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Abstract

on the total sediment accumulation rate.

In order to assess the changes in sea-surface hydrology and productivity signal from the last glacial to the Holocene; a
set of isotopic, geochemical and microgranulometric proxies was used for this study. Former studies revealed that the
reconstruction of paleoproductivity from ocean sediment gives different results depending the measurement used.
The comparison between our productivity proxies (total organic carbon, carbonate and planktonic §'°C) as well as
previous results in nearby location indicates that the planktonic &'*C responds better to marine productivity changes
and represents therefore a suitable proxy for paleoproductivity reconstruction in our studied area. The productivity
signal reveals two main enrichments during the Young Dryas (YD) and the Heinrich Event 1 (HE 1) and correlates
perfectly with upwelling activity mentioned by an increasing trend of aeolian proxies. In addition, our results show that
biogenic components in the sediment have a marine origin and the proportion of organic matter preserved depends
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Introduction

The abundance and distribution of biogenic particles in
the surface waters depend on the amount of nutrients
supplies of fluvial input or by the amount of nutrient-
rich water upwelled. To find out how the efficiency of
the biogenic production has changed from a cold to warm
climatic stage in Moroccan Atlantic margin (~ 35°N), it is
important to evaluate the modification of the productivity
pattern.

Deep-sea sediments off Northwest Africa have been
studied by many authors in order to obtain informa-
tion concerning the Paleoceanography of the Northeast
Atlantic and climatic evolution of the African continent
(e.g., Parkin and Shackleton 1973; Pastouret et al. 1978;
Koopmann 1981; Sarnthein et al. 1982; Diester-Haas
1983; Ganssen and Sarnthein 1983; Thiede 1983; Stein
and Sarnthein 1984; Jaaidi and Cirac 1987; Jaaidi 1993;
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Sanchez-Goni et al. 2002; Cacho et al. 1999; Moreno
et al. 2002; Martrat et al. 2004; Eberwein and Mackensen
2008; Penaud et al. 2010; De Jonge 2010; Wienberg et al.
2010...). The productivity conception has changed over
time; at first generally increased glacial productivity was
proposed for the entire NW-African margin (e.g.
Sarnthein et al. 1988). Gradually, this uniformity concept
was ignored, in fact, enhanced glacial productivity was
observed at 25°N (Bertrand et al. 1996; Abrantes 2000;
Sicre et al. 2000; Ternois et al. 2000). On the other hand,
glacial productivity was lower off Cape Blanc (21°N)
(Zhao et al. 2000 Sicre et al. 2001; Henderiks and
Bollmann 2004). This underlines that strong productivity
differences co-exist within regionally small areas
(Bertrand et al. 1996). Furthermore, the reconstruction
of paleoproductivity from ocean sediment gives different
results depending on the measurement used (Lazarus
et al. 2006).

In this regard and in order to determine which para-
meter able to reflect better the paleoproductivity changes,
we used a multi-proxy approach based on planktonic
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8'3C, organic carbon and carbonate. In addition, we will
focus on the detailed reconstruction of the paleopro-
ductivity pattern at Moroccan Atlantic margin (~35°N)
(Figure 1), and follow their variations through the time
from the last glaciation to the Holocene. Finally, we will
point out the potential causes for cyclic paleoproductivity
variations and the probable factors influencing organic
carbon preservation.

Methodology

While coastal upwelling occurs mostly on the shelf, bio-
genic particles derived from upwelling are deposited
mostly at upper continental slope due to remobilization
and transport across the shelf (Fiitterer 1983). Therefore,
to describe the Glacial-Holocene changes of paleopro-
ductivity, two sediment cores (Figure 1, Table 1) located
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at the continental slope are investigated in this study.
They were recovered during Pelagia Cruise 64PE284 in
February 2008.

CHN analysis (Total Organic Carbon (TOC), Carbonate
and C/N ratio) have been carried out in the department of
Geosciences in Bremen University. Sediment samples
taken from each 5 cm were freeze-dried and homoge-
nized. Two precise amounts (25 mg) of sediment are
taken for each sample of which one Inorganic Carbon (IC)
was removed by addition of 1 N HClL Total carbon (TC)
and total nitrogen (TN) concentrations were measured on
non-acidified samples, while Organic Carbon (TOC) was
measured on acidified samples using a CHN-Analyzer
(Haereus).

Carbonate content is another important aspect in rela-
tion to marine productivity and carbonate preservation/
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Figure 1 Geological map of the Gulf of Cadiz (from Medialdea et al. 2009) showing the cores distribution in the studied area.
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Table 1 Positions of the sediment cores investigated for this study

Cores Latitude °N Longitude °W Water depth (m) Recovery (m)
GeoB 9064 35:2491 6:50.71 702 544
GeoB 9069 35:18.21 6:49.14 669 5.13

dissolution. The bulk carbonate content (% weight
CaCO3) was calculated assuming that calcium carbonate
was the only carbonate-bearing mineral:

CaCOj; = (TC-TOC)"8.333.

Geochemical analysis are done by XRF Core Scanner
(X-Ray Fluorescence) which is an instrument designed
and manufactured in the Netherlands at the Netherlands
Institute of Sea Research (NIOZ). It is capable to give in
100 minutes a chemical analysis from Aluminum to Iron
along one meter section of a sediment core with a sam-
pling resolution of 1 c¢cm. This non-destructive analysis
gives the results for each analyzed element in CPS
(counts per second). The analyses are carried out directly
on the surface of the sediment cores, no sampling or prep-
aration is necessary. In this study the ration Fe/Ca will be
used for correlation between cores and Fe intensity will be
used as a proxy for aeolian terrigenous input.

The 8'®0 and the 8'C isotopic signals from plank-
tonic (Globigerinoides ruber) and benthic foraminifera
(Cibicides wuellerstorfii) were measured in order to es-
tablish a reconstruction of plaeoclimate and deep water
circulation. Sometimes, C.wuellerstorfi is almost absent,
hence we used Uvigerina peregrina as it calcifies its test
close to equilibrium of the bottom water 8'*0 (Shackleton
1974; McCorkle et al. 1990). On average, five to se-
ven individuals of foraminifera were handpicked from
the > 150 pm size fraction of each sample, sufficient to
reach the minimum weight of material (180 pg) detect-
able by the mass spectrometer. Oxygen and carbon iso-
topic data obtained are reported in the usual notation,
which is referred to the PeeDee belemnite (V-PDB)
standard. The benthic isotope were measured in the
Department of Geosciences (FB5-Geowissenschaften) at
Bremen University using a Finnigan MAT 252 mass
spectrometer with a precision of + 0.07%o for &80
and + 0.05%o for §'>C.

Results

Age model

Age Model of the core Geob 9069 was obtained by cor-
relating the isotopic data, the organic carbon, the car-
bonate and the Fe content (Figure 2) with the core Geob
9064 which has been dated by '*C. Ages between the tie
points were obtained by linear interpolation. The major

transition Holocene-Last Glaciation could be easily iden-
tified in all cores.

Oxygen isotope

Significant changes in planktonic §'®0 during the last ~
30 Kyr are most likely caused by monsoon-induced sal-
inity fluctuation (Duplessy 1982; Kudrass et al. 2001)
and suggest large changes in monsoonal precipitation.
Variations in isotopic data enable then the reconstruc-
tion of past changes in paleomonsoon intensity.

In our study, the §'®0 values (Figure 2) vary in a similar
pattern in the two cores and appear to track one another.
The prominent low §'®0 values during the Holocene sug-
gest increased sea surface temperature and decreased sal-
inity which highlight the influx of freshwater as a result of
intensified monsoonal precipitation. In contrast, during
the glacial period, increasing of planktonic §'®0 values
shows that the solar insolation was stronger. On shorter
timescale, 8'80 record exhibits high amplitude fluctua-
tions indicating seasonal variations of monsoon precipita-
tion. A prominent feature of 8'®0 variations is a clear
increase at~ 11 kyr and 16 kyr, what could give an ac-
curate pinpointing of the Younger Dryas (YD) and the
Heinrich Event 1 (HE 1).

Carbon isotope

The planktonic §'°C is usually used as a paleoproduc-
tivity proxy in surface waters (Berger et al. 1978). The
comparison between the planktonic isotopic values re-
veals perfect correlation between the §'%0 and the §'*C
records (Figure 2). During the late Holocene, the plank-
tonic 8'C values exhibit a decreasing trend, the YD and
the HE 1 show two main enrichments and the last gla-
cial is marked generally by heavier values.

Iron (Fe)

In order to determine how productivity would depend
on wind strength, we used the Fe intensity record as an
indicator for the long-term trends of terrigenous input
and assume that higher Fe content in the sediment rec-
ord reflects periods of enhanced dust input (Rogerson
et al. 2006; Mertens 2009).

The Fe content and the planktonic 8**C show appro-
ximately similar profiles (Figure 2), low values were
recorded until around 10 kyr, while the YD and the HE
1 display noticeable increasing. The last glacial reveals
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Figure 2 Correlation of the gravity cores using the isotopic data (planktonic §'>C and §'20), the organic carbon (TOC), the carbonate
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relatively high Fe values, however we denote a clear dip
during the LGM until the onset of the HE 2.

Organic carbon and carbonate
In oligotrophic areas situated well above lysocline, carbon-
ate accumulation may serve as an indicator of primary
productivity. In contrast, in upwelling areas, organic car-
bon accumulation may be better (Rithlemann et al. 1996).
The Total organic carbon (TOC) and the Carbonate
profiles exhibit differential variations (Figure 2); equally,
we denote the absence of a clear correlation with the pa-
rameters presented above which makes hard to choose

the adequate proxy to decipher the variation of the
paleoproductivity in our studied area.

Discussion

Coastal upwelling regions are some of the most produc-
tive regions in the world’s ocean; some works have de-
monstrated that changes in atmospheric circulation had
consequences on the dynamic of upwelling systems
basically controlled by the activity of the trade-winds
(Pearce 1991; Hagen 2001; Mann and Lazier 2005;
McGregor et al. 2007). In this study we set out to recon-
struct the productivity variations in Moroccan Atlantic
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margin (~35°N) since the last glacial, equally, we aim to
determine the potential causes of the paleoproductivity
variations.

The reconstruction of paleoproductivity from ocean
sediment gives different results depending on the meas-
urement used (Lazarus et al. 2006). A quick overview on
(Figure 3) exhibits a clear difference between the param-
eters of the same core (Geob 9064) which makes hard to
extract a common interpretation of paleoproductivity,
whence the necessity to choose carefully the parameter
that represents better the paleoproductivity.

In this regard, and in order to determine which para-
meter able to reflect better the paleoproductivity chan-
ges, we will follow the variation of our productivity
proxies (TOC, carbonate and planktonic §**C) to deter-
mine the parameter which correlate better with the vari-
ation of wind strength and hence the upwelling activity
which can give idea about the paleoproductivity. In
addition, we will discuss the origin of the organic carbon
preserved in marine sediments and determine the factors
controlling its burial.

Paleoproductivity

Total organic carbon

High primary production causing a great flow of organic
matter down to the sea floor supports an increased
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preservation of organic carbon in the sediment. Hence,
the observation that the distribution of organic carbon
contents in marine sediments matches the pattern of
primary production (e.g. Sarnthein et al. 1988; Lyle et al.
1988; Berger and Herguera 1992; Freudenthal et al.
2002; Jahn et al. 2003) is the basis for using organic car-
bon as an indicator of paleoproductivity.

In our results, this assumption is supported by the
mismatch between TOC maxima and peaks in the Fe
record (i.e. Geob 9064, Figure 2); we therefore suggest
that variations in TOC may be attributed to changes in
marine productivity and not to fluctuation in terrigenous
inputs (Jahn et al. 2003).

The comparison of the total organic carbon (TOC)
and TOC mass accumulation rates (TOCMAR) of Geob
9064 displays noticeable differences especially seen bet-
ween 14 kyr and 28 kyr when TOC displays significant
fluctuations while TOCMAR shows a maintaining of low
values correlating with the sedimentation rate pattern
(Figure 4). We therefore deduce that variations in car-
bon organic may be attributed to changes in either pro-
ductivity or preservation by increased sedimentation
rates or both (Emerson et al. 1985; Emerson and Hedges
1988; Hedges and Keil 1995).

The problem is that there is no clear relationship bet-
ween marine productivity and sedimentation rates, we
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Figure 4 Comparison of the total organic carbon (TOC) and the TOC mass accumulation rates (TOCMAR) of Geob 9064 with the
sedimentation rate pattern, the planktonic §'0 and the terrigenous inputs (Fe). The aeolian input record (EM1+EM2) refers to Wienberg

can have low productivity but we can have differences in
terrigenous input giving quite different organic carbon
content if we transfer to accumulation rates. For ex-
ample 7 kyrs and 19 kyrs show respectively drop and
peak in TOC leading us to predict low and high pro-
ductivity were expressed in these times; in contrast,
TOCMAR reveals low values indicating the inverse.
Consequently, the high organic carbon content
shown in interglacial times is just an artifact of bet-
ter preservation of organic matter due to high sedi-

mentation rate and not only to variations in marine
productivity.

Furthermore, enrichment in TOC and TOCMAR do
not coincide with maxima of planktonic 8**0 values and
aeolian input record calculated by Wienberg et al. (2010)
which points to periods of intensified trade wind and
resulting changes in upwelling intensity (Figure 4).

Thus as a proxy for productivity, the organic carbon
content is unhelpful, while the TOCMAR can be used to
decipher the deposition conditions of organic matter.
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Carbonate

As previously concluded concerning the influence of
sedimentation rate on TOCMAR, the carbonate accu-
mulation rate profiles show also high dependence to
sedimentation rate which makes hard to use this proxy
as a proxy for paleoproductivity (Figure 5).

In addition, and as mentioned in Figure 3, the com-
parison between TOC and carbonate concentrations
exhibits a differential variation. It was suggested that
low carbonate content is probably due to dilution
by terrigenous material input and/or higher organic
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carbon content which may cause enhanced CaCOj dis-
solution (Emerson and Bender 1981). While the second
assumption is supposed to be minor because water
depth is well above Lysocline, the Figure 5 displays a
parfait and synchronous negative correlation of car-
bonate concentration with Fe content indicating that
differences in terrigenous input have a direct impact
on the signal of carbonate production, we therefore
deduce that variations in CaCQOj; are due to dilution
by detrital sedimentation rather than productivity
changes.
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Figure 5 Comparison of carbonate (CaCOs) and carbonate accumulation (MAR CaCO3) of the core Geob 9064 with total organic carbon
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Planktonic 6>C

Upwelling systems is a critical factor underlying the de-
pendence of productivity on wind, to understand better
how wind speed affect the productivity we have used the
planktonic §'C to predict periods of high productivity
in surface waters (Berger et al. 1978).

Comparison of this record (Figure 6) with proxies re-
lated to trade wind and upwelling activity reveals good
correlation mentioning a perfect dependence. Thus as a
proxy for productivity, the carbonate fluxes and TOC con-
tent are useless in our studied area. Instead, the planktonic
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8'C have to be considered to predict periods of high
productivity.

Furthermore, a comparison with results in nearby
locations reveals common and distinct patterns of pale-
oproductivity variations. The core Geob 9064 used in
this study has been equally investigated by Wienberg
et al. (2010) using foraminiferal assemblage and abun-
dance to assess paleoproductivity conditions, her results
(Figure 6) show that the Last Glacial was marked by an
overall enhanced productivity and significant changes
toward more oligotrophic conditions were established
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Figure 6 Comparison of the productivity index estimated by Wienberg et al. (2010) and the planktonic §'3C record of the sediment

core Geob 9064 (this study) with proxies related to trade wind and upwelling activity (planktonic 6'%0 and aeolian input). The
planktonic 6'C values of the core MD04-2805CQ (Penaud et al. 2010) are displayed to establish comparison with nearby location. YD: Younger
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during the Holocene and following the end of Last
glacial.

In the core MDO04-2805CQ (34°30.99'N; 7°00.99"W;
859 m water depth) studied by Penaud et al. (2010), the
past-primary productivity regimes were investigated on
the basis of dinocyst and foraminiferal assemblage as
well as on stable isotopes (O; C) and alkenones. The
comparison with Wienberg et al. (2010) results indicates
that the overall pattern of paleoproductivity shows com-
parable results except the establishment of low produc-
tive conditions exhibited during the LGM (Figure 6).

In our study, the planktonic §">C values vary in a simi-
lar pattern but appear to track more perfectly the fluc-
tuations of aeolian input and then the related upwelling
activity (Figure 6), this inferring indicates that planktonic
8'>C responds better to marine productivity changes and
represents therefore a suitable proxy for paleoproduc-
tivity reconstruction in our studied area.

Planktonic 6'3C and paleoproductivity

Holocene

The planktonic §'°C values show a decreasing trend dur-
ing the late Holocene (Figure 6), the 880 records exhibits
similar pattern. It's well known that changes in planktonic
8'®0 are most likely caused by salinity fluctuations, so
prominent low 8'®0 until around 10 kyr suggests in-
creased sea surface temperature and or decreased salinity
probably caused by precipitation and or riverine input.
Additional evidence for interpretation of §'*C signal is the
Aeolian input estimated by Wienberg et al. (2010) which
shows low values indicating a weakening of wind strength.
A combination of these results point to a general trend to-
wards humid conditions and could promote a slow-down
the upwelling system and then low productivity were
reached at the late Holocene (~10 kyr).

Younger Dryas & Heinrich Event 1

The planktonic 8"°C record (Figure 6) indicates two
main enrichments corresponding to the Young Dryas
(YD) and the Heinrich Event 1 (HE 1). With respect to
Aeolian proxies, Fe content displays noticeable increa-
sing. At the same time, the Aeolian input [Wienberg
et al. (2010)] shows noteworthy increase with significant
peaks indicating that wind strength reaches a maximum
in these moments and highlights the activation of up-
welling system. Such productive enrichment coincide
with the strong shift toward high planktonic §'%0 values
which points to dryer conditions and intensified circula-
tion i.e. strengthening of the north-eastern trade winds
(Hooghiemstra et al. 1987; Marret and Turon 1994).

Last Glacial maximum
A prominent feature of the Last Glacial is a clear drop
in productivity signal marked in the onset of the Last
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Glacial Maximum (LGM defined as the time interval
between 19,000 to 23,000 cal-yr BP with its center at
21,000 cal-yr BP (Mix et al. 2001)) by a decreasing trend
to low planktonic 8*>C values (Figure 6), this is also sup-
ported by a clear dip in aeolian input and planktonic
8'"®0 record. These observations accordingly suggest a
relaxed intensity of wind strength, the establishment of
weaker upwelling conditions suggesting a general con-
vergence to evident low productivity.

Heinrich Event 2 (HE 2)

The onset of HE 2 (25 kyr) in core Geob 9064 is marked
by a weakening of wind strength and upwelling activity
marked by a decreasing trend of aeolian input and plank-
tonic §'®0 values (Figure 6), hence, low productivity was
expressed during this interval of time.

Organic carbon burial and deep water conditions

Total organic carbon mass accumulation rate (TOC MAR)
were used as a proxy for organic buried in Moroccan
Atlantic Margin. This record varies in a similar manner in
both cores (Figure 7A), it ranges between 5 and 40
(gem2ky"), interglacial periods exhibit high values,
while during interglacial-glacial transition we notice an
abrupt decreasing to low values, this indicates that Inter-
glacial times were marked by most pronounced organic
carbon accumulation rates.

The similar patterns of C,,, mass accumulation rates
over time may be due to the geographic proximity of
our cores (7 km distance) and indicate that evolution of
carbon burial in our sites have subjected similar hydro-
logical conditions. Moreover, the rapid changes of car-
bon burial between glacial and interglacial times reflect
that the deep water production rate is essentially linked
to global climate changes.

Numerous studies on the fate of organic carbon after its
production in the surface water have been published (Berger
et al. 1989; Stein 1991; Engel and Macko 1993; Canfield
1994; Hedges and Keil 1995). They indicate that the pro-
portion of organic matter that escapes decomposition and
becomes preserved in marine sediments can be influenced
by three main factors: productivity in the surface water,
sedimentary redox environment and sedimentation rate.

The reconstruction of oceanographic conditions which
have contributed to a modification in the deep-water pro-
duction rate during the glacial condition was assessed to
understand organic carbon burial mechanism. In the fol-
lowing we will evaluate the changes in sedimentation rate,
determine the origin of organic carbon buried and register
the changes in water conditions and deep-sea circulation.

Sedimentation rate
The proportion of organic matter preserved depends on
the total sediment accumulation rate (Heath et al. 1977;
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Miiller and Suess 1979). High accumulation rates imply
high organic carbon burial rates. In our cores, the most
prominent feature of sediment accumulation rates
(Figure 7B) is the wide contrast between glacial and
interglacial times. The Holocene time shows highest
values ranging from 23,86 cm/ky in Geob 9064 to
47,44 cm/ky in Geob 9065 and lower values during gla-
cial time (15 — 27 kyr). The change of sedimentation
patterns documents the impact of climatic change to
more humid condition during the interglacial times
where terrigenous supply was related to fluvial input.

Opverall, high and low values of sedimentation rate are
positively correlated with carbonate and C,,; accumula-
tion rates; this reveals that variations in sedimentation rate
overwhelmingly influence the patterns of carbon burial at
cores locations. Consequently, terrestial organic carbon
supply may be the source of marine organic matter.

N

Sedimentary C/N ratio is widely used to distinguish
between marine and terrestial organic matter. Typical
terrigenous C/N ratios are > 20, whereas marine ratios
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range from 5 to 10 (Tyson 1995). In our study, C/N ra-
tios (Figure 7C) between 4 and 10 indicate a general
dominance of marine organic matter in the sediment.
We deduce then that high sedimentation which coin-
cides with high TOC MAR during interglacial times
helps rather to preserve marine organic carbon.

Deep water conditions

Accumulation rate of organic carbon (TOC MAR) dis-
played in the (Figure 7A) marks pronounced amounts
during interglacial times and it’s generally lower during
glacial time, this could indicate that during interglacial we
can assume conditions of sluggish deep-water circulation
paralleled by an increased amount of organic matter sup-
plied at this site, and contrary, that would suggest a more
intense circulation during the glacial accompanied by an
advection of small proportion of buried organic matter.
The 8"C records of Cibicidoides wuellerstorfi were
measured to gather information about past deep- water
conditions (e.g. Curry et al. 1988; Duplessy et al. 1988;
Sarnthein et al. 1994; Mackensen et al. 2001), according to
Sarnthein and Tiedemann (1990) and Sarnthein et al.
(1994), low values of 8 *>C indicate low oxygenation and
sluggish deep water circulation, this could account for
enhanced organic matter preservation.

The comparison between the benthic §'*C values
(Figure 7D) and the TOC MAR distribution (Figure 7A)
reveals none correlation indicating that the distribution of
these records varies independently; we therefore suggest
the non-interference of deep-water conditions in organic
carbon burial.

Conclusion

Many proxies are currently used to reconstruct the vari-
ations of paleoproductivity, in order to determine the
adequate parameter; a careful comparison was done re-
garding the fertilization effect of aeolian input on local
upwelling activity. In addition to proxies used in pre-
vious studies, the tracing of our productivity proxies
variations (TOC, carbonate and planktonic §'°C) indi-
cated that the planktonic carbon isotope constitutes the
best proxy that can be used to predict the paleoproduc-
tivity signal.

In this paper, the cores used showed a complete sedi-
mentary record of the last 40 kyrs. Thus, a continuous
record of paleoproductivity changes during the late gla-
cial and interglacial times could be established. We can
therefore assume that the last 40 kyrs can be divided
into the following main trophic times:

— Enhanced productivity associated with intensified
upwelling system during YD and HE 1.

— Weaker upwelling conditions and lower productivity
are recorded during the Holocene, LGM and HE 2.
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Two additional main conclusions about the organic mat-
ter that escapes decomposition and becomes preserved in
marine sediments can be drawn from the present study:

(1) The proportion of organic matter buried shows a
clear trend to marine origin.

(2) The reconstruction of oceanographic conditions
which have influenced the preservation of organic
matter in the sediment revealed the non-interference
of deep-water conditions in organic carbon burial.
On the other hand, the TOC MAR exhibits a good
correlation with sedimentation rate that highlights
the terrigenous influx in organic matter preservation.
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