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Abstract

With increasing herd sizes, camera based monitoring solutions rise in importance. 3D cameras, for example Time-Of-
Flight (TOF) cameras, measure depth information. These additional information (3D data) could be beneficial for
monitoring in dairy production. In previous studies regarding TOF technology, only standing cows were recorded to
avoid motion artifacts. Therefore, necessary conditions for a TOF camera application in dairy cows are examined in this
study. For this purpose, two cow models with plaster and fur surface, respectively, were recorded at four controlled
velocities to quantify the effects of movement, fur color, and fur. Comparison criteria concerning image usability,
pixel-wise deviation, and precision in coordinate determination were defined. Fur and fur color showed large effects
(η2 = 0.235 and η2 = 0.472, respectively), which became even more considerable when the models were moving.
The velocity of recorded animals must therefore be controlled when using TOF cameras. As another main result, body
parts which lie in the middle of the cow model’s back can be determined neglecting the effect of velocity or fur. With
this in mind, further studies may obtain sound results using TOF technology in dairy production.
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Background
Multi-disciplinary approaches and technological solu-
tions will be characterizing concepts in the agricultural
science of the next decade. Especially solutions to mon-
itor animal health in terms of body condition changes
and lameness gain more and more importance, as these
are meaningful issues in herd health management and
herd productivity (Collard et al. 2000; Booth et al. 2004).
There have been several camera-based studies during
the last years reaching high rates of correct classification
in lameness detection. In (Song et al. 2008; Pluk et al.
2012), and (Poursaberi et al. 2011) walking cows had been
recorded using digital 2D cameras in side view position
and methods concerning hooves, legs’ angles, and back
posture came to use in the evaluation of cows’ gait, respec-
tively. Moreover, various 2D-camera-based studies on
automated body condition scoring have been presented.
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In (Azzaro et al. 2011) cow shapes were reconstructed
using linear and polynomial kernel principal component
analysis and the body condition score (BCS) was esti-
mated. BCS prediction models based on five anatomical
points were presented in (Bercovich et al. 2012).
Segmentation is always a difficult part of preprocess-

ing when 2D digital images are used (Hertem et al. 2013),
because changes in light conditions and scenery affect
segmentation algorithms and complicate the definition of
a common image background for all pictures. For this
reason thermal images were considered for BCS deter-
mination in (Halachmi et al. 2013). BCS was assessed
by fitting a parabola to the cow shape and full automa-
tion was reached. 3D cameras are another approach to
overcome segmentation problems. As the pixel’s relative
distances from the camera are known, the separation
between fore- and background is easier. Furthermore, the
usage of 2D data forces the projection of a threedimen-
sional scenery onto a plane. Objects and their movement
through threedimensional space can only be described
accurately when spatial anomalies like distances diagonal
or parallel to the camera’s line of sight are considered.
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Consequently, in (Krukowski 2009) images from a Time-
Of-Flight (TOF) 3D camera were analyzed with regard
to BCS determination. The rear view of dairy cows in
standstill was recorded with a manually guided camera. In
(Salau et al. 2014) and (Weber et al. 2014) a TOF-based
system with automated calibration, animal identification
and body trait gathering was introduced. The study was
able to estimate the backfat thickness (BFT) using the
characteristics extracted from the depth images. A differ-
ent type of 3D camera was used in (Viazzi et al. 2014)
and (Hertem et al. 2014). The Microsoft Kinect sensor
(Microsoft 2010) works with the 3D measurement princi-
ple “Structured Light” (Fofi et al. 2004). The Kinect was
used for lameness detection via back’s posture extraction
in (Viazzi et al. 2014) and algorithms and results were
compared to those obtained from 2D video recordings as
presented in (Poursaberi et al. 2011). As the Kinect cam-
era’s usage turned out to be promising, in (Hertem et al.
2014) the algorithm was improved and the classification
performance was optimized.
Digital cameras are prone to error when used outdoors

or in barn environment, because of sunlight conditions,
dirt, fur-covered surfaces, and the animals’ movement. For
a successful application of 3D cameras inmonitoring solu-
tions, their sensitivity towards fur, different fur colors, and
animal movement should be analyzed. During data col-
lection for (Weber et al. 2014) was found that fur and
fur color changes cause imprecise TOF depth measure-
ments. In addition, evaluations needed to be restricted to
recordings of standing cows, as motion artifacts occurred.
The dependence on the projected infrared pattern causes
some limitations of “Structured Light” depth measure-
ment for its part. Depth values can only be calculated from
constellations of light dots not from a single dot, which
causes difficulties in measuring thin objects (Lau 2013).
Additionally, no depth value can be calculated between
the light dots, which leads to a coarser depth resolu-
tion with increasing distance from the camera (Andersen
et al. 2012). Furthermore, (Hansard et al. 2012) stated,
that material properties strongly correlated to depth accu-
racy, and that both measurement principles had difficul-
ties with various surfaces. This study would not compare
the capabilities of Kinect and TOF depth sensors, be-
cause there have been detailed publications on this (i.e.
(Langmann et al. 2012) where a TOF camera with a sensor
similar to that used in SR4K was studied). The next gen-
eration (Microsoft 2014) of the Microsoft Kinect depth
sensor is indeed a TOF camera. It has not been avail-
able for data collection during this study. Therefore, the
present study quantified quality loss due to fur (color) and
movement concerning TOF camera recordings. Indoor
recordings of cow models were used to eliminate the
effect of sunlight, and the software described in (Salau
et al. 2014) was applied to them. The aim was to create

a basis for a TOF camera application in moving dairy
cows.

Results
All the criteria showed the same differences and signifi-
cant effects, independently of whether they were extracted
from the original or the mirrored images (for explana-
tions on the mirroring see section ‘Material and methods’,
‘Comparison criteria and statistical methods’). Only the
data extracted from the original images is presented.

Proportion of high quality images
As the ratio of high quality images (Nvelocitiy) to recorded
images (Cvelocitiy), the HQIratio (section ‘Material and
methods’, ‘Comparison criteria and statistical methods’,
Proportion of high quality images) served as a measure for
the usability of the recorded images:

HQIratiovelocitiy = Nvelocitiy

Cvelocitiy
. (1)

Table 1 presents the numbers of recordings, the numbers
of images that passed the quality tests, and the HQIratios
for both models and all velocities.
For the plaster cast, the most significant decrease hap-

pened during the transition from standstill to movement,
where the HQIratio dropped by ≈ 22% from 0.87 to
0.68. With the acceleration from 10 cm/s to 20 cm/s
HQIratio dropped from 0.68 to 0.66, which was a decrease
of ≈ 3%. In comparison with the final velocity of 30 cm/s,
HQIratio fell by additional ≈ 6% to 0.62. The HQIratios
of the fur-covered model dropped by 66% when the model
started to move. The acceleration afterwards caused addi-
tional decreases in HQIratio by≈ 82% (from 0.34 to 0.06),
when speeding up from 10 cm/s to 20 cm/s, and 75%
(from 0.06 to 0.015), when the final velocity of 30 cm/s
was set. The polynomials of degree 2 (Pplaster, Pfur) and the
Gaussian exponential functions (gplaster, gfur) that fit the
vectors

(
HQIratio0 , HQIratio10, HQIratio20, HQIratio30

)
best in a least square sense are given by

Pplaster(x) = 0.037 ∗ x2 − 0.261 ∗ x + 1.087,
(RMSD = 0.0432, R2 = 0.95), (2)

Pfur(x) = 0.153 ∗ x2 − 1.09 ∗ x + 1.93,
(RMSD = 0.0297, R2 = 0.99), (3)

gplaster(x) = 27.75 ∗ 1029 ∗ exp
(

−
(
x + 1252.1
149.69

)2
)
,

(RMSD = 0.078, R2 = 0.83) (4)
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Table 1 The numbers of recorded images (Cvelocitiy), the number of images that passed all quality tests that had been

integrated in the developed software (Nvelocitiy), and the ratiosHQIratiovelocitiy = Nvelocitiy
Cvelocitiy

for the plaster cast as well as

the fur-coveredmodel and all velocities

Plaster cast Fur-covered model

Velocity Cvelocitiy Nvelocitiy HQIratiovelocitiy Cvelocitiy Nvelocitiy HQIratiovelocitiy

Standstill 2155 1882 0.87 2138 2138 1.00

10 cm/s 542 371 0.68 411 141 0.34

20 cm/s 482 321 0.66 356 21 0.06

30 cm/s 370 231 0.62 267 4 0.015

and

gfur(x) = 1.545 ∗ exp
((

x + 0.1617
1.761

)2
)
,

(RMSD = 0.0095, R2 = 0.99) (5)

for the plaster cast and the fur-covered model, respec-
tively. All fits had a single degree of freedom, the other
goodness-of-fit statistics are stated in brackets behind
the approximating functions. The Gaussian exponential
approximation of the plaster cast’s HQIratio (Equation 4)
show considerably inferior goodness-of-fit statistics com-
pared to all other approximations. Its R2 value of 0.83
and RMSD= 0.078 face R2 values of 0.99 and RMSD≤
0.0432. Both approximations of the fur-covered model’s
HQIratios were suitable referring to the goodness-of-
fit statistics, but the Gaussian exponential fit comes
with three times smaller root-mean-square-deviation.
The polynomial fit (dotted purple line in Figure 1) shows
a local minimum between the original values belonging
to 20 cm/s and 30 cm/s. In Figure 1 all approximations
are displayed. Hereby in both models the inferior one is
illustrated as dotted line.

Pixelwise differences in standstill
For both cow models the fluctuation criteria SumDiff

SumDiff := 1
N0 − 1

∗
N0−1∑
i=1

∣∣imagei+1 − imagei
∣∣ (6)

and the pixel-wise calculated standard deviation pwStd
(section ‘Material and methods’, ‘Comparison criteria
and statistical methods’, Pixelwise differences in stand-
still) showed significant differences in medians between
pixel belonging to “Interior” or “Boundary” (Table 2). The
effect sizes for the criterion pwStd exceeded the effect
sizes for SumDiff. According to (Cohen 1988), effect sizes
in SumDiff were small (η2 = 0.013 for plaster cast and
η2 = 0.017 for fur-covered model), while effect sizes for
pwStd were medium (η2 = 0.111 for plaster cast and

η2 = 0.096 for fur-covered model). The cow model sig-
nificantly affected both criteria within both regions. The
effect could be considered large within “Interior” (η2 =
0.232 with SumDiff, η2 = 0.235 with pwStd) but very
small within “Boundary” (η2 = 0.006). Additionally, the
fur color had a significant effect in both criteria (Table 3).
Both criteria showed large effect sizes (η2 = 0.472).

Precision of coordinate determination
Table 4 shows the development of precision criterion RpV

RpVvelocity := max(X-coordinates) − min(X-coordinates)
Nvelocity

(7)

with increasing velocity for every considered body
part and both models (section ‘Material and methods’,
‘Comparison criteria and statistical methods’, Precision
of coordinate determination). Additionally, the goodness-
of-fit statistics of the polynomial approximations of the
vectors (RpV0,RpV10, RpV20, RpV30) are given. Except
from the fit to RpV values belonging to BB30 measured
with the fur-covered model, the coefficients of determi-
nation range from R2 = 0.92 to R2 = 0.98. The RMSD
varies between 0.001 and 0.018 for the plaster cast and
between 0.092 and 0.998 for the fur-covered model, again
except the point BB30. The goodness-of-fit statistics for
BB30 measured with the fur-covered model are notice-
able, as RMSD= 0.002 and R2 = 0.57 are significantly
lower than the values within the fits belonging to the
fur-covered model. Furthermore, the R2 value is signifi-
cantly lower than the corresponding values of all other
approximations. The quadratic coefficients of the RpV-
approximations belonging to the plaster cast were close to
zero (medianplaster = −0.005). For the fur-covered model
they reached from 0.05 to 1.15 (medianfur = 0.41). The
imprecision criterion RpV grew significantly (p = 0.05)
faster with increasing velocity when it came to the fur-
covered model. The size of the model’s effect was very
large (η2 = 0.846).
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Figure 1 Behavior of HQIratio with increasing velocity in comparison betweenmodels. HQIratio is the quotient of the number of high quality
images to the number of recorded images. The circles belong to the actual HQIratio values (olive: fur-covered model, red: plaster cast). For both
models two types of functions have been fitted to the original values in a least square sense: a polynomial of degree two (purple: fur-covered
model, green: plaster cast) and a Gaussian exponential function (cyan: fur-covered model, blue: plaster cast). The approximation that showed less
goodness-of-fit is illustrated as dotted line, respectively.

Table 2 Descriptive statistics of pixel-wise added differences (SumDiff) and pixel-wise standard deviation (pwStd) in
depth values for plaster cast as well as fur-coveredmodel recorded in standstill

Material Plaster cast Fur-covered model

Criterion N SumDiff pwStd N SumDiff pwStd

median “Interior” 10903 0.004 0.003 7920 0.006 0.006

median “Boundary” 505 0.006 0.029 425 0.013 0.017

max 0.678 0.673 0.688 0.678

“Interior” 0.678 0.072 0.579 0.670

“Boundary” 0.676 0.673 0.688 0.678

min 0 0.002 0.001 0.002

“Interior” 0.002 0.002 0.002 0.002

“Boundary” 0 0.003 0.001 0.004

mean 0.004 0.013 0.004 0.014

“Interior” 0.008 0.009 0.007 0.008

“Boundary” 0.049 0.099 0.097 0.141

Effect sizes η2 (p = 0.02)

Grouping Variable SumDiff pwStd

region Plaster Cast 0.013 0.111

region Fur-cov. M. 0.017 0.096

model “Interior” 0.232 0.235

model “Boundary” 0.006 0.006

The area of both models had been disjointed in “Interior” and “Boundary”. The numbers of pixel belonging to each group are given in column 2 and 5. Since the data
(SumDiff, pwStd) is skewed, themedian is preferable as ameasure of center. Nevertheless, themeans are given for the sake of completeness. The differences inmedians
of SumDiff and pwStd are significant (p=0.02) both between regions “Interior” and “Boundary” for the two models and between models for the regions “Interior” and
“Boundary”. Effect sizes η2 are given in rows 13, 14 for the grouping after “Interior”/“Boundary” and in rows 15, 16 for the grouping after models, respectively.
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Table 3 Descriptive statistics of pixel-wise added depth
value differences (SumDiff) and standard deviation
(pwStd) for the fur-coveredmodel recorded in standstill to
compare between black and white fur

Criterion N SumDiff pwStd

median “Interior White” 6362 0.003 0.002

median “Interior Black” 1558 0.007 0.006

η2 (p = 0.001) 0.472 0.472

max 0.579 0.670

“White” 0.008 0.051

“Black” 0.579 0.670

min 0.002 0.002

“White” 0.002 0.002

“Black” 0.003 0.003

mean 0.007 0.008

“White” 0.003 0.003

“Black” 0.008 0.009

The numbers of pixel belonging to “Interior White” and “Interior Black” are given
in column 2. Since the data is skewed, the median is preferable as a measure of
center. The means are given for the sake of completeness. The differences in
medians of SumDiff and pwStd between “Interior White” and “Interior Black” are
significant (p=0.001). Effect sizes η2 are given in row 4.

Discussion
This study provided four possible measures to quantify
the effects of fur in contrast to a homogeneous plaster
surface, fur color, and velocity.

Proportion of high quality images (HQIratio)
Both surface materials showed loss in image quality mea-
sured via HQIratio due to animal movement. This was

to be expected, as TOF cameras are prone to motion
artifacts. As explained in section ‘Material and methods’,
‘Time-Of-Flight Technology’, the depth values were calcu-
lated using four signals S1, . . . , S4. Motion artifacts occur
when objects move significantly during the acquisition of
S1, . . . , S4 (Hansard et al. 2012).
However, the behavior in decrease of image quality dif-

fered significantly between the models. In this study, no
velocities greater than 30 cm/s were considered. For such
speeds, no images of the fur-covered model would have
passed the quality tests implemented in the software (see
section ‘Material and methods’, ‘Software’). Even at 30
cm/s only four usable images remained for that model as
can be seen from Table 1. It was not expected that usable
images of the model at a cow’s assumed normal walking
pace of about 111 cm/s (≈4 km/h) could be acquired. To
quantify the differences, approximating functions for the
vectors

(
HQIratio0, HQIratio10, HQIratio20, HQIratio30

)
were determined. As the velocity was constantly increased
by 10 cm/s per step, a quadratic behavior of the accelera-
tion was to be expected. Therefore, approximations of the
form α ∗ x2 + β ∗ x + γ were calculated. The HQIratio
values related to the fur-covered model (Table 1, right-
most column) indicated a faster decrease. Therefore, the
behavior of the HQIratiovelocitiy vectors was in addition
approximated by a Gaussian exponential function K ∗
exp

(
− (x−L)

M

)
, and goodness-of-fit statistics of the approx-

imating functions were compared. The minimal value of
the polynomial fit to the fur-covered model’s HQIratios
(Equation 3) was lower than the value for 30 cm/s.
The polynomial approximation’s goodness-of-fit statistics

Table 4 Range per number of values calculated for X-coordinates at different velocities
RpVvelocity = max(coord.)−min(coord.)

Nvelocity
, whereNvelocity is the number of images with determined X-coordinates at the

corresponding velocity (standstill, 10 cm/s, 20 cm/s, 30 cm/s)

Material Body part RpV0 RpV10 RpV20 RpV30 quadr.coeff. RMSD R2

Isc.Tub., L 0.008 0.038 0.044 0.061 0 0.008 0.96

Dish, L 0.014 0.062 0.072 0.1 -0.01 0.013 0.96

plaster Tail 0.014 0.062 0.069 0.087 -0.01 0.012 0.95

cast Dish, R 0.013 0.067 0.069 0.1 -0.01 0.018 0.92

Isc.Tub.,R 0.018 0.039 0.046 0.065 0 0.006 0.97

BB30 0.0011 0.0108 0.0156 0.026 0 0.001 0.98

Isc.Tub.,L 0.002 0.071 0.3 2.5 0.53 0.405 0.96

fur- Dish,L 0.001 0.106 0.286 5.0 1.15 0.998 0.94

covered Tail 0.002 0.078 0.191 0.75 0.12 0.092 0.98

model Dish,R 0 0.036 0.048 1.5 0.35 0.33 0.93

Isc.Tub., R 0.001 0.029 0.095 2 0.47 0.40 0.94

BB30 0.0005 0.0142 0.0476 0.25 0.05 0.002 0.57

The seventh column contains the quadratic coefficients of the polynomial approximation of the vectors (RpV0, RpV10, RpV20, RpV30) for all considered body parts
(abbreviated in column 2). The medians of the quadratic coefficients differ significantly between plaster cast and fur-covered model (p=0.05, medianplaster=-0.005,
medianfur=0.41). The last two columns contain the goodness-of-fit statistics root mean square deviation (RMSD) and coefficient of determination (R2). All fits had a
single degree of freedom.
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were, nevertheless, quite as suitable as the ones belonging
to the exponential approximation (Equation 5). This fact
and the position of the polynomial’s minimum between
the third and last original value could be explained by the
limited number of HQIratio values, that had been con-
sidered. The approximation model had no original value
beyond 30 cm/s to predict the decay, but the course could
be described very well within the smaller velocities. Look-
ing at the plaster cast’s approximations, the polynomial
(Equation 2) is superior to the exponential fit (Equation 4).
This was mainly caused by the HQIratio belonging to 10
cm/s, as it is considerably smaller than the HQIratio in
standstill, but nearly equal to the HQIratio calculated for
20 cm/s. On the one hand, an unobserved effect during
the recording of the plaster cast at velocity 10 cm/s might
have caused this outlier. On the other hand, the image
quality might show a polynomial instead of an exponential
decrease with increasing velocity due to the homogeneity
of the plaster cast’s surface. The fact, that the model was
moving at all, seemed more meaningful than the actual
velocity. A considerable amount of high quality images
could be gathered even at the highest considered speed.
With the fur-covered model on the contrary, every step in
acceleration caused a substantial additional loss in image
quality. This indicated, that the velocity would have to
be kept as low as possible, when moving cows are to be
recorded with the SR4K.
To quantify the effect of the surface material in motion,

coefficients of approximations of the same type had to
be compared between models. The Gaussian exponen-
tial approximation for the plaster cast should not be used
in this comparison, because its goodness-of-fit statistics
were clearly inferior. Concerning the first acceleration
steps, the degree 2 polynomials were good fits for both
models. As the coefficient with the x2 term had the
most impact on a polynomial’s growth, the much faster
decrease caused by the fur-covered surface in contrast to
the plaster surface could be quantified by the quotient of
the quadratic coefficients of Pfur and Pplaster. That gives
0.1532
0.0368 ≈ 4.16.

Pixelwise differences in standstill (SumDiff, pwStd)
SumDiff (Equation 6) and pwStd were measures for pixel-
wise deviation in depth values. As only recordings in
standstill had been used for the calculation, these compar-
ison criteria were independent of velocity and allowed to
analyze the differences between models, that were caused
strictly by surface material.
Mixed phases are produced when infrared light with

different phase shifts was observed by one pixel. As an
implication, the depth values were calculated from an
superposition of multiple reflected signals. Such multi-
path errors had been expected to be a problem at the cow
models’ boundaries, as this error generally increased as

the objects surface’s normal deviates from the optical axis
of the camera (Hansard et al. 2012). Therefore, the cow
area was split up in the regions “Boundary” and “Interior”
to reach better comparability. The grouping after regions
within models and the grouping after models within
regions effected both criteria significantly. Especially the
size of the model effect within “Interior” was large (η2 =
0.23). This could be interpreted as a quantification of the
effect of fur surface on TOF depth measurement preci-
sion. Due to the structure of fur, an augmented refraction
of light occurred and less accurate TOF depth measure-
ment was to be expected. Pixelwise deviation increased
at the edge of the cow model’s area. Within “Boundary”
only a small model effect could be observed. A plausible
explanation was, that for both models the depth mea-
surement within “Boundary” was already less accurate
due to mixed phases, and therefore the surface struc-
ture had hardly an impact, whereas the accurate depth
measurement within “Interior” was strongly affected by
the fur.
It had additionally been distinguished between black

and white fur within “Interior” of the fur-covered model.
The fur color also had a significant effect in both criteria,
and the effect sizes were very large (η2 = 0.472), probably
caused by different absorption coefficients of black and
white fur. The absorption coefficient was the quotient of
the electromagnetic radiation which a body absorbed and
the electromagnetic radiation it was exposed to. It ranged
between 0 and 1. The exact absorption coefficients for
white and black fur were not determined in this study, but
assuming a higher absorption coefficient for black fur was
reasonable. For example a surface of the carbon black and
white marble had absorption coefficients ≈ 0.96 and ≈
0.46, respectively (Baehr and Stephan 2004). The infrared
signal reflected from the black fur had lost more intensity
when it returned to the sensor inside the TOF camera than
the signal reflected from the white fur (MESA-Imaging
2013a). Therefore, the depth measurement varied in qual-
ity. As the fur needed to be glued to the model to avoid
that measurements became unrepeatable due to displace-
ments of the coat, only one coat was tested. The effect
sizes might depend on the specific coat texture of this
real cow fur. Then again, using different coats might have
caused difficulties in distinguishing between the effects of
the animal and the fur color.
As pwStd is based on quadratic differences in contrast

to the absolute differences used to calculate SumDiff, in
pwStd larger differences in depth value gain more weight
than in SumDiff. That might explain the smaller differ-
ences in medians and the less strong effects on SumDiff
than pwStd when it came to a comparison between the
models or the regions.
Smoothing the images was not considered in this study,

as the effects on the original recordings had been of
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interest. Specific smoothing could be a possibility in an
image processing application to handle the differences
between black and white fur, at the risk of losing informa-
tion about the surface shape.

Precision of coordinate determination (RpV)
RpV (Equation 7) was a measure of imprecision con-
cerning the determination of X-coordinates. The original
software applied to cows in an electronic feeding dis-
penser had shown 1.5% error rate (Salau et al. 2014) in
the detection of ischeal tuberosities, dishes of the rump,
and tail. RpV had been calculated for all velocities with
regard to the automatically determined X-coordinates of
these five body parts and additionally for BB30. In both
cases RpV rose while the models accelerated. However, for
the plaster cast only a linear growth could be observed, as
the quadratic coefficients were all close to zero, whereas
RpV increased quadratically for the fur-covered model.
Therefore, the fur affected the loss of precision due to
velocity very strongly (η2 = 0.846). Indeed, the impreci-
sion in coordinate determination in standstill was higher
for the plaster cast, than the fur-covered model. But dif-
ferences in the geometrical shape of the models could
not have been excluded as reasons for more erroneous
coordinate determination concerning the plaster cast. A
noticeable fact was, that BB30 showed not only the small-
est RpV values for all velocities in both models, but also
a large difference in quadratic coefficients compared to
the other body parts when it came to the fur-covered
model. This indicated, that this body part could be deter-
mined most accurately and exhibited the least loss of
precision due to velocity. A reason for this might be, that
of all considered body parts only BB30 lay in “Interior”
instead of “Boundary”, where the TOF depth measure-
ment was more reliable. It has to be taken into account,
that the coefficient of determination for the approxima-
tion with a quadratic polynomial corresponding to BB30
on the fur-covered model was inferior compared to the
approximations belonging to the other body parts. It could
be questioned, if the calculated quadratic coefficient was
meaningful.

Discussing TOF usage
In dairy production fur surfaces had to be considered
and no influence on the fur color could be taken. It
had to be analyzed how the application of TOF tech-
nology could lead to dependable results. Dairy cows’
BFT was successfully estimated from TOF recordings in
(Weber et al. 2014) with the limitation, that cows were
only recorded in standstill. Furthermore, traits were only
extracted from one dimensional sections through the
recorded cow surfaces and not from two dimensional
areas on the surfaces. The reason was, that differences in
depth measurement between black and white fur could

be corrected in a more controlled way when only one
dimension was considered. Principal descriptors for i.e.
body condition scoring were located in the tail head area
(Ferguson et al. 1994) where the effects of fur and velocity
turned out to be strong. Thus, it had to be expected, that
assessing BCS or BFT from TOF recordings of moving
animals would be erroneous. The restriction of analyz-
ing traits from “Boundary” only from recordings collected
during feeding or milking is a serious limitation for a
monitoring system. However, the effects of fur and veloc-
ity were noticeably smaller in “Interior”, hence the TOF
camera might be applicable for the determination of the
backbone in moving cows and lameness detection via
back posture analysis as in (Hertem et al. 2014). Yet,
it was questionable if a TOF camera could be a supe-
rior choice for dairy farming application, as the Kinect
was cheaper, did not show differences in depth measure-
ment between black and white fur, and produced little
motion artifacts. With regard to the latter should be
mentioned, that real-time preprocessing methods to com-
pensate motion artifacts in TOF recordings have been
introduced (Hoegg et al. 2013). Considering the effect of
fur again, Kinect’s and SR4K’s performance on measur-
ing stuffed animals, small fur-covered animal models, and
other test objects had been examined in (Hansard et al.
2012). It has to be mentioned, that synthetic fur’s struc-
ture differs from that of real fur. But with both fur-covered
test objects the RMSD of depth accuracies between Kinect
and SR4K were comparable. The Kinect’s performance
over all test objects turned out to be worse than that of
SR4K.
The next generation of the Kinect is a TOF camera,

but it is equipped with a novel image sensor (Lau 2013).
Every pixel is divided in half, the pixel halves are ready to
absorb reflected light alternately, and the absorbing time
of the first half is aligned with the pulsing of the laser.
During the time the first half is rejecting incoming light,
the second half is absorbing, and the laser is off. Conse-
quently, the distribution of received photons among both
pixel halves changes with the distance between camera
and object and is used to calculate depth values. A renun-
ciation of the control signals S1, . . . , S4 could limit motion
artifacts, because there are less possibilities for the object
to move during calculation. If proportions of light were
absorbed by the object’s surface and did not return to
the sensor, both pixel halves were affected equally, and
the distribution was not altered. This would reduce black-
white-differences in depth measurement significantly, as
they were a consequence of the absorbing coefficients of
black, respectively, white fur. The next Kinect has not
been available while data collection for this study was car-
ried out, but it promises to be an affordable alternative
to both Kinect and the current generation of TOF depth
sensors.
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Conclusion
This study introduced criteria to quantify the effects of
fur and animal movement. The experimental indoor test
scenario included two cow models with fur and plaster
surface, respectively. According to the criteria concern-
ing pixel-wise deviation (SumDiff, pwStd), the effect of
the fur surface in contrast to a more homogeneous sur-
face on TOFmeasurement was large. Additionally, crucial
differences related to fur color were observed, as criteria
medians were two to three times higher with black than
white fur. In any application of TOF cameras, the velocity
of the recorded animals needed to be controlled, because
in the analysis of movingmodels, the impact of the fur sur-
face became even more decisive: With increasing velocity
the proportion of high quality images (HQIratio) dropped
four times faster due to fur, and furthermore, the fur
caused quadratic loss of precision in coordinate determi-
nation (RpV) in contrast to a linear behavior without fur.
The latter was a problem especially at the edge of the cow
model’s area, i.e. the tail head region. However, coordi-
nate determination was sound in the middle of the cow’s
back and hardly affected by velocity or fur. It was shortly
discussed, if TOF depth sensors could compete with the
Microsoft Kinect 3D camera when it comes to studies
dealing with traits from the cow area’s interior. At this, an
outlook on the next Kinect camera generation was given.
Its new type of TOF sensor seemed to be a noticeable
improvement to both current TOF sensors and Kinect.

Material andmethods
Time-Of-Flight Technology
The SR4K (Mesa Imaging AG) emits infrared light (mod-
ulated signal frequency f = 30 MHz), which is reflected
by the object. From four phase control signals S1, . . . , S4
with 90 degree phase delays from each other the collection
of electrons from the detected reflected infrared signal
is determined. Let Q1, . . . ,Q4 represent the amount of
electric charge for S1, . . . , S4, respectively. Using the four
phase algorithm, the phase difference td is estimated as
td = arctanQ3−Q4

Q1−Q2
. The distance d between object and

camera is calculated from the phase shift with the follow-
ing formula: d = c

2f
td
2π , whereas c and f denote the speed

of light and the signal frequency, respectively (Hansard
et al. 2012). The camera’s range is 0.8 to 5 m (MESA-
Imaging 2013a). Its accuracy of measurement over this
calibrated range is 1 cm (for the 11 × 11 central pixel). It
is recording up to 54 images per second with a resolution
of 176 × 144 pixel depending on the exposure time and
has 43.6o horizontal and 34.6o vertical field of view. SR4K
provides distance and (x, y, z) coordinate data, amplitudes,
confidence maps as an estimate of reliability, and Swiss-
Ranger streams (srs) consisting of sequences of images as
output according to user’s choice. The camera was used
with default settings.

Recorded cowmodels
Two cow models were recorded with a SR4K TOF cam-
era in September 2012 at the Institute for Agricul-
tural Engineering and Animal Husbandry of Bavarian
State Research Center for Agriculture (BSRCfA) in Grub
(Germany). Recording (details in ‘Installation and record-
ing’) of both models were taken from top view in standstill
and motion.
Amodel of a cow’s lower back was build at BSRCfA from

solid, synthetic material using CNC (computer numeri-
cal control) carving (width: 0.5 m, length: 0.5 m, height:
0.15-0.22 m). It had a tail, ischeal tuberosities and a lower
backbone but no hipbones and was not modeled after a
real cow (Figure 2, left). A black and white real Holstein-
Friesian’s fur was permanently glued to the model. The
fur-covered model was firmly mounted on a board (0.6 ×
0.6 m2) with wooden beams (0.05 × 0.05 m2, height: 0.25
m) at the corners. Since the fur could not be removed
from the model without destroying it, no other furs were
used for testing. Originally, this model was intended for
another purpose within a study related to body condition
determination (Weber et al. 2014; Salau et al. 2014). Hip-
bones were not included in the model, because they were
irrelevant then. Themodel nevertheless showsmost of the
points of interest (ischeal tuberosities, dishes of the rump,
tail, backbone) that could be determined by the software
described in (Salau et al. 2014). Therefore, the model was
reused in this context.
Later, since no fur-less version of the model was avail-

able, a plaster cast was taken from a Holstein-Friesian
cow’s lower back to obtain a portable model of a real cow’s
shape as a negative control for fur (Figure 2, right). This
was done at the research farm Karkendamm of Christian-
Albrecht-University (CAU) in Kiel (Germany). The lower
back was greased with petrolatum to protect fur and skin
of the animal. Afterwards this area was uniformly cov-
ered with several layers of wet plaster bandages. The
covered area included base of the tail, ischeal tuberosi-
ties, lower backbone and lower back. The hipbones were
not included. The bandages reached approximately 15 cm
down the animal’s side. A blow-dryer was used to fasten
the drying, before the plaster cast (length: 0.56 m, width:
0.55 m, height: 0.16-0.22 m) was lifted of the cow.

Installation and recording
A metallic frame with two horizontal running rails was
build by BSRCfA (length: 3 m, width: 1.04 m, height: 0.8
m). A wooden plate (1.14 × 1.14 m2) was placed on the
running rails which could be towed by a rope stretched up
to an impeller wheel. The motor could be regulated with a
control panel that also displayed the velocity. At the end of
the running rails the plate was stopped automatically, and
the moving direction could be changed by a switch. The
construction was supported by a vertical frame (width:
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Figure 2 The two recorded cowmodels. Left: Fur-covered Model; Right: Plaster Cast.

1.27 m, height: 2.13 m) above which’s center line the TOF
camera was attached in top view (Figure 3).
Recording took place indoors at BSRCfA to exclude the

influences of direct sunlight or insects. In Grub a 2-core
system having 3.43 gb RAM with the recording software
(see section ‘Software’) developed at the Institute of Ani-
mal Breeding andHusbandry of CAUwas used for record-
ing. SwissRanger streams of bothmodels were recorded in
standstill and at the controlled velocities 10 cm/s, 20 cm/s
and 30 cm/s. The camera stayed in fixed position with 1.28
m distance between sensor and the wooden plate. Addi-
tionally streams of the wooden plate without any model
on it were recorded to capture the completely empty
scenery.

Software
Originally developed software
At CAU software was developed to record cows in an
electronic feeding dispenser and automatically extract
body traits (Salau et al. 2014). The software firstly calcu-

lated scenery information out of a number of images of the
completely empty scenery. It then could decide automati-
cally if an image showed a cow’s lower back. These images
were segmented and stored for further processing, all oth-
ers were deleted. Subsequently, the body parts ischeal
tuberosities, base of the tail, dishes of the rump, hip-
bones, and backbone were determined automatically. The
software tested the segmentation results and the coor-
dinates of body parts directly after their calculation (for
details see (Salau et al. 2014)). Images failing any test were
deleted.

Necessary softwaremodificationsmade in this study
The streams recorded from the cow models were used
as virtual camera and analyzed with this software. As the
models differed from real cows, some slight modifications
to the software were necessary:

1. The basis for the automated decision that the image
showed a cow’s lower back had been, that the area
covered with the cow’s body exceeded the lower

Figure 3 Installation for recording in controlled velocities. Left: Framework with fur-covered model on a wooden plate placed on running rails.
SR4K mounted in top view; Right: Motor (background), impeller wheel and rope to tow the wooden plate.
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image border. As the models did not reach the image
border, an additional rectangle (Figure 4, middle) had
been temporarily added to every image to close the
gap and to avoid, that all images were deleted. After
successful segmentation the rectangle was removed
again (Figure 4, right).

2. The cow was separated from the background by
subtracting the averaged empty scenery and using
the height differences between the cow and the floor.
Both models reached a maximum height of 0.22 m
above the wooden plate (This served as the floor in
the present scenario.), thus the tolerances had to be
adapted. In case of the fur-covered model the
position of the wooden beams (section ‘Material and
methods’, ‘Recorded cow models’, Figure 4, left)
relative to the model had once to be specified
manually and their removal had to be added to the
automatic segmentation.

3. As hipbones were not included in both models, their
automatic determination had to be removed from
the software. Instead, the point on the backbone in
30 pixel radius from the tail (BB30) was determined,
in order to include a measurement point in the
comparison, that was not positioned at the edge of
the cow area (Figure 4, right).

Comparison criteria and statistical methods
MATLAB presents the images as matrices with 176 rows
and 144 columns. Counting rows and columns starts at
the left upper corner. The vertical midline runs between
columns 72 and 73. The algorithms of the software devel-
oped in (Salau et al. 2014) work the images row-wise and
column-wise from the left upper corner. To exclude this
running direction as reason for left-right-differences in
the extracted comparison criteria, the analysis had been
repeated with all images mirrored on the vertical line
between column 72 and 73.

Proportion of high quality images
As the camera stayed in a fixed position during recording
the number of images showing the cow model decreased
with increasing velocity (Table 1). These numbers will
be called C0 belonging to the recording in standstill and
C10, C20, and C30 belonging to the recordings at 10 cm/s,
20 cm/s, and 30 cm/s, respectively. Both models were
recorded for four minutes in standstill. For all veloci-
ties both cows model were recorded passing the camera
five times. As explained in section ‘Software’, Originally
Developed Software various quality tests had been inte-
grated in the software and all images failing any of these
tests were deleted. The numbers of output images after
applying the quality tests will be called N0,N10,N20, and
N30. The quotient

HQIratiovelocitiy = Nvelocitiy

Cvelocitiy

(compare Equation 1) is the ratio of High Quality
Images in relation to recorded images. For both mod-
els the behavior of HQIratiovelocitiy with increasing
velocity was analyzed by approximating the vector(
HQIratio0, HQIratio10, HQIratio20, HQIratio30

)
with a

quadratic polynomial α∗x2+β∗x+γ on the one hand and
with a Gaussian exponential function K ∗exp

(
− (x−L)

M

)
on

the other hand. For every approximation the root-mean-
square-deviation RMSD, coefficient of determination R2,
and degrees of freedom were calculated as goodness-of-
fit statistics. The RMSD in general is the sample standard
deviation between the actually observed values yt and
the values ŷt calculated by the approximation RMSD =√

1
n ∗ ∑n

t=1 (yt − ŷt)2, where n denotes the sample size.
For all approximations the MATLAB Curve Fitting Tool-
box (The MathWorks Inc 2014a) was used.

Figure 4 All three illustrations were prepared using the MATLAB function imagesc and its default color scale. Left: Original depth image,
showing the fur-covered model on the wooden plate. It was mounted on a board. Middle and Right: The subsequent image processing steps.
Middle: A rectangle has been added to the depth image. This modification of the original software was necessary to prevent the image from being
deleted, because the models in contrast to real cows did not reach the image’s lower edge. Afterwards the automated segmentation has set all
background to zero (blue). Right: The backbone (black line), ischeal tuberosities, dishes of the rump and tail (white dots) and BB30 (point on the
backbone in 30 pixel radius from the tail, white rectangle) have been determined automatically.
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Pixelwise differences in standstill
Considering only the images in standstill the pixel-wise
deviation in depth values was analyzed for both mod-
els. For this purpose the pixel-wise absolute differences
of every two consecutive images were taken, summed up,
and divided by the number of summands (N0 as defined in
section ‘Material and methods’, ‘Comparison criteria and
statistical methods’, Proportion of high quality images):

SumDiff := 1
N0 − 1

∗
N0−1∑
i=1

∣∣imagei+1 − imagei
∣∣ ,

(compare Equation 6). This resulted in amatrix containing
the values of the criterion SumDiff for every pixel. Addi-
tionally for every pixel the standard deviation (pwStd)
in depth values was calculated. While pwStd used the
quadratic aberration around the mean depth value, in
SumDiff the variation from image to image was taken
neglecting the pixel-wise depth values’ mean.
Each image could be split up in foreground (covered by

cowmodel) and background (set to zero). Abrupt changes
in the distance between recorded object and camera led
to more possible ways for the infrared light to be reflected
and return to the sensor and to less accurate depth mea-
surement. The problem of erratic depth values along steep
edges is a well known problem of TOF-cameras; compare
(Langmann et al. 2012). The pixel-wise deviation in depth
value was thus expected to be larger for pixel at the edge
of the cow area. Visual inspection of depth maps revealed,
that the main reflections or peaks in depth measurement
occurred in an only one to two pixel wide area between
background and cow area. Therefore, the foreground was
split up in the disjoint areas “Boundary” and “Interior”
(Figure 5). If a pixel’s neighborhood of radius one inter-
sected with both the foreground and background, the
pixel was considered “Boundary” (425 pixel fur-covered

model, 505 pixel plaster cast). If the neighborhood was
fully included in the foreground, the pixel was consid-
ered “Interior” (7920 pixel fur-covered model, 10903 pixel
plaster cast). All images where tested once using this def-
inition of “Boundary”. The effect of different boundaries
was not tested. In the analysis of the fur-covered model,
“Interior” was additionally partitioned in the disjoint areas
“Interior Black” (6362 pixel) and “Interior White” (1558
pixel). A gray scale image of the amplitudes’ map was used
to distinguish between black or white fur (Figure 6). All
pixel with a gray scale value ≥ 25 were considered to
belong to the white spot.
The Wilcoxon rank-sum test is a nonparametric ver-

sion of the classical t-test. It compares the medians of the
sample groups by examining the ranks of the data’s scores
within both groups’ observations. The values of SumDiff
and pwStd were considerably skewed and thus not nor-
mally distributed. Additionally, the grouping in “Bound-
ary” or “Interior” (likewise “Interior Black” and “Interior
White”) naturally led to unequal group sizes. Therefore,
for both models Wilcoxon rank-sum tests instead of t-
tests were performed to examine if the pixel’s position
in “Boundary” or “Interior” had significant effect. Fur-
thermore, all SumDiff and pwStd data collected from
the regions “Interior” and “Boundary” was grouped after
models, respectively, and Wilcoxon rank-sum tests were
performed to look into the effect of the cow model on
pixel-wise deviation. Concerning the fur-covered model
additional Wilcoxon rank-sum tests (level of significance
p=0.02) were performed to analyze the effect of the fur
color. All group medians were calculated. In case signifi-
cance was given, the ranked data was used to calculate the
effect size η2 = SS due to grouping variable

total sumof squares (SS) , which is the propor-
tion of variance in the data explained by the grouping. For
all statistical calculations the MATLAB Statistic Toolbox
(The MathWorks 2014b) was used.

Figure 5 “Interior” and “Boundary”. All pixel with a neighborhood of radius 1 that intersected with the background (black) and the cow-area
(gray) belonged to “Boundary”. All other pixel of the cow area were defined to be “Interior”. Left: Fur-covered Model; Right: Plaster Cast.
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Figure 6 Distinction between black or white fur. Left: Segmented gray scale image of the fur-covered model; Right: The white spot is defined as
all pixel with gray scale ≥ 25.

Precision of coordinate determination
The software automatically detected six points: ischeal
tuberosities, dishes of the rump, tail, and the point on
the backbone in 30 pixel radius from the tail (BB30,
Figure 4, right). It was analyzed how strongly velocity
effects the precision of coordinate determination. The X-
coordinates were detected automatically in standstill and
motion. Within each velocity their deviation was mea-
sured using the criterion RpV defined in Equation 7, and
those RpV-values were compared between velocities. Due
to the deviation in depth values the X-coordinates of body
parts naturally were subject to 1 to 2 pixel fluctuation.
This was analyzed with the criteria SumDiff and pwStd.
As in this analysis solely fluctuation due to errors in the
automatic determination of body parts was to be con-
sidered, in this comparison not the standard deviation in
X-coordinates was used as criterion. Instead, the quotient
of the X-coordinates’ range divided by the number of val-
ues (RpV: Range per number of Values) was taken as a
measure of imprecision:

RpVvelocity := max(X-coordinates) − min(X-coordinates)
Nvelocity

(compare Equation 7) with velocities 0, 10, 20, 30 cm/s.
Therefore, for each of the six considered body parts a
vector (RpV0, RpV10, RpV20, RpV30) was calculated using
the X-coordinates extracted from both models, respec-
tively. These vectors were approximated with quadratic
polynomials α ∗ x2 + β ∗ x + γ using the MATLAB
Curve Fitting Toolbox (The MathWorks Inc 2014a) and
root-mean-square-deviations RMSD, degrees of freedom,
and coefficients of determination R2 were calculated as
goodness-of-fit statistics. The quadratic coefficients α

describe the polynomials’ growth behavior. To examine
the cow model’s effect on the growth of imprecision a
Wilcoxon rank-sum test was performed on the quadratic

coefficients. The medians belonging to each cow model
were calculated, and the effect size η2 was determined.
Except from the recordings in standstill, the models

were moving vertically through the camera’s field of view.
This implies, that Y-coordinates changed from image to
image. This led to several sources of imprecision concern-
ing the analysis of Y-coordinates. Therefore, it is excluded
from the main article and presented in the Additional
file 1.

Declaration of adherence to ethical guidelines
The authors declare that the plaster cast was taken strictly
following international animal welfare guidelines. The
institutions the authors are affiliated with do not have
research ethics committees or review boards. The cast
was taken in a completely noninvasive manner. The cow
was not forced into an unnatural body posture and was
fastened for no longer than one hour. Feed was provided
during the procedure. No corrosive, burning, unpleasant,
extremely hot or cold substances were used.

Additional file

Additional file 1: Precision of automatically determined
Y-coordinates at different velocities. Supplementary Material to
“Quantification of the effects of fur, fur color, and velocity on Time-Of-Flight
technology in dairy production”, provided as pdf.
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TOF: Time-Of-Flight, a principle of depth measurement (see (Hansard et al.
2012)); η2: Measure for the size of the effect of grouping data after a certain
criterion, calculated from analysis of variance’s SS: η2 = SS due to grouping

total SS ; SS:

Sum of squares, SS = ∑n
t=1 (yt − ŷt)

2, yt observed values, ŷt estimated values,
n sample size; BCS: body condition score; BFT: Back fat thickness; SR4K: Swiss
Ranger 4000, TOF camera produced by Mesa Imaging AG (MESA-Imaging
2013b); HQIratio: The quotient of the number of images that passed the
quality test by the number of images showing the cow model:

HQIratiovelocity = Nvelocity
Cvelocity

; Pplaster, Pfur, gplaster, gfur: Approximating polynomials

http://www.springerplus.com/content/supplementary/s40064-015-0903-0.s1.pdf
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and Gaussian exponential functions for HQIratio (Equations 2, 3, 4, and 5);

RMSD: Root-mean-square-deviation, RMSD =
√

1
n ∗ ∑n

t=1 (yt − ŷt)
2, yt

observed values, ŷt estimated values, n sample size; R2: Coefficient of
determination; SumDiff: Sum of pixel-wise absolute differences of every two
consecutive images, divided by the number of summands (Equation 6); pwStd:
pixel-wise standard deviation; RpV: Quotient of the X-coordinates’ range
divided by the number of values (Equation 7); BB30: Point on the cow models’
backbones in a radius of 30 pixel from the tail; td : Phase delay; S1, . . . , S4: Phase
control infrared signals emitted by SR4K to estimate phase delay td ; MHz:
Megahertz; Q1, . . . ,Q4: Amount of electrical charge for S1, . . . , S4, respectively;
d: Distance between object and TOF camera; c: Speed of light; f : Modulated
signal frequency used by SR4K; srs: swiss ranger stream, data format generated
by SR4K; BSRCfA: Bavarian State Research Center for Agriculture in Grub
(Bayerische Landesanstalt für Landwirtschaft 2015) (Germany); CNC:
Computerized numerical control; CAU: Christian-Albrechts-University Kiel
(Christian-Albrechts-Universität zu Kiel 2015) (Germany); C0, C10, C20, C30:
Number of images showing the cow model recorded at 0, 10, 20, 30 cm/s; N0,
N10, N20, N30: Numbers of images recorded at 0, 10, 20, 30 cm/s that passed
the quality tests; α ∗ x2 + β ∗ x + γ : (approximating) quadratic polynomial;

K ∗ exp
(
− (x−L)

M

)
: (approximating) Gaussian exponential function.
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