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Abstract

This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy
functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be
used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by
number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian
value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations.
Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like
Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art
method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising
algorithms for Gaussian noise.
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Introduction
Denoising is one of the most important issues in image
processing. The most popular noise removal methods
are Adaptive Median Filtering (AMF), Total Variation
(TV) based algorithms, Kernel based methods, Bilateral
and Guided filtering and recently BM3D state-of-the-art
in natural image denoising. In this work, we introduce a
noise removal approach using a local noise estimator.
We use the noise estimator in a minimization energy
functional scheme. We obtain an iterative image denois-
ing process using Laplacian. Denoising can be seen as
adding values of pixels with their relative Laplacian
weighted by local noise estimator.
Section 2 is related work. Section 3 represents our idea

for denoising. We show how we can define a noise esti-
mator using the sign of change in intensity of pixels in a
3x3 window. Using local noise estimator modified by
Gaussian weight, we define an energy functional, drive
the final equation and use it in an iterative denoising
process. We show that although Laplacian is known as
edge detector, it can be used for noise removal purposes.
The algorithm is implemented in section 4. In section 5,
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results are shown and described. Moreover, figures of
the denoising method are shown in comparison with
Wiener, ROF and BM3D filters based on TV value and
visual performance.
Related work
A Total Variation based noise removal method (ROF)
(Rudin et al. 1992) defines an energy functional that pre-
serves edges of the image and smoothes Gaussian noisy
area, based on the total variation norm minimizer. The
TV regularization technique is a suitable method that
can be extended to different noisy conditions such as
Laplace and Poisson (Chan and Esedo Lu 2005; Li et al.
1994). The Split Bregman method (Goldstein and Osher
2008) is fast, reliable and extendable to different models
of noise distribution. Split Bregman is a basic and effect-
ive tool in solving many functional-based problems such
as Compressed Sensing (CS) (Candès et al. 2006). In recent
years, the usage of kernel-based techniques in image
denoising has developed the quality of noise removal re-
sults. The image used in kernel functioning is called the
guidance image. One of the most popular approaches using
the guidance image is bilateral filter (Petschnigg et al.
2004). Other important kernel-based methods are Data-
adaptive kernel regression (Takeda et al. 2007), Non-Local
Means (Buades et al. 2005) and Optimal Spatial Adaptation
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(Kervrann et al. 2006). Another novel state of the art
method was recently introduced as guided filter (He et al.
2010). The US patent 6229578 “Edge Detection Based
Noise Removal Algorithm” (Acharya et al. 2001) is a
denoising method based on using edge detector. This
method removes noise by distinguishing between edge and
non-edge pixels and applying a first noise removal tech-
nique to pixels classified as non-edge and a second noise
removal technique to pixels classified as edge pixels.
BM3D is a well-engineered algorithm which represents the
current state-of-the-art method for denoising images cor-
rupted by Additive White Gaussian Noise (AWGN) (Dabov
et al. 2007; Dabov et al. 2006; Dabov et al. 2008; Dabov
et al. 2009; Chen and Wu 2010). In another strategy,
denoised image is considered as a linear combination of the
original image and its average when the coefficients are
determined by an edge detector (Ranjbaran et al. 2013).

Methodology
Our methodology is based on using a local noise estima-
tor in an energy functional minimizing scheme. Here we
start with explaining our idea to define a local noise esti-
mator. Consider Figure 1 where u(x, y) is pixel intensity.
A noise in x direction is estimated when the sign of the
change of the image intensity for two adjacent pixels is
in opposite direction. Taking two x direction gradient
components gx and gx +Δx we write:

gx ¼
u x; yð Þ−u x−Δx; yð Þ

Δx
gxþΔx ¼

u xþ Δx; yð Þ−u x; yð Þ
Δx

ð1Þ
A noise is detected when gx < 0, gx + Δx > 0 or gx > 0,

gx + Δx < 0. Generally we have:

−gx gxþΔx > 0

Using Heaviside function H the noise detector in x dir-
ection can be defined as:

SWNx ¼ H −gx gxþΔx

� � ð2Þ
Noise appears in two conditions in an image, first as

ideal noise, shown in Figure 1 and second as correlated
Figure 1 Two ideal noisy pixels.
noise (Figure 2). To distinguish these two cases we need
to assign a weight to the detected location. Because
SWNx acts as a switch its value is between zero and one.
For ideal noisy pixels in the image plane, independent of
the noise intensity, the value of weight should be one.
For the cases where noise is added to an edge as

shown in Figure 2 the weight should be lower than one.
To find a measure of the weight we consider that for
ideal case |u(x + Δx, y) − u(x − Δx, y)| = 0 independent of
noise intensity, but for non-ideal noise this difference is
not zero. Then we can use a Gaussian weighting for the
detected noise as the following equation:

WNx ¼ e− gxþgxþΔxð Þ2 ð3Þ
Where:

gx þ gxþΔx ¼
u xþ Δx; yð Þ−u x−Δx; yð Þ

Δx
ð4Þ

As noise is added to the image in two directions we
should drive the similar equations for y components. By
using similar notations we find the final switching noise
estimator as:

SWN ¼ H −gx gxþΔx

� �
H −gy gyþΔy

� �
e− gxþgxþΔxð Þ2e− gyþgyþΔyð Þ2

ð5Þ
To find a denoising way using SWN we define a measure

of noise intensity in the image plane. Since SWN ≥ 0 the in-
tensity of the noise in the noisy image can be defined as:

∬H −gx gxþΔx

� �
H −gy gyþΔy

� �
e− gxþgxþΔxð Þ2e− gyþgyþΔyð Þ2

ð6Þ
To reduce noise, we define the following energy func-

tional and try to minimize it:

J ¼ ∬ u−u0ð Þ2 þ λ∬H −gx gxþΔx

� �
H −gy gyþΔy

� �
e− gxþgxþΔxð Þ2e− gyþgyþΔyð Þ2

ð7Þ

where u and u0 are denoised and noisy images respect-
ively and the first part is regularization term. The energy



Figure 2 Pixels include noise and edge.
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functional is minimized in Appendix A. Although there
are some techniques for computing u by Equ. 47, this
way is a bit sophisticated and difficult to implement. To
find a more simple equation we add λ f(u0) to the two
sides of the equation and write:

u0 þ λ f u0ð Þ ¼ uþ λ f u0ð Þ−f uð Þð Þ ð8Þ
Based on SWN operation and iteratively computing

f(u0) and f(u) in the locations classified as noise, we
approximate f(u0) = f(u). Then the final equation we
used in our implementation is:

u ¼ u0 þ λ f u0ð Þ ð9Þ
This relation can be interpreted as follows: Because u

is disturbed by f(u) and creates noisy image u0 (Equ. 47),
a similar process can restore u from u0 (Equ. 9). By de-
creasing noise after some cycles of iteration f(u0) goes
to a small value. Equ. 47 presents a noise cancellation
Figure 3 Block diagram of the denoising method.
method based on using Laplacian value. The algorithm
decreases the noise by adding the pixels value with
Laplacian that weighted by SWN. Laplacian has been
known as a common second-order edge detector but it
has considerable value in noisy condition. Block dia-
gram of the method is demonstrated in Figure 3.
Adding the intensity of pixels with the relative Laplacian

is an averaging process. In an iterative process we can gen-
erally consider the evolution equation as:

u t þ Δtð Þ ¼ u tð Þ þ λ SWN ∇2u
� �

Δt ð10Þ

where Δt is the evolution timing step. For the cases that
SWN = 1 the evolution equation is:

u t þ Δtð Þ ¼ 1−λð Þu tð Þ þ λ
u t−Δtð Þ þ u tþ Δtð Þ

2

� �
Δt

ð11Þ
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Then we have the following first order differential
equation:

_u þ λu tð Þ ¼ λ �u ð12Þ

When �u ¼ u t−Δtð Þþu tþΔtð Þ
2 is the average value of u. The

timing response is:

u tð Þ ¼ �u þ u0−�uð Þ e−λt t≥0 ð13Þ

where λ is the time constant. For λ ≥ 0 the denoised
image u exponentially approaches to it steady state value
ū in the locations where SWN is high. To find the con-
straints on λ we note that because 0 ≤ u ≤ 1 and − 1 ≤ f
(u0) ≤ 1, we have two constrains on λ as:

−u0≤λ≤1−u0 − 1−u0ð Þ≤λ≤u0 ð14Þ

As 0 ≤ λ ≤ 1 − u0 and we choose ≥ 0, maximum value
for λ is:

λmax ¼ 1 ð15Þ
It is predictable that in implementing the algorithm by

large number of iterations λ must be a positive small
value. In real condition SWN is not constant and re-
duced during the evolution.

Implementation
We have implemented our method in Matlab for Gaussian
noise and evaluated it on different images. For implemen-
tation the Heaviside function is approximated by inverse
tangent function:

H −gx gxþΔx

� �
H −gy gyþΔy

� �
≈

π
2 þ tan−1 −CgxgxþΔx

� �
π

π
2 þ tan−1 −CgygyþΔy

� �
π

ð16Þ

According to Equ.12 λ controls timing response and
the value is between 0 and 1. So choosing the middle
value can be suitable. Based on experimental results C = 3
is found as an appropriate value for noisy cases. We use a
3x3 window for simplicity and fast computing. The
method is implemented by 10 numbers of iteration. The
algorithm of implementation can be shown as the follow-
ing steps:

1. Setting parameters : window size 3×3, λ = 0.5
2. Reading image u0
3. Adding zero mean Gaussian Noise (imnoise code)
4. Computing SWN for current pixel

SWN ¼
π
2 þ tan−1 −3gxgxþΔx

� �
π

π
2 þ tan−1 −3gygyþΔy

� �
π

e− gxþgxþΔxð Þ2e− gyþgyþΔyð Þ2

ð17Þ
5. Computing Laplacian for current pixel

∇2u ¼ u xþ Δx; yð Þ þ u x−Δx; yð Þ−2u x; yð Þ
4

þ u x; yþ Δyð Þ þ u x; y−Δyð Þ−2u x; yð Þ
4

ð18Þ
6. Updating u = u0 + λ SWN ∇2u0 for the current pixel
7. Going to step 4 and continuing
8. Finishing when the whole of the image is scanned

for ten times.

Results and discussions
We implemented our method in two noisy conditions
(0.005 and 0.1 noise variance using imnoise matlab code
for Gaussian noise) and compared it with ROF model
using evolve2D code with 10 iterations and Wiener filter
using wiener2 (‘image’, [3 3]) matlab code. f(u0) can be
interpreted as a noise intensity pattern in the image

plane. Similar to ROF model in which div ∇u0
∇u0j j

� ���� ��� can

be used as a measure of noise variance (Dabov et al.
2007), ‖f(u0)‖ is related to noise intensity. An example is
shown in Figure 4. The results including noisy and
denoised images are demonstrated in Figure 5 for Boat,
Figure 6 for Man and Figure 7 for House. Figures 8, 9
and 10 show the results for Cameraman, Lena and
Barbara respectively. TV for noisy and denoised images is
shown in Tables 1 and 2. TV of the denoised image is to-
tally comparable with ROF model. The computation time
of our model is equal to ROF method with 10 iterations.
f(u0) has a decreasing behavior during the filtring time.
At start, f(u0) is high in noisy pixels identified by
SWN. Because image intensity is reduced by Laplacian
value, f(u0) tends to zero after some iteration. An ex-
ample of such response is shown if Figure 11. Number of
iterations is the only parameter that controls smoothness
and running time. Large number of iteration makes the
image blurry. Since f(u0) goes to zero after some iteration,
we can implement the algorithm adaptively until f(u0)
reaches a small value. This value should be estimated ex-
perimentally to make the algorithm applicable for every
noisy condition. We also compared our method with
BM3D technique for Boat, House and Cameraman in two
SNR 25 and 75. The results are shown in Figures 12, 13,
14, 15, 16, 17. The denoising technique used in this work
can be generalized to other applications for reducing any



Figure 4 f(u0) for Cameraman with 0.1 noise variance.
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feature of the image (F(u)) in other image processing tasks
such as deblurring. A proposing framework can be written
as the following energy functional:

J ¼ ∬ u−u0ð Þ2 þ λ∬Detector F uð Þð ÞWiegth F uð Þð Þ
ð19Þ

Such that:

Detector Fð Þj j≤1 and Wiegth Fð Þj j≤1
and λ is a control parameter determined experimentally.
Minimizing the energy functional results the final rela-
tion for implementation.

∂J
∂u

¼ ∬2 u−u0ð Þ þ ∬λ
∂ Fð Þ
∂ uð Þ

∂ Detectorð Þ
∂ Fð Þ Wiegth Fð Þ þ ∂ Wiegthð Þ

∂ Fð Þ Detector Fð Þ
	 


¼ 0

ð20Þ
As an example, for deblurring, Detector(F) and Wiegth

(F) can be suggested as:

Detector Fð Þ ¼ H gx gxþΔx

� �
H gy gyþΔy

� �
ð21Þ
Wiegth Fð Þ ¼ e− gx−gxþΔxð Þ2e− gy−gyþΔyð Þ2 ð22Þ
where the blurring locations identified when the sign
of change in intensity of two adjacent pixels is equal
(gx gx + Δx > 0 , gy gy + Δy > 0), and weighted by difference
in their gradient components for x and y directions.
Computing ∂J

∂u ¼ 0 the final relation is:

u ¼ u0 þ λ u0xxxx þ u0yyyy
� �

H gx gxþΔx

� �

H gy gyþΔy

� �
e− gx−gxþΔxð Þ2e− gy−gyþΔyð Þ2

ð23Þ
This relation shows that in the blurred locations, iden-

tified by the blurring detector, u is restored by the forth
order of differentiation in the blurred areas.

Conclusion
We presented a noise removal method using a local
switching noise estimator in an energy functional minim-
izing process. We showed that in addition to using
Laplacian in edge detection tasks, it can be used for noise
removal applications. Smoothness can be easily controlled
just by the number of iterations. We compared the



Figure 5 Results of ROF, wiener filter and our denoising method for Boat.
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Figure 6 Results of ROF, wiener filter and our denoising method for Man.
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Figure 7 Results of ROF, wiener filter and our denoising method for House.
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Figure 8 Results of ROF, wiener filter and our denoising method for Cameraman.
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Figure 9 Results of ROF, wiener filter and our denoising method for Lena.
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Figure 10 Results of ROF, wiener filter and our denoising method for Barbara.
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Table 1 TV for 6 noisy and denoised images with noise variance 0.005

Noise variance (0.005) TV (original mage) TV (noisy image) TV (ROF model) TV (Wiener filter) TV (our method)

Boat 1.6 2.09 1.31 1.42 1.22

Man 1.76 2.20 1.32 1.51 1.22

House 1.3 1.81 1.21 1.27 1.14

Cameraman 1.67 2.13 1.33 1.53 1.20

Lena 1.26 1.74 1.16 1.24 1.12

Barbara 1.57 2.07 1.15 1.36 1.10
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method with some classic methods like ROF and Wiener
filters based on TV value and also with the state-of-the-art
BM3D. The result of denoising is totally comparable with
ROF model. The computation time is equal to ROF model
with 10 iterations. Based on experimental results we con-
cluded that in relation to classic filters like ROF the
method appears to be easy, fast and applicable for many
noisy images. We analyzed that the technique can be ap-
plied for other image processing applications like deblur-
ring by defining the appropriate detector and weight
functions. The main disadvantage of the method is its fil-
tering action on the area of the image including low inten-
sity edges. The method can be improved to represent
better response by defining better noise detectors.

Appendix A: driving denoising equation
Here we drive the denoising equation by minimizing the
energy functional. First we use Taylor series and relate u
(x −Δx, y) to x component of the gradient of the image
ux. We have:

u x−Δx; yð Þ ¼ u x; yð Þ−Δx ux þ 1
2
Δx2 uxx ð24Þ

Then gx can be computed as:

gx ¼ ux−
1
2
Δx uxx ð25Þ

And for gx + Δx we can write:

gxþΔx ¼ ux þ 1
2
Δx uxx ð26Þ
Table 2 TV for 6 noisy and denoised images with noise varian

Noise variance (0.1) TV (original image) TV(noisy image)

Boat 1.6 8.68

Man 1.76 8.28

House 1.3 8.72

Cameraman 1.67 8.44

Lena 1.26 8.11

Barbara 1.57 8.50
Using Taylor series similarly for y components, gy and
gy + Δy are:

gy ¼ uy−
1
2
Δy uyy ð27Þ

gyþΔy ¼ uy þ 1
2
Δy uyy ð28Þ

Based on the above relations, we write:

−gx gxþΔx ¼ − ux
2 þ 1

4
Δx2 uxx

2 ð29Þ

−gy gyþΔy ¼ − uy
2 þ 1

4
Δy2 uyy

2 ð30Þ

The minimizer u is found by ∂J
∂u ¼ 0. Considering the

following relations for simplicity:

H1 ¼ H −gx gxþΔx

� �
; H2 ¼ H −gy gyþΔy

� �
;

Z1 ¼ e− gxþgxþΔxð Þ2 ; Z2 ¼ e− gyþgyþΔyð Þ2

ð31Þ

We can write:

J ¼ ∬ u−u0ð Þ2 þ λ∬H1 H2 Z1 Z2 ð32Þ
ce 0.1

TV (ROF model) TV (Wiener filter) TV (our method)

1.63 2.20 1.43

1.62 2.26 1.42

1.59 2.12 1.39

1.61 2.22 1.41

1.53 2.12 1.34

1.54 2.14 1.35



Figure 11 Decreasing behavior of f(u0) during the denoising process.
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Differentiating J with respect to u we have:

∂J
∂u

¼ ∬
�
2 u−u0ð Þ þ ∂λ

∂u
H1 H2Z1 Z2ð Þ

þλ
∂H −gx gxþΔx

� �
∂u

H2Z1 Z2

þλ
∂H −gy gyþΔy

� �
∂u

H1Z1 Z2−2λ gx þ gxþΔx

� �

∂ gx þ gxþΔx

� �
∂u

H1 H2Z1 Z2

−2λ gy þ gyþΔy

� � ∂ gy þ gyþΔy

� �
∂u

H1 H2Z1 Z2
� ¼ 0

ð33Þ

First we compute ∂gx
∂u :

∂gx
∂u

¼ uxx
ux

þ uxy
uy

	 

−

Δx
2

uxxx
ux

þ uxxy
uy

� �	 

¼ γx−βx

ð34Þ
Similarly for gx + Δx we have:

∂gxþΔx

∂u
¼ γx þ βx ð35Þ

Then we can write:

∂ gx þ gxþΔx

� �
∂u

¼ 2γx ¼ 2
uxx
ux

þ uxy
uy

	 

ð36Þ
And for y direction:

∂ gy þ gyþΔy

� �
∂u

¼ 2γy ¼ 2
uyy
uy

þ uyx
ux

	 

ð37Þ

Second we have:

∂ −gx gxþΔx

� �
∂u

¼ −2uxx−2uxy
ux
uy

þ Δx2

2
uxxx
ux

þ uxxy
uy

� �
uxx

ð38Þ

∂ −gy gyþΔy

� �
∂u

¼ −2uyy−2uyx
uy
ux

þ Δy2

2
uyyy
uy

þ uyyx
ux

� �
uyy

ð39Þ
Derivative of Heaviside Function appears the impulse

function:

∂H :ð Þ
∂u

¼ ∂H :ð Þ
∂ :ð Þ

∂ :ð Þ
∂u

¼ δ :ð Þ ∂ :ð Þ
∂u

ð40Þ

where δ(.) is the impulse function. We Ignore its effect
in the denoising process and assume λ is constant dur-
ing the implementation. Therefore we have:

∂H −gx gxþΔx

� �
∂u

≈0 ;
∂H −gy gyþΔy

� �
∂u

≈0 ;
∂λ
∂u

≈0

ð41Þ



Figure 12 Results of our method (up) and BM3D technique (down) with SNR = 25 for Boat.
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Figure 13 Results of our method (up) and BM3D technique (down) with SNR = 75 for Boat.
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Figure 14 Results of our method (up) and BM3D technique (down) with SNR = 25 for House.
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Figure 15 Results of our method (up) and BM3D technique (down) with SNR = 75 for House.
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Figure 16 Results of our method (up) and BM3D technique (down) with SNR = 25 for Cameraman.
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Figure 17 Results of our method (up) and BM3D technique (down) with SNR = 75 for Cameraman.
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Then ∂J
∂u can be simplified to:

∂J
∂u

¼ ∬2 u−u0ð Þ−4λ∬H1 H2Z1 Z2

	
gx þ gxþΔx

� � uxx
ux

þ uxy
uy

� �

þ gy þ gyþΔy

� � uyy
uy

þ uyx
ux

�� 

¼ 0

ð42Þ
After simplification, the result is:

u ¼ u0 þ 4λ SWN ∇ux γx þ ∇uy γy
� �

¼ u0 þ 4λ SWN ∇2u þ ∇u2
uxy
uxuy

� �
ð43Þ

Because uxuy in the second part of the equation may
create zero in the denominator, we write:

∇u2
uxy
uxuy

¼ ux
2 uxy
uxuy

þ uy
2 uxy
uxuy

ð44Þ

Using partial differential relations we have:

ux
2 uxy
uxuy

¼
∂u
∂x

� �2
∂u ∂u
∂x∂y

∂2u
∂x∂y

¼ ∂2u
∂x2

¼ uxx ð45Þ

Similarly for y component:

uy
2 uxy
uxuy

¼
∂u
∂y

� �2

∂u ∂u
∂x∂y

∂2u
∂x∂y

¼ ∂2u
∂y2

¼ uyy ð46Þ

The final equation is:

u ¼ u0 þ 2λ SWN ∇2u ¼ u0 þ λ f uð Þ ð47Þ
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