
perturbations.
gnetic field equatorial plane. The ratio ρ = r/rC is represented in
to ψ parameter variation intervals: π/2 to 5π.2 the first, 5π/2 to 9π/2
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