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Abstract

In this paper, we implement the exp(−Φ(ξ))-expansion method to construct the
exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we
consider two model equations, namely the Korteweg-de Vries (KdV) equation and
the time regularized long wave (TRLW) equation. These equations play significant
role in nonlinear sciences. We obtained four types of explicit function solutions,
namely hyperbolic, trigonometric, exponential and rational function solutions of
the variables in the considered equations. It has shown that the applied method is
quite efficient and is practically well suited for the aforementioned problems and
so for the other NLEEs those arise in mathematical physics and engineering fields.
PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.

Keywords: The exp(−Φ(ξ))-expansion method; The TRLW equation; The KdV
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Introduction
Most of the real world problems are generally modeled by NLEEs. The study of exact

traveling wave solutions for NLEEs play an important role in the study of nonlinear

physical phenomena. Therefore, finding explicit solutions of physics equations is an

important and interesting subject.

In this paper, we consider two NLEEs which have a great importance in mathemat-

ical physics. The first one is Korteweg de Vries equation, derived by Diederik Johannes

Korteweg together with his PhD student Gustav de Vries, now well known as the KdV

equation (Wazwaz 2009), having the simplest form

ut þ uux þ δ uxxx ¼ 0; ð1Þ

where δ is a nonzero constant. The term ut in this equation describes the time evolu-
tion of the wave propagating in one direction. Moreover, this equation incorporates

two adversary effects: nonlinearity represented by uux that accounts for steepening of

the wave, and linear dispersion represented by uxxx that describes the spreading of the

wave. Nonlinearity tends to localize the wave while dispersion spreads it out. The

balance between these weak nonlinear steepening and dispersion effect formulate the

solitons (Wazwaz 2009). The KdV equation is used to model the disturbance of the

surface of shallow water in the presence of solitary waves. The KdV equation is a

generic model for the study of weakly nonlinear long waves, incorporating leading

order nonlinearity and dispersion (Wazwaz 2009; Marchant and Smyth 1996). Also, it
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describes surface waves of long wavelength and small amplitude on shallow water

(Monro and Parkes 1999, 2000; Zakharov and Faddeev 1971).

And the second equation is the time regularized long wave (TRLW) equation pro-

posed by Joseph and Egri (1977) and Jeffrey (1978), which is one of the alternative form

of KdV equation, having the form

ut þ ux þ αuux þ uxtt ¼ 0; ð2Þ

where u, t and x denote the amplitude, time , and spatial coordinate respectively and α
is a nonzero constant (Taghizade and Neirameh 2010; Taghizadeha et al. 2012). The

TRLW equation shares many of the properties of the KdV equation. Bona and Chen

(1999) have shown that the initial value problem for the TRLW equation is well-posed,

and that for small-amplitude, long waves, solutions of (2) agree with solutions of (1).

The Joseph-Egri (TRLW) equation plays a major role in the study of nonlinear waves

since it describes the large number of important physical phenomena, such as shallow

water waves and ion-acoustic plasma waves (Hereman 2011).

The exact solutions of NLEEs have been investigated by many authors who are inter-

ested in nonlinear physical phenomena which exist in all fields including mathematical

physics and engineering fields, such as fluid mechanics, electrodynamics, chemical

physics, chemical kinematics, plasma physics, elastic media, optical fibers, solid state

physics, biology, and atmospheric and so on.

In recent years, many methods for obtaining explicit traveling and solitary wave so-

lutions of NLEEs have been proposed, such as the extended tanh-method (Abdou

2007; Parkes and Duffy 1996; Yan 2001; Wang and Li 2005a), the F-function expansion

method (Wang and Zhou 2003; Wang and Li 2005b), the exp-function expansion

method (He and Wu 2006; Khan and Akbar 2014c), the generalized Riccati equation

(Wang and Zhang 2007; Wang et al. 2007, Wang et al. 2005), the direct algebra method

(Hereman et al. 1986), the complex hyperbolic function method (Zayed et al. 2008), the

Modified Simple Equation Method (Khan and Akbar 2014b), the (G'/G)-expansion

Method (Taghizade and Neirameh 2010; Bekir 2008; Khan and Akbar 2014d; Islam et al.

2013; Wang et al. 2008; Zhang et al. 2008) and others. The objective of this paper is to use

a new method which is called the exp(−Φ(ξ))-expansion method. This method is firstly

proposed by which the traveling wave solutions of non-linear equations are obtained.

The main idea of this method is that the traveling wave solutions of non-linear wave

equations can be expressed as a polynomial in exp(−Φ(ξ)), where Φ(ξ) satisfies the

ordinary differential equation (ODE) Φ′(ξ) = exp(−Φ(ξ)) + μ exp(Φ(ξ)) + λ, and ξ = x +ω t.

The degree of the polynomial can be determined by considering the homogeneous balance

between the highest order derivatives and nonlinear terms appearing in the given non-

linear partial differential equation. It will be shown that more traveling wave solutions of

many nonlinear evolution equations can be obtained by using the exp(−Φ(ξ))-expansion

method.

The rest of the article has been prepared as follows: Description of the exp(−Φ(ξ))-expansion

method; applications of exp(−Φ(ξ))-expansion method to find the exact solutions of unsteady

Korteweg-de Vries and time regularized long wave equations, graphical representation, and

conclusions.
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Description of the exp(−Φ(ξ))-expansion method

In this section we will describe the algorithm of the exp(−Φ(ξ))-expansion method for

finding traveling wave solutions of non linear evolution equations. Suppose that a non

linear equation in two independent variables x and t is given by,

P u;ut ;ux; utt ; uxx; uxt ;…………ð Þ ¼ 0; x ∈R; t > 0 ð3Þ

where u(ξ) = u(x, t) is an unknown function, P is a polynomial of u(x ,t) and its partial
derivatives in which the highest order derivatives and non linear terms are involved. In

the following, we give the main steps of this method (Khan and Akbar 2014a).

Step 1. Combining the independent variables x and t into one variables ξ = x ± ω t, we

suppose that

u x; tð Þ ¼ u ξð Þ ξ ¼ x� ω t; ð4Þ

where ω ∈ R − {0} is the velocity of relative wave mode.

The traveling wave transformation Eq. (4) permits us to reduce Eq. (3) to the follow-

ing ordinary differential equation (ODE),

F u; u′; u″;………ð Þ ¼ 0; ð5Þ

where F is a polynomial in u(ξ) and its derivatives, whereas u′ ξð Þ ¼ d u ; u″ ξð Þ ¼ d2u ,
dξ dξ2

and so on.

Step 2.We suppose that Eq. (5) has the formal solution

u ξð Þ ¼
Xn
i¼0

Ai exp −Φ ξð Þð Þð Þi; ð6Þ

where Ai, (0 ≤ i ≤ n) are constants to be determined, such that An ≠ 0, and Φ =Φ(ξ) sat-

isfies the following ODE

Φ′ ξð Þ ¼ exp −Φ ξð Þð Þ þ μ exp Φ ξð Þð Þ þ λ: ð7Þ

Eq. (7) gives the following solutions:

When λ2 − 4μ > 0, μ ≠ 0,

Φ ξð Þ ¼ ln
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ
� �q

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μð Þp
2 ξ þ kð Þ

� �
−λ

2μ

0
BB@

1
CCA; ð8Þ

Φ ξð Þ ¼ ln
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ
� �q

coth

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μð Þp
2 ξ þ kð Þ

� �
−λ

2μ

0
BB@

1
CCA; ð9Þ

When λ2 − 4μ < 0, μ ≠ 0,
Φ ξð Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2
� �q

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2ð Þp
2 ξ þ kð Þ

� �
−λ

2μ

0
BB@

1
CCA; ð10Þ
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Φ ξð Þ ¼ ln
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2
� �q

cot

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2ð Þp
2 ξ þ kð Þ

� �
−λ

2μ

0
BB@

1
CCA; ð11Þ

When λ2 − 4μ > 0, μ = 0, λ ≠ 0,
Φ ξð Þ ¼ − ln
λ

exp λ ξ þ kð Þð Þ−1
� �

; ð12Þ

When λ2 − 4μ = 0, μ ≠ 0, λ ≠ 0,
Φ ξð Þ ¼ ln −
2 λ ξ þ kð Þ þ 2ð Þ

λ2 ξ þ kð Þ

� �
; ð13Þ

When λ2 − 4μ = 0, μ = 0, λ = 0,
Φ ξð Þ ¼ ln ξ þ kð Þ; ð14Þ

where k is an arbitrary constant and An,ω, λ, μ are constants to be determined later, An ≠ 0,

the positive integer n can be determined by considering the homogeneous balance between

the highest order derivatives and the nonlinear terms appearing in Eq. (5).

Step 3. We substitute Eq. (6) into Eq. (5) and then we account the function exp

(−Φ(ξ)). As a result of this substitution, we get a polynomial of exp(−Φ(ξ)). We equate

all the coefficients of same power of exp(−Φ(ξ)) to zero. This procedure yields a system

of algebraic equations whichever can be solved to find An, ω, λ, μ. Substituting the

values of An, ω, λ, μ into Eq. (6) along with general solutions of Eq. (7) completes the

determination of the solution of Eq. (3).

Applications
The KdV equation

In this subsection we will apply exp(−Φ(ξ))-expansion method to construct analytical

solutions of the KdV equation of the form (1).

The traveling wave transformation equation

u ¼ u x; tð Þ; ξ ¼ x−ω t;u ¼ u ξð Þ; u x; tð Þ ¼ u ξð Þ; ð15Þ

transforms Eq. (1) into the following ODE,

−ωu′þ uu′þ δ u‴ ¼ 0: ð16Þ

Integrating Eq. (16) with respect to ξ once, yields

C−ωuþ u2

2
þ δ u″ ¼ 0; ð17Þ

where C is integrating constant that can be determine later.

Now taking the homogeneous balance between the highest order derivative u″ and

the nonlinear term u2 in Eq. (17), yields

u ξð Þ ¼ A0 þ A1 exp −Φ ξð Þð Þð Þ þ A2 exp −Φ ξð Þð Þð Þ2; ð18Þ

where A0, A1 and A2 are constants to be determined such that A2 ≠ 0, while λ and μ are
arbitrary constants.
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Substituting u, u2, u″ into Eq. (17) and then equating the coefficients of exp(−Φ(ξ))

to zero, we obtain

C−ωA0 þ 1
2
A2
0 þ 2δA2μ

2 þ δA1μλ ¼ 0: ð19Þ

δA1λ
2 þ A0A1−ωA1 þ 2δA1μþ 6δA2μλ ¼ 0: ð20Þ

−ωA2 þ 1
2
A2
1 þ A0A2 þ 3δA1λþ 8δA2μþ 4δA2λ

2 ¼ 0: ð21Þ

10δA2λþ 2δA1 þ A1A2 ¼ 0: ð22Þ
1
2
A2
2 þ 6δA2 ¼ 0: ð23Þ

Solving the above five algebraic equations, yields
C ¼ 1
2
ω2−

1
2
δ2λ4 þ 4δ2λ2μ−8δ2μ2; A0 ¼ ω−δλ2−8δμ

A1 ¼ −12δλ; A2 ¼ −12δ

where λ and μ are arbitrary constants.
Substituting the values of C, A0, A1 and A2 into Eq. (18), yields

u ξð Þ ¼ ω−δλ2−8δμ−12δλ exp −Φ ξð Þð Þ−12δ exp −2Φ ξð Þð Þ; ð24Þ

where ξ = x − ω t
Now applying Eq. (8) to Eq. (14) into Eq. (24) respectively, we obtain the following

seven traveling wave solutions of the KdV equation.

When λ2 − 4μ > 0, μ ≠ 0,

u1 ξð Þ ¼ ω−δλ2−8δμþ 24δλμffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
x−ωt þ kð Þ

� �
þ λ

−
48δμ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2−4μ
q

tanh
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
x−ωt þ kð Þ

� �
þ λ

� �2

:

u2 ξð Þ ¼ ω−δλ2−8δμþ 24δλμffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
coth

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
x−ωt þ kð Þ

� �
þ λ

−
48δμ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2−4μ
q

coth
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
x−ωt þ kð Þ

� �
þ λ

� �2

:

When λ2 − 4μ < 0, μ ≠ 0,
u3 ξð Þ ¼ ω−δλ2−8δμ−
24δλμffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ−λ2
q

tan
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
x−ωt þ kð Þ

� �
−λ

� �

−
48δμ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ−λ2
q

tan
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
x−ωt þ kð Þ

� �
−λ

� �2

:
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u4 ξð Þ ¼ ω−δλ2−8δμ−
24δλμffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ−λ2
q

cot
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
x−ωt þ kð Þ

� �
−λ

� �

−
48δμ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ−λ2
q

cot
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
x−ωt þ kð Þ

� �
−λ

� �2

:

When λ2 − 4μ > 0, μ = 0, λ ≠ 0
u5 ξð Þ ¼ ω−δλ2−
12δλ2

exp λ x−ωt þ kð Þð Þ−1ð Þ−
12δλ2

exp λ xþ ωt þ kð Þð Þ−1ð Þ2 :

When λ2 − 4μ = 0, μ ≠ 0, λ ≠ 0,
u6 ξð Þ ¼ ω−3δλ2 þ 6δλ3 x−ωt þ kð Þ
λ x−ωt þ kð Þ þ 2ð Þ−

3δλ4 x−ωt þ kð Þ2
λ x−ωt þ kð Þ þ 2ð Þ2 :

When λ2 − 4μ = 0, μ = 0, λ = 0,

u7 ξð Þ ¼ ω−
12δ

x−ωt þ kð Þ2 :

The TRLW equation

In this subsection, we will apply the exp(−Φ(ξ))-expansion method to find the exact so-

lutions and then the solitary wave solutions of the TRLW equation of the form (2).

The traveling wave transformation equation is

u ¼ u x; tð Þ; ξ ¼ xþ ω t; u ¼ u ξð Þ; u x; tð Þ ¼ u ξð Þ; ð25Þ

Eq. (25) transforms Eq. (2) into the following ODE,
1þ ωð Þu′þ αuu′þ ω2u‴ ¼ 0: ð26Þ

Integrating with respect to ξ, Eq. (26) yields
C þ 1þ ωð Þuþ α

2
u2 þ ω2u″ ¼ 0; ð27Þ

where C is the constant of integration.

Now balancing the highest order derivative u″ and non linear term u2, we obtain

n = 2.

Hence for n = 2, Eq. (6) yields

u ξð Þ ¼ A0 þ A1 exp −φ ξð Þð Þð Þ þ A2 exp −φ ξð Þð Þð Þ2; ð28Þ

where A0, A1 and A2 are constants to be determined such that A2 ≠ 0, while λ and μ are
arbitrary constants.

Substituting u, u2, u″ into Eq. (27) and then equating the coefficients of exp(−Φ(ξ))

to zero, we obtain

C−ωA0 þ 1
2
αA2

0 þ 2ω2A2μ
2 þ A0 þ ω2A1μλ ¼ 0: ð29Þ

ω2A1λ
2 þ A1 þ αA0A1 þ ωA1 þ 2ω2A1μþ 6ω2A2μλ ¼ 0: ð30Þ
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ωA2 þ 3ω2A1λþ 1
2
αA2

1 þ αA0A2 þ A2 þ 8ω2A2μþ 4ω2A2λ
2 ¼ 0: ð31Þ

10ω2A2λþ 2ω2A1 þ αA1A2 ¼ 0: ð32Þ

1
2
αA2

2 þ 6ω2A2 ¼ 0: ð33Þ

Solving the above five equations, yields
C ¼ −
1
2
−2ω−ω2−1þ 16ω4μ2−8ω4λ2μþ ω4λ4

α
; A0 ¼ −

1þ 8ω2μþ ωþ ω2λ2

α

A1 ¼ −
12ω2λ

α
; A2 ¼ −

12ω2

α

where λ and μ are arbitrary constants.
Now substituting the values of C, A0, A1 and A2 into Eq. (28) yields

u ξð Þ ¼ −
1þ 8ω2μþ ωþ ω2λ2

α
þ 12ω2λ

α
exp −Φ ξð Þð Þ þ 12ω2

α
exp −2Φ ξð Þð Þ

� �
; ð34Þ

where ξ = x + ω t.
Substituting Eq. (8)-Eq. (14) into Eq. (34) respectively, we obtain the following seven

traveling wave solutions of the TRLW equation.

When λ2 − 4μ > 0, μ ≠ 0,

u1 ξð Þ ¼ −
1þ 8ω2μþ ωþ ω2λ2

α
þ 24ω2λμ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
xþ ωt þ kð Þ

� �
þ λ

� �

−
48ω2μ2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
xþ ωt þ kð Þ

� �
þ λ

� �2

:

u2 ξð Þ ¼ −
1þ 8ω2μþ ωþ ω2λ2

α
þ 24ω2λμ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
coth

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
xþ ωt þ kð Þ

� �
þ λ

� �

−
48ω2μ2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
coth

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
xþ ωt þ kð Þ

� �
þ λ

� �2

:

When λ2 − 4μ < 0, μ ≠ 0,

u3 ξð Þ ¼ −
1þ 8ω2μþ ωþ ω2λ2

α
−

24ω2λμ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
xþ ωt þ kð Þ

� �
−λ

� �

−
48ω2μ2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
xþ ωt þ kð Þ

� �
−λ

� �2

:



Figure 1 Bell shaped Soliton profile of KdV equation for λ = 3, μ = 1, k = 0, α = 2, δ = 1 and wave
speed ω = 1 within the interval − 3 ≤ x, t ≤ 3. (only shows the shape of u1(ξ)), The left figure shows the
3D plot and the right figure shows the 2D plot for t = 0.
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u4 ξð Þ ¼ −
1þ 8ω2μþ ωþ ω2λ2

α
−

24ω2λμ

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
cot

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
xþ ωt þ kð Þ

� �
−λ

� �

−
48ω2μ2

α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
cot

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
xþ ωt þ kð Þ

� �
−λ

� �2

:

When λ2 − 4μ > 0, μ = 0, λ ≠ 0,

u5 ξð Þ ¼ −
1þ ωþ ω2λ2

α
−

12ω2λ2

α exp λ xþ ωt þ kð Þð Þ−1ð Þ−
12ω2λ2

α exp λ xþ ωt þ kð Þð Þ−1ð Þ2 :

When λ2 − 4μ = 0, μ ≠ 0, λ ≠ 0,
Figure 2 Singular soliton profile of KdV equation for λ = 3, μ = 1, k = 0, α = 1, δ = 1 and wave
speed ω = 2 within the interval − 3 ≤ x, t ≤ 3. (only shows the shape of u2(ξ)), The left figure shows the
3D plot and the right figure shows the 2D plot for t = 0.



Figure 3 Bell shaped Soliton profile of TRLW equation for λ = 3, μ = 1, k = 0, α = 1 and wave speed
ω = 1 within the interval − 3 ≤ x, t ≤ 3. (only shows the shape of u1(ξ)), The left figure shows the 3D plot
and the right figure shows the 2D plot for t = 0.
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u6 ξð Þ ¼ −
1þ ωþ 3ω2λ2

α
þ 6ω2λ3 xþ ωt þ kð Þ
α λ xþ ωt þ kð Þ þ 2ð Þ−

3ω2λ4 xþ ωt þ kð Þ2
α λ xþ ωt þ kð Þ þ 2ð Þ2 :

When λ2 − 4μ = 0, μ = 0, λ = 0,
u7 ξð Þ ¼ −
1þ ω

α
−

12ω2

α xþ ωt þ kð Þ2 :

Graphical representation of some obtained solutions
Using mathematical software Maple, 2D and 3D plots of some obtained solutions have

been shown in Figures 1, 2, 3 and 4 to visualize the underlying mechanism of the ori-

ginal equations.
Figure 4 Singular Soliton profile of TRLW equation for λ = 3, μ = 1, k = 0, α = 1 and wave speed
ω = 1 within the interval − 3 ≤ x, t ≤ 3. (only shows the shape of u2(ξ)), The left figure shows the 3D plot
and the right figure shows the 2D plot for t = 0.
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Conclusions
In this paper, we have utilized the exp(−Φ(ξ)) -expansion method to seek exact solu-

tions of the TRLW equation and KdV equation, and found new solutions. The perform-

ance of the exp(−Φ(ξ)) -expansion method is reliable and effective. It can be concluded

that this method is very powerful and efficient technique to find the exact solutions for

a large class of problems and can be easily extended to all kinds of non linear evolution

equations in mathematical physics and engineering.
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