
a SpringerOpen Journal

Nagamouttou et al. SpringerPlus (2015) 4:98
DOI 10.1186/s40064-015-0805-1
RESEARCH Open Access
A verification strategy for web services
composition using enhanced stacked automata
model
Danapaquiame Nagamouttou*, Ilavarasan Egambaram, Muthumanickam Krishnan and Poonkuzhali Narasingam
Abstract

Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary
enterprise applications, and one crucial technique of its implementation is web services. Individual service offered
by some service providers may symbolize limited business functionality; however, by composing individual services
from different service providers, a composite service describing the intact business process of an enterprise can be
made. Many new standards have been defined to decipher web service composition problem namely Business
Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML)
specification language for defining and implementing business practice workflows for web services. The problems
with most realistic approaches to service composition are the verification of composed web services. It has to
depend on formal verification method to ensure the correctness of composed services. A few research works has
been carried out in the literature survey for verification of web services for deterministic system. Moreover the
existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness.
In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM)
has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the
properties like dead transition, deadlock, safetyness, liveness and reachability.
Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is
converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is
transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is
verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in
contrast to the existing models.

Keywords: Web service composition; ESAM; Promela; BPEL4WS; SPIN
1 Introduction
Web services are disseminated and self-sufficient compu-
tational elements that solve specific tasks, varying from
undemanding requests to multifaceted business processes
and the information will be interacted using XML mes-
sages following the SOAP standard. Composition of ser-
vices thus received much interest to support B2B. The
business world has developed a number of XML-based
standards to formalize the specification of web services,
their composition, and their execution. Web service com-
position should satisfy several fundamental requirements:
* Correspondence: n.danapaquiame@gmail.com
Department of Computer Science and Engineering, Pondicherry Engineering
College, Pondicherry 605014, India

© 2015 Nagamouttou et al.; licensee Springer.
Commons Attribution License (http://creativeco
reproduction in any medium, provided the orig
Connectivity, support for non-functional quality of service
metrics, correctness, scalability, and in the desiderative
situation. Web services composition can be broadly classi-
fied into two techniques namely Workflow and AI Plan-
ning as shown in Figure 1. Workflow technique can be
further classified into orchestration and choreography. In
orchestration, the involved web services are under control
of a single endpoint central process (another web service).
Choreography, in contrast, does not depend on a central
orchestrator. Each web service that participates in the
choreography has to know exactly when to become active
and with whom to interoperate. Choreography is based on
collaboration and is mainly used to exchange messages in
public business processes. BPEL is one of the types of
This is an Open Access article distributed under the terms of the Creative
mmons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
inal work is properly credited.

mailto:n.danapaquiame@gmail.com
http://creativecommons.org/licenses/by/4.0

Figure 1 Flow of web services composition.

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 2 of 13
Orchestration and is used for composing the web services.
Web Service Choreography Description Language (WS-
CDL) and Web Service Choreography Interface (WSCI)
comes under choreography. Certain applications use WS-
CDL and WSCI for choreography. Ontology Web Lan-
guage for Service (OWL-S) and WSMO come under
ontology based language. PDDL and Pi-Calculus comes
under Logic based approach. Even with the availability of
many languages, BPEL is preferred for web service com-
position in the real time applications.
Web services are composed using BPEL4WS and it is

transformed into ESAM (grouping of Amend Muller
Automata and Push down automata) and it is changed
into Promela language, an input language for Simple
ProMeLa Interpreter (SPIN) tool. The model is verified
using SPIN tool. Only a few cases considered the verifi-
cation part, deterministic systems in particular. This
paper intends to compose web services and verification
of web services for non-deterministic systems with the
avoidance of dead transition and deadlock.
The main contribution of this paper to be verification of

the composed web services which is summarized as follows:

� Here a new model to verify the composed web
services using ESAM was proposed. ESAM is the
combination, of Amend Muller Automata and Push
down automata which is suitable for both
deterministic and non-deterministic system.
Deterministic system means, on receiving input it
goes to one state only as shown in Figure 2, whereas
non-deterministic system, on receiving same input it
goes to many states as shown in Figure 3.

� The proposed model is also compared with the
Timed Automata (Su et al. 2009), Interface
Automata (Cambronero et al. 2011) and
ColoredPetrinet (Yang et al. 2005).
� Finally, SPIN tool is used for verifying the composed
web Services (input is thePromela)

� The report shows that our system is giving more
efficient result than the other system in terms of
finding Dead transition and deadlock.

� Our system is readily applicable for any existing
applications, and it could be efficiently used for
verifying composed web services.

The rest of this paper is organized as follows. Section
2, describes related works. Section 3, describes back-
ground, application overview and Automata definition.
Section 4 describes proposed Architecture. Section 5,
depicts the algorithm for composition. Section 6, depicts
the verification algorithm. Section 7, portrays the sample
flow of airline reservation system. Sections 8 discuss the
implementation of proposed model for web service com-
position and verification. The performance of the pro-
posed model is evaluated and reported in this section.
Section 9, describes the conclusion and give an outlook
on future research.

2 Related works
The development of composite web services is still an
emerging technique; there is a need for effective and effi-
cient composed web services by using formal technique.
We now discuss related work on web service compos-
ition verification. The composition and verification of
web services are generally classified into four categories.
They are, timed automata, interface automata, colored
Petrinet and model checking.
Timed Automata were used for verification of composed

web services (Cambronero et al. 2011; Jin Song et al. 2006).
Web service choreography description language (WSCDL)
was used for composition of web services, converted into
Timed Automata and verified using the tool called UPPAAL.

Figure 2 Deterministic finite automata.

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 3 of 13
Here, only emptiness problem is verified. The whole process
is only in the design level and not in the implementation
level. Timed Automata applicable only for deterministic sys-
tem rather than non-deterministic system.
Interface automata were used for verification of com-

posed web services (Su et al. 2009; Alfaro & Henzinger
2001; Holzmann 1997). Initially composition of web ser-
vices are done by BPEL4WS and converted into Inter-
face automata. This IA is mapped into Promela. Finally
it is verified using the tool SPIN. This approach is ap-
plicable for deterministic system rather than non-
deterministic system.
Petrinet model were used for verification and valid-

ation of composite web services (Lohmann 2007; Foster
et al. 2006; Hamadi and Benatallah 2003; Verbeek & van
der Aalst 2005; Yang et al. 2005; Schmidt & Stahl 2004;
Yi & Kochut 2004; Narayanan & McIlraith 2002). It pre-
sents a methodology for the design, verification and val-
idation of composite Web Services using WS-CDL as
ε

ε

ε

End Unit

Start

Search Products

Get Product List

Select Products

Confirm

Cancel
Product

End Unit

Yes

No

Produc

Return Pro

Figure 3 Non-deterministic finite automata.
the language for describing Web Service interactions
and Petrinet as a formalism (that allows us to analyze
the described systems). They have considered timed au-
tomata and prioritized collaboration in composite Web
Services, so the considered model of Petri nets is a pri-
oritized version of Timed Petri nets.
Model checking is used for webs service composition

(Foster et al. 2003a; Huang & Mason 2006). Specifications
of the design are modeled in UML in the form MSSC and
compiled in FSP. Verification process applied for the fol-
lowing steps to model, specify properties of the compos-
ition, and implement the example in BPEL4WS.

1. Translate BPEL4WS - > FSP (used LTSA-MSC)
2. BPEL4WS implementation
3. Generate BPEL4WS model in FSP for use within LTSA

Used LTSA model checker to detect possible add-
itional scenarios, checking and iterate tracing resolution
ε
ε

Notification

Check Availability

Confirm

Shipment Confirm

Mode

Cash on

Debit

Credit

Online banking/ mobile banking

Summary of
Ordered Product

Payment

Confirm
Payment

Delivery

Yes

No

Yes

ts

Delivery

ShipmentDetails

Shipment

ducts

Products

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 4 of 13
until no violations or deadlocks are discovered depends
on the model designed. It is suitable for deterministic
system rather than non- deterministic system.
Foster (Foster et al. 2003b), defined a model based on

analysis of obligation in web service choreography. This
paper proposed composition of web services and imple-
mentation of WS-CDL at design level. The verification
part was not addressed.
Alves et al. 2007; Xiwu & Zhengding 2006 suggested

about the BPEL language representation for the business
processes. This language is used for composition of web
services and verified using automata.
Samira (Samira et al. 2008) suggested web service in-

teractions using coordination language Reo. This paper
proposed an approach to derive the formal semantics of
WS-BPEL processes compositionally using Reo and con-
straint automata. Mapping each will result the behaviour
of process. They did only composition of web services
by using Reo and constraint automata and not the verifi-
cation part.
In (Jin Song et al. 2006), Jin Song Dong contributed

the concept of threefold, described as

1. Defined automata based semantics for the Orc
language, which allows a systematic constriction of
timed automata models from Orc models.

2. They explored ways of use Uppaal to verify critical
properties over Orc models.

3. Developed a toll to automate our approach.

Here, it uses the semantics verification using the tool
called Uppaal and Orc does not support the complex
data structure. So a new approach should be used for
manipulating those complex date structure, it is applicable
for deterministic system rather than non-deterministic
system.
Fu,x. (Fu et al. 2004) suggested that, BPEL specifica-

tions of Web Services are translated to an intermediate
representation (Guarded Automata) with unbounded
queries for incoming messages. Guarded Automata can
then be converted into Promela language and it is veri-
fied using the tool called SPIN. Guarded Automata is
applicable for deterministic cases rather than non-
determinism.
Co, k-m.et (Kuo-Ming et al. 2002) described the ana-

lysis of grid service composition with BPEL4WS. They
have used BPEL4WSas a business workflow description
language for the composition of grid services. It pro-
posed a high-level architecture to compliment GSI +
BPEL4WS for defining process workflow among grid
services. During composition, depending on the specifi-
cation of OGSI, it is mapped with BPEL4WS for defining
the process workflow. They have used only composition
and not verification.
In (Hou et al.), HovLisn, ontology based approach for
verification of web services composition is discussed.
Web service interactions with pi- calculus, an automatic
mechanism were used and converting conceptual cap-
ability description to formal process.
The Table 1 shows that the overall survey of my re-

search works. Here only limited number of models is
available for verifying the composed Web Services. Even
though number of the models is available, it is not satis-
fying the properties like reachability, dead transition,
deadlock and safetyness.
Earlier studies achieved web service composition veri-

fication for deterministic systems. The properties of dead
transition and deadlock were not handled. Our paper
captivated to readdress these issues in non-deterministic
system during verification of composed web services.

3 Background
An automaton is a mathematical model that represents the
behavior of the systems with the help of discrete number of
inputs and discrete number of outputs. Deterministic system
is defined as on receiving input, it goes to one state.
Figure 2 shows the example of deterministic finite au-

tomata .it contains six states namely Q0, Q1, Q2, Q3, Q4

and Q5. Giving input “a” to Q0 it goes to Q1state only.
Double circle is represented as final state. On receiving
an input “a”, it does not go to more than one state.
The Figure 3 shows the transition diagram for the non -

deterministic System. It contains six states namely Q0, Q1,
Q2, Q3, Q4 and Q5. Giving an input a to Q0 it goes to Q1, Q3

and Q4states. Double circle is represented as final state.
Deterministic system avoids the problem like reachabil-

ity and emptiness to an extend of 40 to 50%, suitable for
Timed automata and Interface Automata. Whereas
non-deterministic System avoids the problems like
Reachability, Emptiness, Dead Transition, and Deadlock
at 95 to 99%.

3.1 Application overview
A Net Beans module is a set of Java classes written to
interact with the Net Beans APIs, for extending the IDE
or for creating your own application on the Platform.
JAX-RPC is used for creating web services that can be

supported in the IDE. Using the JAX-RPC web services,
system gets the “JAX-RPC Web Services” plug-in from
the Plug-in manager.
The Business Process Execution Language for Web Ser-

vices (BPEL4WS), also referred to as BPEL, is currently a de
facto standard for building, specifying and executing business
processes for web services composition and orchestration.
BPEL composes web services to get a specific result. The
composition result is named a process, involved services are
called as partners, and the message exchange is referred to as
an activity. In other words, a process contains a set of

Table 1 Comparison of existing work with proposed work

S. No Researchers Formal
model

Transformation verification Type of
system

Specification Tool
used

Level of
developmentCorrectness

property
Safetyness Dead

transition
Deadlock

1 M.Emilia
Cambronero

Timed
Automata

No No No No Deterministic
System

WSCDL WST and
UPPAAL

Design Level

2 Jia Mei Interface
Automata

No No No No Deterministic
System

BPEL, Promela SPIN Implementation
Level

3 Jin Song
Dong

Orchestration
on computation
via Timed
automata

No No No No Deterministic
System

LTL UPPAAL Design Level

4 Valentin
Valero

Colored
Petrinet
Method

Yes Partial Partial No Deterministic
System

BPEL CPN Implementation
Level

5 Guangquan
Zhang

Refinement
Checking
Method

Yes No No No Deterministic
System

BPEL UPPAAL Design Level

6 Our Work Modified
Muller
Automata

Yes Yes Yes Yes Both
Deterministic
and non-
Deterministic
System

WSCDL - Implementation
Level

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 5 of 13
activities and it invokes external partner services using a
WSDL interface.
A BPEL process defines the order in which involved

web services are composed, either in sequence or in par-
allel. BPEL allows describing conditional activities. An
invocation of a Web service can for example rely on the
result of another web service’s invocation. With BPEL, it
is possible to create loops, declare variables, copy and
assign values as well as to use fault handlers. Complex
business processes can be built algorithmically by using
all these constructs. It can be helpful to describe busi-
ness processes graphically through UML (Unified Mod-
elling Language) activity diagrams.
BPEL supports two different ways of describing business

processes that support orchestration and choreography:

1. Executable processes allow for specifying the details
of business processes. They follow the orchestration
paradigm and can be executed by an orchestration
engine.

2. Abstract business protocols allow specification of the
public message exchange between parties only. They
do not include the internal details of process flows
and are not executable. They follow the
choreography paradigm.

3.2 Web service orchestration basics
The IDE's BPEL Designer provides a highly graphical en-
vironment for authoring, deploying and testing web-
service centric business processes. This is often called web
service orchestration and is one of the keystones of
service-oriented architecture (SOA). A BPEL process can
be thought of as a logical aggregator and coordinator of
web services. In such a process, a collection of partner
web-service components can collaborate synchronously or
asynchronously, participate in long-lived conversations,
and support fault handling. Thus, the IDE's BPEL Designer
feature extends the power of service-oriented architecture.
The BPEL modeling environment includes deployment

runtime, and the ability to author, edit, test-run, and debug
BPEL processes. The BPEL Designer feature lets you use
drag-and-drop functionality to create visual diagrams of
business processes to orchestrate web services. The BPEL
Designer feature supports two-way round-trip engineering
of processes that are expressed in the Web Services Busi-
ness Process Execution Language Version 2.0 (WS-BPEL
2.0, or generically, BPEL). In the BPEL Designer, you can
create a business diagram in the visual Design view or ma-
nipulate source code in the Source view. The BPEL source
code and its visual diagram are always kept in synchronize.

Definition 1 (Amend Muller Automata)
AMA is a type of a ω-automaton (ω-automata are finite au-
tomata on infinite words). The Amend Muller automata is
defined using Muller acceptance condition, i.e. the set of all
states visited infinitely often must be an element of the ac-
ceptance set. An AMA is a tuple A= (Qama, Σama, δama,
Ѓama, q0aa, Fama) that consists of the following components:

� Qama is a finite set. The elements of Q are called the
states of A

� Σama is a finite set called the alphabet of A
� δama: Qama × Σama → Qama is a function, called the

transition function of A.

Push Down Automata Muller Automata

Translator

Orchestration

Web service

BPEL4WS

Promela

SPIN
model
checker

Verified

Web service

Web service

Web service

Translator

Web service

Verification

Composition

Recomposition

Request

Yes

No

Figure 4 Proposed architecture.

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 6 of 13
� q0ama is an element of Qama, called the initial state.
� Ѓama is an stack symbol contains the information

about the state regarding the operations like Push
and Pop.

� Fama ⊆ Qama is the acceptance condition. A accepts
exactly those runs in which at least one of the
infinitely often occurring states is in Fama.

� M accept a ω-word α∈∑ω if and only if there exist a
run r of M on α satisfying Inf(r) εFm i.e. the set of
infinitely often visited states are exactly one of the
set in Fm.

Definition 2 (Push down Automata)

A push down automata M is defined by (Qpda, Σpda,
Ѓpda, δpda, q0pda, z0pda, Fpda) Where,
Qpda is the finite set of states
Σpda is the alphabet called input alphabet
Ѓpda is the stack alphabet, is a finite alphabet of stack
symbols.
q0pda ε Qpda is the stack state/initial state
z0pda in Ѓpda is the particular stack symbol called start
symbol.
Fpda ≤ Qpda is the set of final states.
δpda is the transition relation.

3.3 Promela and spin
PROMELA is the language used in SPIN to represent con-
current systems with abstraction. PROMELA programs
consist of processes, message channels, and variables. Pro-
cesses are global objects that represent the concurrent en-
tities of the distributed system. Message channels and
variables can be declared either globally or locally in a
process. PROMELA supports rendezvous and asynchron-
ous communication between processes via channels. Pro-
cesses specify behavior, while channels and global variables
define the environment in which the process runs.
SPIN is a verification tool for composed web services.

SPIN takes a model of the system design with a require-
ment as input and the model checking algorithm speci-
fies whether the system design meets the requirement or
not. SPIN verification is focused on proving the correct-
ness of process interactions; not much importance is
given to internal computations of the processes.
In the Web service composition part the related services

are invoked and composed using BPEL4WS. While com-
posing, the partner links between the services are identified.
Based on the established links the composition process has
been completed. The Web services are created by using
Java through Net Beans. After completing the composition,
the BPEL file is mapped into Muller automata notations
and saved as xml files. For retrieving the xml content from
xml file “XPath” xml query language is used. Services are
retrieved from xml for converting into Promela and it is
stored as variable in pml file and if service is available, it
gets increment or it returns service is zero. The xml file is
transformed into .pml file and pml file is given as input to
spin tool for verifying the composed services. Spin tool will
generate the automata diagram for the given pml input and
safety, Reachability property is verified using that tool. An
algorithm is designed for verifying the dead transitions
present in the diagram.

4 Proposed architecture
Our proposed architecture has two parts is shown in
Figure 4. First one is Web services composition and sec-
ond is verification of composite Web services. In the
composition part, the user request is collected, which is
sent to central controller and the central controller will
be interacting with neighbour web service request. Based
on the request the related Web services will be invoked.
The invoked services are composed by using BPEL4WS.
The output of the composition part will be given as the
input to the verification part. During verification the
BPEL4WS is mapped into Amend Muller automata and
Push down automata with the help of translator. After
mapping, it is transformed into Promela and it is input
to the SPIN Model checker. Finally, it is verified using
SPIN tool for checking the correctness properties of web
services composition.

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 7 of 13
Orchestration is evidently more proficient and stretchy
when it comes to composed web services to execute
business processes. It has the following advantages over
choreography:

� The coordination of process components is centrally
managed by a specific coordinator. Web services can
be incorporated without being aware that they are
taking part in a larger business process.

� If any faults occur during verification, it has two
options to satisfy the request. Either modify the
original service or select alternate service depends
on the user satisfaction.
5 Algorithm for composition based on automata
The proposed system concentrates on composition and
verification of web services composition. The algo-
rithm for the web services composition is shown
below.
Input: Web service request List WS (Inpu , z0.F) and the minimum threshold value ρ

Output: the optimal sequence of Web service composition

Begin

1. Initialization: PDA stack Z0=NULL and lets WSi = AcquireMaxQos (List WS); / / AcquireMaxQos (W) gets the best
immediate successor service of the service W in the service composition directory;

2. Push (Z0, WSi); // push (Z0, W) means it pushes service W to stack Z0;

3. WStop = AcquireTop (Z0);// AcquireTop (Z0) means it gets the service at the top of stack;

4. While (WStop≠ IP (List WS))

{

 WS top =AcquireMaxQos (WS top);

 Push (Z0, WS top)

 };

5. If (WS top> List WS)

 CALCULATE DWSC;

 Endif // calculates DWSC from bottom to top in the S;

If (DWSC≥ρ)

 Return Z0;

 Else pop (Z0, WStop);

 Endif // pop (Z0, W) means it pops up the service W from stack;

7. If (Z0=NULL || TRC)

 Return NULL;

 Else WStop =AcquireTop (Z0);

 Endif //TRC means services are traversed completely;

8. While (WStop≠SBIS)

 {Pop (Z0, WStop)}; // SBIS means the second best immediate successor service;

9. WStop =AcquireTop (Z0);

 Push (Z0, AcquireNextQos (WStop)); //AcquireNextQos (W) means it gets the second best immediate successor
service of the service W in the service composition directory;

 End.

The semantic description of the composition of web
services is illustrated in the following definition.
Definition 3
A composition schema is a tuple (S, M) where S = (s1,
s2…, sn) is the set of services, M is the set of messages.
Each service Si = {Mi

in, Mi
iout} is a pair of disjoint set mes-

sages (Mi
in∩Mi

out = ϕ) where
Mi
in = set of incoming messages

Mi
out = set of outgoing messages and

Mi =Mi
in U Mi

out set of messages of services where
Uiε [1…n] Mi

in = Uiε [1…n] Mi
out =M

We assume that each message s a unique sender and a
unique receiver and service cannot send a message back
to itself.
For example

Services are S = {Transport, Airline, Hotel}
Set of Messages = {query, suggest, confirm, reserve}
The input and output messages of service types are
defined as Magent

in = {query}

M
agent

out = {suggest}
M
smith

in = {suggest, confirm}
M
smith

out = {query, reserve}
M hotel

in = {reserve}
Mhotel

out = {confirm}

Definition 4
Let X = {S, M} be a composition schema. The set of ser-
vices over X is a tuple R = ((S, M), A) where
A = Finite state automaton with Amend Muller au-

tomaton alphabet M. We let L(R) = L(A). I.e. the lan-
guage recognized by A.
Muller automata constructs the set of states (is transi-

tions) {q0, q1, q2, q3, q4, q5………qn).
The initial state = {q0}
The final state = {qn}
The alphabet = {(query, suggest, confirm, reserve)}
The set of transitions = {(q0, query, q1)}, (q1, suggest, q2),

(q2, query, q3), (q3, suggest, q2), (q2, reserve, q4),
(q4, confirm, q5).
The regular expression for the above is defined as
Query suggest (query suggest)*reserve confirm

6 Algorithm for verification
The algorithm is designed for the checking dead transi-
tions in the automata diagram. Dead Transitions is
stated as “the transitions which will never be enabled”.
There are no activities in the process that cannot be real-
ized. If initially dead transitions exist, then the composition
process is bad designed.

6.1 Amend Stacked Muller Algorithm for avoiding dead
transitions in services
The algorithm initially create service matrix and found the
length of the states. It sets the matrix value and it sets 0 if
the initial and final states are equal, otherwise sets as 1.
Then it find the position of the given accepted state and if
the count value is 0 or greater than length of the states
means it sets the Boolean variable “dead” as true.

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 8 of 13
Otherwise, it checks if the given accepted state is the ini-
tial state and set “dead” as true else set “dead” as false.

6.2 Service composition verification
During verification process the following properties are
verified. They are
Safety assurance that the composition is deadlock free

and is checked against partial correctness of transitions
Correctness assurance that the composed services are

correct
Reachability assurance that whether it is possible for

a process to achieve the desired result.
Liveness assurances against starvation of progress (that

the service process eventually terminates) and that mes-
sages received are served on a first-come-first-served basis.
Dead transitions means that the transitions which

will never be enabled. There are no activities in the
process that cannot be realized. If initially dead transi-
tion exists, then the composition was bad designed.
Deadlock is a situation in which two or more compet-

ing behaviour are each waiting for the other to finish,
and thus neither ever does

7 Sample flow for airline reservation system
The diagram in Figure 5 shows the flow of reserve ticket for
Airline Reservation System. The process is started by Init_I-
nteraction0_getplaces_Interaction. Giving input “a” on this
state it goes to Init_Interaction1_returnplaces_Interaction.
Giving input “b” on this state, it goes to Init_Interactio2_-
confirmplaces_Interaction. Similarly up to “e” input it
reaches to the desired state. On Init_Interaction_Returna-
vailability_Interaction state, traffic occurs. The transition is
redirected to stack and to temporary state with help of “ε”.
Finally it is reached to the destination with condition satis-
fied (Res = true). All the states maintaining stack i.e. push
down automata. If any traffic or deadlock occurs, the transi-
tion is redirected to stack. Fetching the information from
stack and it is passed to temporary state. Stack contains the
Figure 5 Automata diagram for airline reservation system.
top of the symbol is “ε”. So it is easily transited to another
state with the help of “ε”. If the condition is not satisfied it
goes to end work unit.

8 Case study
The significance of Web Services for electronic govern-
ment has become more and more increasing, because of
providing services and exchanging information related
to the government management.
In this Case study, the applications are Ticket Reservation,

Hotel Reservation and Transport Reservation and these ser-
vices are composed using BPEL4WS by creating a BPEL
module. In this module, BPEL process diagram will be gener-
ated by invoking the basic and structured activities of BPEL
and we need tocreate a new composite Application project.
Finally, add a JBI Module project to the composite applica-
tion project. Test-run a business process is to be performed,
make sure that the application Server is started and build the
BPEL module project. Add it as a JBI Module to our Com-
posite Application project and deploying a Composite Appli-
cation project to the JBI server. The Deploy action compiles
the files in the Composite Application project, packages the
compiled BPEL and related web service artifacts (.wsdl
and .xsd files), and deploys them to the BPEL Service
Engine.
After composition, the verification part is started by

mapping the BPEL files to ESAM notations as xml
files. For converting into Promela, services are re-
trieved from xml using “XPath” and it is stored as vari-
able in pml file. The XML Path Language known as
XPath, is a query language for selecting nodes from an
XML document. The XPath language is based on a tree
representation of the XML document, and provides the
ability to navigate around the tree, selecting nodes by a
variety of criteria. The xml file is transformed into .pml
file and pml file is given as input to spin tool for verify-
ing the composed services. Spin tool will generate the
automata diagram for the given pml input and verify

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 9 of 13
the properties like deadlock, dead transition, safety,
and reachability.
Hotel reservation lists out the availability of hotel in a

given district. Also, it provides the services for checking
the room availability and reserving the room, etc. Trans-
port service includes the operations like get transport
availability, check availability and reserve transport, etc.
Ticket Reservation includes the operations like get
places, returnplaces, confirm places, ticket availability,
reserve ticket, etc.

8.1 Simulation of automata
The spinspider tab is opened and automata is choosed
for generating the automata diagram.
The diagram in Figure 6 shows the flow of reserve ticket

for Airline Reservation Systemusing SPIN tool. The
process is started by Init_Interaction0_getplaces_Interac-
tion. Giving input “a” on this state it goes to Init_Interac-
tion1_returnplaces_Interaction. Giving input “b” on this
state, it goes to Init_Interactio2_confirmplaces_Interaction.
Similarly up to “e” input it reaches to the desired state. On
Init_Interaction_returnavailability_Interaction state, traffic
occurs. The transition is redirected to stack and to tempor-
ary state with help of ”ε”. Finally it is reached to the destin-
ation with condition satisfied (Res = true). All the states
maintaining stack i.e. push down automata. If any traffic or
deadlock occurs, the transition is redirected to stack.
Fetching the information from stack and passed to tempor-
ary state. Stack contains the top of the symbol is ε. So it is
Figure 6 Transition diagram for airline reservation system.
easily transited to another state with the help of ε. If the
condition is not satisfied it goes to end work unit.
Here dead transition algorithm is verified. If no transi-

tion occurs on the particular state, there will be problem
in the composition and hence recomposition will be
done. If any deadlock occurs, it is redirected to stack
with the help of empty string as input. Here deadlock
property is verified. Consider a case where room is re-
served by some person, transport is reserved some other
person and at the same time a third person asking for
both the reserved room and transport. Now he has to
wait until the resources used by the existing person must
be released, which leads to deadlock. This can be
avoided by using preemption which means allocating
priority to the processes. Depends on this, if any higher
priority process enters, the lower priority process will
preempt its task in to the queue, higher priority process
will be executed. After finishing its task, waiting process
will be resumed. Following algorithm shows the dead-
lock evasion.
8.2 Amend Stacked Muller Algorithm for deadlock
evasion in composed web services
The following algorithm shows the evasion of the deadlock
for the composed web services. If the state (services) has
resources R and state has equal and higher prioritythan re-
sources, it will refuse the request and if the resource does
not exists for the particular state then also it will refuse the

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 10 of 13
request. Otherwise if the resource is not free which is used
by some other services, it will be stored into the queue. If
the stored services are at the front of queue, it will grant
services exclusive access to resource R. Like this way dead-
lock evasion is carried out.

If state Ss any R and S ≥ priority
than resources R, then

request is rejected
else if R ==empty then

request is rejected
else
{

if the R is not free, then
 Queue=S// waiting for resource R

If S== front of the queue
grant process S exclusive access to resource R

endif
end if

}
end if

8.3 Performance measurements

1 Specification of data set

Performance measurements were based on a data set
of workflows in the Figure 6. The circle labeled with ser-
vices Sama (Start Amend Muller automata) represents
the start state, Fama(Final Amend Muller Automata)
represents final state, Transition represents the flows
from one state to another state.

2 Results

Response time for the different models s been calcu-
lated. Response time is the difference between submission
of starting time and total time taken to finish the task.
Response Time = Starting time for Transition – Total

time taken to finish the task.
RTESAM = STESAM–TAESAM

Here the response time for CWS-PNs methodology is
higher than proposed model and the Timed automata
model. Response time for timed automata model is less,
because, it set the clock for each state, if time elapsed,
Table 2 Response time calculation for different models

States Proposed model-Amend Muller
Substantiation algorithm –
Response Time (ms)

Web service transla
tool used for verifica
web services-Timed
et al. 2011; Jin Song
Time (ms)

4 5 4

8 7 3

10 9 5

12 12 10

14 15 17
the transition failed or if the transition does not exists
due to deadlock or some situation, it fails to reach the
desired state. When comparing timed automata model
and proposed model, proposed model gives high re-
sponse time than timed automata. Even though the re-
sponse time is higher in the proposed model, it does not
meet the deadlock or dead transition. Table 2 shows the
Response time calculation for different models like
ESAM, timed automat and colored petrinet. ESAM is
taken less time than TA and CPN.

8.4 Performance evaluation-statistical approach
The Reachability problem is solved by the automatic re-
composition. When giving the input, it should reach the
final state from the starting state. If it does not reach the
final state, recomposition will be done and again it will
verify the reachability property against the final state.
The deadlock property is verified by checking the
branching and looping statements in the composed
service. If both the properties are verified, then the
safety and liveness properties will be automatically
verified.

8.4.1 Coefficient of variance
Coefficient of variance is the ratio of standard deviation
to the mean.
Table 3 shows the different dead transition values for

the different models. ESAM is giving less dead transition
value than CPN
Calculating Mean, variance and Standard Deviation

for Existing and Proposed model using Reachability
Factor.
DT for ESAM=Number of states moved – empty

string state moved/Total number of states * 100
Or

DTama ¼ Fs−Esms
sÞ=Q0 � 100

�

Let us consider the example 11-5/16*100 = 6/16*100 = 38.
Where 6 is the number of states moved using the diagram
5 and 5 is the empty string state is moved referred in the
tor tool and uppaal
tion of the composed
Automata (Cambronero
et al. 2006)-Response

CWS-PNs methodology for analysis,
design and validation of web service
choreographies based on (Yang et al.
2005) CPN-Response Time (ms)

10

20

30

32

43

Figure 7 Dead transition algorithm.

Table 3 Dead transition values for different models

S. No Number
of services

Dead transition

Proposed model
using Amend Muller
substantiation-
hybrid automata

Existing model,
CWS-PNs
methodology
used Colored
Petrinet

1 16 38 63

2 19 37 63

3 34 35 68

4 40 33 78

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 11 of 13
Figure 7, 16 is the total number of states. Finally the output
will be the 38%.

Mean �x ¼
X

x=n = 36. Adding the values of ESAM

and sum can be divided by total number of terms ie 4.

Variance σ2 ¼
X

xi−�xð Þ2=n = 3.75. Subtract each

value of ESAM from X1, find the square of the value and
finally calculate the sum. This sum can be divided by
total number of terms.

Standard Deviation S.D=
ffiffiffiffiffi
σ2

p
= 1.93. Finding square

root of the variance is called Standard deviation.
Coefficient of variance CV = Standard Deviation/Mean.
=1.93/36
=0.053
Similarly, calculate the mean, variance and standard

deviation for the CPN (Colored Petri Net) Timed Au-
tomata) values.
DTesam for Timed Automata = Number of states

moved/total number of states * 100
Or

DTta ¼ SMsð Þ=Q0 � 100

Let us consider the example 10/16*100 = 63. Where10 is
the number of states moved using the diagram 5, divvied by
total number of states. Finally the output will be the 63%.

Mean �x ¼
X

x=n ¼ 68

Variance σ2 ¼
X

xi− �x2ð Þ=n ¼ 37:5

S:D ¼
ffiffiffiffiffi
σ2

p
¼ 6:12

Coefficient of variance CV= Standard Deviation/Mean.
=6.12/68 = 0.09
Here ESAM value is lesser than the TA value. So TA is

riskier thanESAM model

8.4.2 T.Test
It can be used to determine if two sets of data are signifi-
cantly different from each other, and is most commonly ap-
plied when the test statistic would follow a normal
distribution if the value of a scaling term in the test statistic

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 12 of 13
were known. When the scaling term is unknown and is re-
placed by an estimate based on the data, the test statistic
(under certain conditions) follows a Student's t distribution.

�x1 ¼
X

x1=n ¼ 36; this value is obtained by adding

the ESAM values and divided by number of terms:

�x2 ¼
X

x2=n ¼ 68; similarly for x2 also:n1

¼ 4 and n2 ¼ 4

σ2d ¼ σ1
2=n1þ σ2

2=n2;

Where
σ1
2 is the value of standard deviation for ESAM and σ2

2

is the value of standard deviation for TA.
=3.75/4 + 37.5/4
= 10.31

Standard Deviation (S.D) σd ¼
ffiffiffiffiffi
σ2

p
d ¼ 3:21

T ¼ �x1− �x2=σd ¼ 9:96:

Where T is obtained by subtracting the value first
mean and secondmeans which is divided by standard
deviation.
Enter T-table at (n1 + n2-2) degrees of freedom.ie 4 +

4-2 = 6.
The calculated value is 8.33 and Tabulated value for 6

degrees of freedom in p = 0.05 is = 2.45 in table (Foster H).
So, concluding that the calculated value is greater than

the tabulated value. So there is a difference between
these two..i.e. p = 0.05, 95% difference with the model
TA than the ESAM.

9 Conclusion and future work
Web services technologies are becoming as popular
standard to integrate distributed applications and sys-
tems using XML-based standards. Developing applica-
tions that support web services interfaces will not be
enough to provide complete and coordinated business
processes. Thus, we need a new approach to compose
these web services together in order to form web ser-
vices orchestration and processes definition.
Many new standards have been defined to solve this

problem, for example BPEL4WS, and WSCI. BPEL4WS
provides an initial work for forming an XML specifica-
tion language for defining and implementing business
process workflows for web services. The main problem
with most practical approaches to service composition is
the verification of (behavioural) correctness of service
composition and that too for deterministic system.
In this paper, a new model called ESAM has been pro-

posed and a new algorithm called Amend Stacked Muller
Automata Algorithm has been proposed for the verification
of web services composition. Web services are created and
composed using BPEL4WS, and then it is mapped into
Amend Muller Automata notations and transformed into
Promela. SPIN tool is used for verifying the composed web
services. We experimentally confirmed that our approach
can bring 90% reduction of Reach ability, Dead Transitions
and verify the safety correctness property effectively in verifi-
cation process. Hence the proposed model is suitable for a
non-deterministic system and also considers the verification
part.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Departed transition and deadlock problem is identified and rectified. All
authors read and approved the final manuscript.

Received: 15 July 2014 Accepted: 8 January 2015

References
Alfaro L, Henzinger T (2001) “Interface automata”, Proceedings of the 9th Annual

Symposium on Foundations of Software Engineering., pp 109–120
Alves A, Arkin A, Askary S, Barreto C, Bloch B, Curbera F, Ford M, Goland Y, Guízar

A, Kart N, Liu CK, Klaf R, König D, Marin M, Mehta V, Ttte S, Rijn D, Yendluri P,
Yiu A (2007) Web Services Business Process Execution Language Version 2.0”

Cambronero ME, Diaz G, Valero V, Martinez E (2011) “Validation and Verification
of Web Services Choreographies by using timed automata”, Journal Logic
Algebraic

Foster H, Uchitel S, Magee J, Kramer J (2003a) “Model-based Verification of Web
Service Compositions”, Proceedings of 18th International conference on
Automated Software Engineering, IEEE., pp 152–161

Foster H, Uchitel S, Magee J, Kramer J (2003b) Model based verification of web
service compositions, Proceedings of 18th International conference on
automated software engineering., pp 152–161

Foster H, Uchitel S, Magee J, Kramer J (2006) "Model-Based Analysis of
Obligations in Web Service Choreography”, Proceedings of 6th International
Conference on Internet and Web Applications and Services,., pp 19–25

Fu X, Bultan T, Su J (2004) “Analysis of interacting BPEL Web Services”,
Proceedings of the 13th International Conference on World Wide Web.,
pp 621–630

Hamadi R, Benatallah B (2003) “A Petri Net-based Model for Web Service
Composition”, Proceedings of 14th Australian database conference,
ACM., pp 191–200

Holzmann G (1997) The model checker SPIN”. IEEE Trans Softw Eng 1:279–295
Hou L ,J ZHi, Wu B, “Modeling and verifying Web services driven by

requirements: An ontology based approach”, www.scichina.com
www.springerlink.com

Huang H, Mason R (2006) “Model checking technologies for Web Services”,
Proceedings of 4th International Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems, IEEE., pp 6–12

Jin Song D, Yang L, Jun S, Xian Z (2006) “Verification of Computation
Orchestration Via Timed Automata”, Proceedings of 8th International
Conference on Formal Methods and Software Engineering,
LNCS, vol 4260., pp 226–245

Kuo-Ming C, Younas M, Griffiths N, Awan I, Anane R, Tsai C-F (2002) “Analysis of
grid service composition with BPEL4WS”, Proceedings of 18th Advanced
Information Networking and Applications, vol 1., pp 246–254

Lohmann N (2007) “A Feature-Complete Petri Net Semantics for WS-BPEL 2.0”,
Proceedings of 4th International Workshop on Web Services and Formal
Methods, LNCS, vol 4937., pp 77–91

Narayanan S, McIlraith SA (2002) “Simulation, Verification and Automated
Composition of Web Services”, Proceedings of 11th International Conference
on World Wide Web, ACM., pp 77–88

Samira T, Mohsen V, Mogddam RZ, Marjan S (2008) “Modeling Web Service
Interactions Using the Coordination Language Reo”, Proceedings of 4th

International workshop on Web Services and Formal Methods (WS-FM),
LNCS, vol 4937., pp 108–123

http://www.scichina.com
http://www.springerlink.com

Nagamouttou et al. SpringerPlus (2015) 4:98 Page 13 of 13
Schmidt K, Stahl C (2004) “A Petri net semantic for BPEL4WS-validation and
application”, Proceedings of the 11th Workshop on Algorithms and Tools for
Petri Nets. Paderborn., pp 1–6

Su H, Huang Z, Liu L (2009) Interface automata based formal model for BPEL4WS
Web service composition”. Appl Res Computer 26:1774–1777

Verbeek H, van der Aalst W (2005) “Analyzing BPEL processes using Petri nets”,
Proceedings of the 2nd International Workshop on Applications of Petri Nets
to Coordination, Workflow and Business Process Management., pp 59–78

Xiwu GU, Zhengding LU (2006) A formal model for BPEL4WS description of web
service composition”. J Nat Sci 11(5):1311–1319

Yang YP, Tan QP, Xiao Y (2005) “Verifying Web Services Composition Based on
Hierarchical Colored Petri Nets”, Proceedings of 1st International workshop
on Interoperability of heterogeneous information systems, ACM., pp 47–54

Yi X, Kochut K (2004) “A CP-net based design and verification framework for Web
Services”, Proceedings of IEEE International Conference on Web Services.,
pp 756–760
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Application overview
	3.2 Web service orchestration basics
	Definition 1 (Amend Muller Automata)
	Definition 2 (Push down Automata)

	3.3 Promela and spin

	4 Proposed architecture
	5 Algorithm for composition based on automata
	Definition 3
	Definition 4

	6 Algorithm for verification
	6.1 Amend Stacked Muller Algorithm for avoiding dead transitions in services
	6.2 Service composition verification

	7 Sample flow for airline reservation system
	8 Case study
	8.1 Simulation of automata
	8.2 Amend Stacked Muller Algorithm for deadlock evasion in composed web services
	8.3 Performance measurements
	8.4 Performance evaluation-statistical approach
	8.4.1 Coefficient of variance
	8.4.2 T.Test

	9 Conclusion and future work
	Competing interests
	Authors’ contributions
	References

