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Abstract

In this paper, we propose a five-parameter lifetime model called the McDonald
exponentiated gamma distribution to extend beta exponentiated gamma,
Kumaraswamy exponentiated gamma and exponentiated gamma, among several
other models. We provide a comprehensive mathematical treatment of this
distribution. We derive the moment generating function and the rth moment. We
discuss estimation of the parameters by maximum likelihood and provide the
information matrix.
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1 Introduction
The gamma distribution is the most popular model for analyzing skewed data and hydro-
logical processes. One of the important families of distributions in lifetime tests is the
exponentiated gamma (EG) distribution. The exponentiated gamma (EG) distribution has
been introduced by Gupta et al. 1998 which has cumulative distribution function (c.d.f.)
and a probability density function (p.d.f.) of the form, respectively;

G(x, λ, θ) = [1 − e−λx(1 + λx)
]θ , λ > 0, θ > 0 and x ≥ 0. (1)

where λ and θ are scale and shape parameters respectively. The corresponding probability
density function (pdf) is given by

g(x, λ, θ) = θλ2xe−λx [1 − e−λx(1 + λx)
]θ−1 . (2)

Shawky and Bakoban 2008 discussed the exponentiated gamma distribution as an
important model of life time models and derived Bayesian and non-Bayesian estimators
of the shape parameter, reliability and failure rate functions in the case of complete and
type-II censored samples. Also order statistics from exponentiated gamma distribution
and associated inference was discussed by Shawky and Bakoban 2009. Ghanizadeh, et al.
2011, dealt with the estimation of parameters of the exponentiated gamma (EG) distribu-
tion with presence of k outliers. The maximum likelihood and moment estimators were
derived. These estimators are compared empirically using Monte Carlo simulation. Singh
et al. 2011b proposed Bayes estimators of the parameter of the exponentiated gamma
distribution and associated reliability function under general entropy loss function for
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a censored sample. The proposed estimators were compared with the corresponding
Bayes estimators obtained under squared error loss function and maximum likelihood
estimators through their simulated risks. Khan and Kumar 2011 established the explicit
expressions and some recurrence relations for single and product moments of lower gen-
eralized order statistics from exponentiated gamma distribution. Sing et al. 2011a where
proposed Bayes estimators of the parameter of the exponentiated gamma distribution and
associated reliability function under general entropy loss function for a censored sample.
Feroze ans Aslam 2012 introduced Bayesian analysis of exponentiated gamma distribu-
tion under type II censored samples. Recently, Nasiri et al. 2013 discussed Classical and
Bayesian estimation of parameters on the generalized exponentiated gamma distribution.

2 Mc-Donald generalized distribution
Consider an arbitrary parent cdf G(x). The probability density function (pdf) f (x) of the
new class of distributions called the Mc-Donald generalized distributions (denoted with
the prefix "Mc" for short) is defined by

f (x, a, b, c) = c
B(a, b)g(x) [G(x)]ac−1 [1−[G(x)]c

]b−1 , (3)

where a > 0, b > 0 and c > 0 are additional shape parameters . (See Corderio et al. (2012)
for additional details). Note that g(x) is the pdf of parent distribution , g(x) = dG(x)

dx .
Introduction of this additional shape parameters is specially to introduce skewness. Also,
this allows us to vary tail weight. It is important to note that for c = 1 we obtain a sub-
model of this generalization which is a beta generalization (see Eugene et al. 2002) and for
a = 1, we have the Kumaraswamy (Kw), [Kumaraswamy generalized distributions (see
Cordeiro and Castro 2011)). For random variable X with density function (2), we write
X ∼ Mc − G. The probability density function (3) will be most tractable when G(x) and
g(x) have simple analytic expressions. The corresponding cumulative function for this
generalization is given by

F(x, a, b, c) = I[G(x)]c(a, b) = 1
B(a, b)

[G(x)]c∫
0

w(1−a)(1 − w)b−1dw, (4)

where Iy(a, b) = 1
B(a,b)

y∫
0
w(1−a)(1 − w)b−1dw denotes the incomplete beta function ratio

(Gradshteyn and Ryzhik 2000). Equation (4) can also be rewritten as follows

F(x, a, b, c) = [G(x)]ac
aB(a, b) 2F1

(
a, 1 − b; a + 1; [G(x)]c

)
, (5)

where

2F1(a, b; c; x) = B(b, c − b)−1
1∫

0

tb−1 (1 − t)c−b−1

(1 − tx)a dt

is the well-known hypergeometric functions which are well established in the literature
(see, Gradshteyn and Ryzhik 2000). Some mathematical properties of the cdf F(x) for any
Mc-G distribution defined from a parent G(x) in Equation 5, could, in principle, follow
from the properties of the hypergeometric function, which are well established in the lit-
erature (Gradshteyn and Ryzhik 2000 Sec. 9.1 ). One important benefit of this class is



Al-babtain et al. SpringerPlus 2015, 4:2 Page 3 of 22
http://www.springerplus.com/content/4/1/2

its ability to skewed data that cannot properly be fitted by many other existing distribu-
tions. Mc- G family of densities allows for higher levels of flexibility of its tails and has a
lot of applications in various fields including economics, finance, reliability, engineering,
biology and medicine.
The hazard function (hf) and reverse hazard functions (rhf) of the Mc-G distribution

are given by

h(x) = f (x)
1 − F(x) = cg(x)Gac−1(x) [1 − Gc(x)]b−1

B(a, b)
{
1 − I[G(x)]c(a, b)

} , (6)

and

τ(x) = f (x)
F(x) = cg(x)[G(x)]ac−1 [1−[G(x)]c ]b−1

B(a, b)
{
I[G(x)]c(a, b)

} ,

respectively. Recently Cordeiro et al. 2012 presented results on the McDonald normal
distribution. Cordeiro et al. 2012 proposed McDonald Weibull distribution, Merovci and
Elbatal 2013 proposed McDonald modified Weibull distribution, Elbatal et al. 2014 pro-
posed McDonald generalized linear failure rate Distribution, Elbatal and Merovci 2014
introduced McDonald Pareto distribution and Marciano et al. 2012 obtained the statis-
tical properties of the Mc − � and applied the model to reliability data. In this paper we
introduce a new class of distribution, called McDonald exponentiated gamma (McEG)

distribution which extends the exponentiated gamma model and has several other mod-
els as special cases. since it has more shape parameters, yielding a large variety of forms.
It can also be useful for testing the goodness of fit of its sub-models.
The outline of this paper is as follows. In Section 2, the McDonald exponentiated

gamma (McEG) and related family distributions are introduced. The series expansion
for the density, hazard and reverse hazard functions, and other properties are pre-
sented in Section 3. Section 4 provides expansions for the cumulative and density
functions. In Section 5, we present the statistical properties, in particular moments ,
moment generating function. The distribution of the order statistics is expressed in
Section 6. Section 7 provides least squares and weighted least squares estimators. Max-
imum likelihood estimates of the parameters index to the distribution are discussed in
Section 8. Section 9 provides applications to real data sets. Section 10 ends with some
conclusions.

3 McDonald exponentiated gamma distribution
In this section we studied the five parameter McDonald exponentiated gamma (McEG)

distribution. Using G(x) and g(x) in (3) to be the cdf and pdf of (1) and (2). The pdf of the
McEG distribution is given by

f (x, ϕ) = cθλ2xe−λx [1 − e−λx(1 + λx)
]θ−1

B(a, b)
[
1 − e−λx(1 + λx)

]θ(ac−1)

·
[
1 − [1 − e−λx(1 + λx)

]θc]b−1

= cθλ2xe−λx

B(a, b)
[
1 − e−λx(1 + λx)

]θac−1 [1 − [1 − e−λx(1 + λx)
]θc]b−1

,

(7)
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where x > 0 and ϕ = (λ, θ , a, b, c). The corresponding cdf of the McEG distribution is
given by

F(x) = IGc(x)(a, b) = 1
B(a, b)

G(x)c∫
0

w(1−a)(1 − w)b−1dw

= 1
B(a, b)

[
1−e−λx(1+λx)

]θc∫
0

w(1−a)(1 − w)b−1dw

= I[1−e−λx(1+λx)]θc(a, b),

(8)

also, the cdf can be written as follows

F(x) =
[
1 − e−λx(1 + λx)

]θac
aB(a, b) 2F1

(
a, 1 − b; a + 1;

[
1 − e−λx(1 + λx)

]θc) , (9)

where 2F1(a, b; c; x) = B(b, c− b)−1
1∫
0

tb−1(1−t)c−b−1

(1−tx)a dt.

Figures 1 and 2 illustrates some of the possible shapes of the pdf and cdf of the McEG
distribution for selected values of the parameters λ, θ , a, b and c, respectively.
The hazard rate function and reversed hazard rate function of the new distribution are

given by

h(x) = f (x)
1 − F(x)

=
cθλ2xe−λx [1 − e−λx(1 + λx)

]θac−1
[
1 − [1 − e−λx(1 + λx)

]θc]b−1

B(a, b)
{
1 − I[1−e−λx(1+λx)]θc(a, b)

} ,
(10)
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Figure 1 The pdf’s of variousMcEG distributions.
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Figure 2 The cdf’s of various McEG distributions.

and

τ(x) = f (x)
F(x)

=
cθλ2xe−λx [1 − e−λx(1 + λx)

]θac−1)
[
1 − [1 − e−λx(1 + λx)

]θc]b−1

B(a, b)I[1−e−λx(1+λx)]θc(a, b)
,

(11)

respectively.
Figures 3 and 4 illustrates some of the possible shapes of the hazard and reversed

hazard of the McEG distribution for selected values of the parameters λ, θ , a, b and c,
respectively.

4 Expansions for the cumulative and density functions
In this section,we present a series expansion of the McEG cdf and pdf. distribution
depending if the parameter b > 0 is real non- integer or integer. First, if |z| < 1 and b > 0
is real non- integer, we have in this subsection, we present some representations of cdf
and pdf of (McEG) Equations 7 and (8) are straightforward to compute using any soft-
ware with algebraic facilities. The mathematical relation given below will be useful in this
subsection. If b is a positive real non integer and |z| ≤ 1,then

(1 − z)b−1 =
∞∑
j=0

(−1) j
(b − 1

j

)
zj =

∞∑
j=0

(−1)j�(b)
j!�(b − j) z

j. (12)

Using the expansion (12) in (8), the cdf of theMcEG distribution becomes
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Figure 3 The hazard rate’s of various McEG distributions.
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F(x) = 1
B(a, b)

[
1−e−λx(1+λx)

]θc∫
0

w(1−a)(1 − w)b−1dw

= �(b)
B(a, b)

∞∑
j=0

(−1) j

j!�(b − j)

G(x)c∫
0

wa+j−1dw

=
∞∑
j=0

(−1) j�(b)
B(a, b)j!�(b − j)(a + j) [G(x, λ, θ)]c(a+j)

=
∞∑
j=0

qjG(x, λ, θc(a + j)).

(13)

If b > 0 is an integer, then

F(x) =
b−1∑
j=0

qjG(x, λ, θc(a + j)). (14)

Similarly, if b > 0 is real non- integer the pdf is given by

f (x) =
∞∑
j=0

qjg(x, λ, θc(a+ j)),

and

f (x) =
b−1∑
j=0

qjg(x, λ, θc(a+ j)) (15)

for b > 0 is an integer . Where qj = (−1)j�(b)
B(a,b)j!�(b−j)(a+j) are constants such that

∞∑
j=0

qj = 1

and G(x, λ, θc(a + j)) is a finite mixture of exponentiated gamma distribution with λ

and θc(a + j) are scale and shape parameters respectively. The graphs below are the pdf,
cdf, survival function, h(x), and τ(x) of the McEG distribution for different values of
parameters λ, θ , a, b and c.

5 Statistical properties
This section is devoted to studying statistical properties of the (McEG) distribution,
specifically quantile function , moments and moment generating function

5.1 Quantile function and simulation

The quantile function corresponding to (7) is F(xq) = P(X ≤ xq) where (xq)(McEG) =
F−1(u),is given by the following relation

e−λx(q) (1 + λx(q)) = 1 −
[
1 − (1 − q) 1

b
] 1

θac (16)

Simulating the McEG random variable is straightforward. Let U be a uniform variate on
the unit interval (0, 1). Thus, by means of the inverse transformationmethod, we consider
the random variable X given by the relation

e−λx(i) (1 + λx(i)) = 1 −
[
1 − (1 − u)

1
b
] 1

θac . (17)
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5.2 Moments

In this subsection we discuss the rth moment for (McEG) distribution. Moments are
necessary and important in any statistical analysis, especially in applications. It can be
used to study the most important features and characteristics of a distribution (e.g., ten-
dency, dispersion, skewness and kurtosis).We use the results presented earlier, which was
obtained by expanding the pdf.

Theorem 3.1. If X hasMcEG(ϕ, x), ϕ = (λ, θ , a, b, c) then the rth moment of X is given
by the following

μr(x) = wj,k

k∑
m=−0

( k
m

)
λm
(

λ

k + 1

)r+m+2
�(r + m + 2) (18)

where

wj,k = cθλ2

B(a, b)

∞∑
j=0

∞∑
k=0

(−1)j+k
(b − 1

j

)(
θc(a + j) − 1

k

)

Proof. Let X be a random variable with density function (7). The rth ordinary moment
of the (McEG) distribution is given by

μ
′
r(x) = E(Xr) =

∞∫
0

xrf (x, ϕ)dx = cθλ2

B(a, b)

×
∞∫
0

xr+1e−λx [1 − e−λx(1 + λx)
]θac−1 [1 − [1 − e−λx(1 + λx)

]θc]b−1
dx.

(19)

Using the fact that

[
1 − [1 − e−λx(1 + λx)

]θc]b−1 =
∞∑
j=0

(−1) j
(b − 1

j

) [
1 − e−λx(1 + λx)

]θcj , (20)

we obtain

μ
′
r(x) =

∞∑
j=0

(−1)j
(b − 1

j

) cθλ2

B(a, b)

∞∫
0

xr+1e−λx [1 − e−λx(1 + λx)
]θc(a+j)−1 dx, (21)

again using the binomial series expansion

[
1 − e−λx(1 + λx)

]θc(a+j)−1 =
∞∑
k=0

(−1)k
(

θc(a + j) − 1
k

)
e−λkx(1 + λx)k (22)

but

(1 + λx)k =
k∑

m=0

( k
m

)
(λx)m , (23)
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thus Equation 21 becomes

μr(x) = E(Xr) =
∞∑
j=0

∞∑
k=0

(−1) j+k
(b − 1

j

)(
θc(a + j) − 1

k

) k∑
m=−0

( k
m

)
λm

× cθλ2

B(a, b)

∞∫
0

xr+m+1e−λ(k+1)xdx

let λ(k + 1)x = t then

μr(x) = wj,k

k∑
m=−0

( k
m

)
λm
(

λ

k + 1

)r+m+2 ∞∫
0

tr+m+1e−tdt

= wj,k

k∑
m=−0

( k
m

)
λm
(

λ

k + 1

)r+m+2
�(r + m + 2)

(24)

which completes the proof . Based on the first four moments of the (McEG) distribution,
themeasures of skewnessA(ϕ) and kurtosis k(ϕ) of the (McEG) distribution can obtained
as

A(ϕ) = μ3(θ) − 3μ1(θ)μ2(θ) + 2μ3
1(θ)[

μ2(θ) − μ2
1(θ)
] 3
2

, (25)

and

k(ϕ) = μ4(θ) − 4μ1(θ)μ3(θ) + 6μ2
1(θ)μ2(θ) − 3μ4

1(θ)[
μ2(θ) − μ2

1(θ)
]2 . (26)

5.3 Moment generating function

In this subsection we derived the moment generating function of (McEG) distribution.

Theorem 3.2. If X has (McEG) distribution, then the moment generating function
MX(t) has the following form

MX(t) = wj,k

k∑
m=0

( k
m

)
λ2
(

1
(k + 1) − t)

)m+2
�(m + 2). (27)

Proof. We start with the well known definition of the moment generating function
given by

MX(t) = E(etx) =
∞∫
0

etxfMcEG(x, ϕ)dx

= wj,k

∞∫
0

xe−x(λ(k+1)−t)(1 + λx)kdx

= wj,k

k∑
m=0

( k
m

)
λm

∞∫
0

xm+1e−x(λ(k+1)−t)dx

(28)
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let x(λ(k + 1) − t) = z then

MX(t) = wj,k

k∑
m=0

( k
m

)
λm
(

1
(λ(k + 1) − t)

)m+2 ∞∫
0

zm+1e−zdz

= wj,k

k∑
m=0

( k
m

)
λ2
(

1
(k + 1) − t)

)m+2
�(m + 2).

which completes the proof.

6 Conditional moments, residual life and reversed failure rate function
For lifetime models , it is also of interest to find the conditional moments and the mean
residual lifetime function. The conditional moments for (McEG) distribution is given by

E(Xn|X > t) =
∞∫
t

xnf (x, ϕ)dx = cθλ2

B(a, b)

×
∞∫
t

xn+1e−λx [1 − e−λx(1 + λx)
]θac−1 [1 − [1 − e−λx(1 + λx)

]θc]b−1
dx

(29)

using (20), (22) and (23), Equation 29 becomes

E(Xn|X > t) = cθλ2

B(a, b)

∞∑
j,k=0

k∑
m=−0

(−1) j+k
(b − 1

j

)(
θc(a + j) − 1

k

)( k
m

)
λm

=
∞∫
t

xm+n+1e−λ(k+1)xdx

= dj,k,m
�(m + n + 2, λ(k + 1)t)

[λ(k + 1)]m+n+2

(30)

where

dj,k,m = cθλ2

B(a, b)

∞∑
j,k=0

k∑
m=−0

(−1) j+k
(b − 1

j

)(
θc(a + j) − 1

k

)( k
m

)
λm.

Given that a component survives up to time t ≥ 0, the residual life is the period beyond
t until the time of failure and defined by the conditional random variable X − t|X > t. In
reliability, it is well known that themean residual life function and ratio of two consecutive
moments of residual life determine the distribution uniquely (Gupta and Gupta, 1983).
Therefore, we obtain the rth-order moment of the residual life via the general formula

μr(t) = E((X − t)r | X > t) = 1
F(t)

∞∫
t

(x − t)rf (x, ϕ)dx, r ≥ 1.

Applying the binomial expansion of (x − t)r and substituting f (x, ϕ) given by (7) into the
above formula gives

μr(t) = dj,k,m
F(t)

r∑
i=0

(−t)i ×
∞∫
t

xr+m−i+1e−λ(k+1)xdx

= dj,k,m
F(t)

r∑
i=0

(−t)i �(r + m − i + 2, λ(k + 1)t)
[λ(k + 1)]r+m−i+2 . (31)
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where �(s, t) =
∞∫
t
xs−1e−xdx is the upper incomplete gamma function. Also the mean

residual life of theMcEG distribution is given by

μ(t) = E((X − t) | X > t) = 1
F(t)

∞∫
t

xf (x, ϕ)dx − t

= dj,k,m
F(t)

�(m + 3, λ(k + 1)t)
[λ(k + 1)]m+3 − t. (32)

On the other hand, we analogously discuss the reversed residual life and some of its
properties. The reversed residual life can be defined as the conditional random variable
t−X|X ≤ t which denotes the time elapsed from the failure of a component given that its
life is less than or equal to t. This random variablemay also be called the inactivity time (or
time since failure); for more details you may see (Kundu and Nanda, 2010; Nanda, Singh,
Misra, and Paul, 2003). Also, in reliability, the mean reversed residual life and ratio of two
consecutive moments of reversed residual life characterize the distribution uniquely. the
reversed failure (or reversed hazard) rate function is given by Equation 11. The r th-order
moment of the reversed residual life can be obtained by the well known formula

mr(t) = E((t − X)r | X ≤ t) = 1
F(t)

t∫
0

(t − x)rf (x, ϕ)dx, r ≥ 1 (33)

Applying the binomial expansion of (t − x)r and substituting f (x, ϕ) given by (2.1) into
the above formula gives

mr(t) = dj,k,m
F(t)

r∑
i=0

(−t)i γ (r + m − i + 2, λ(k + 1)t)
[λ(k + 1)]r+m−i+2 , (34)

where γ (s, t) =
t∫
0
xs−1e−xdx is the lower incomplete gamma function. Thus the mean of

the reversed residual life of theMcEG distribution is given by

m1(t) = m(t) = t − dj,k,m
F(t)

γ (m + 3, λ(k + 1)t)
[λ(k + 1)]m+3 .

Using m(t)and m2(t) we obtain the variance of the reversed residual life of the McEG
distribution , and hence the coefficient of variation of the reversed residual life of the
McEG distribution can be easily obtained.

7 Distribution of the order statistics
In this section, we derive closed form expressions for the pdfs of the rth order statistic of
the (McEG) distribution, also, the measures of skewness and kurtosis of the distribution
of the rth order statistic in a sample of size n for different choices of n; r are presented
in this section. Let X1,X2, . . . ,Xn be a simple random sample from (McEG) distribution
with pdf and cdf given by (7) and (9), respectively.
Let X1,X2, . . . ,Xn denote the order statistics obtained from this sample. We now give

the probability density function of Xr:n, say fr:n(x, ϕ) and the moments of Xr:n , r =
1, 2, . . . , n. Therefore, the measures of skewness and kurtosis of the distribution of theXr:n
are presented. The probability density function of Xr:n is given by

fr:n(x, ϕ) = 1
B(r, n − r + 1)

[F(x,�)]r−1 [1 − F(x, ϕ)]n−r f (x, ϕ) (35)
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where F(x, ϕ) and f (x, ϕ) are the cdf and pdf of the (McEG) distribution given by (7), (8),
respectively, and since 0 < F(x, ϕ) < 1, for x > 0, by using the binomial series expansion
of [1 − F(x, ϕ)]n−r , given by

[1 − F(x, ϕ)]n−r =
n−r∑
j=0

(−1) j
(n − r

j

)
[F(x, ϕ)]

j
, (36)

we have

fr:n(x, ϕ) =
n−r∑
j=0

(−1)j
(n − r

j

)
[F(x, ϕ)]r+j−1 f (x, ϕ), (37)

substituting from (7) and (8) into (37), we can express the kth ordinary moment of the rth
order statistics Xr:n say E(Xk

r:n) as a liner combination of the kth moments of the (McEG)

distribution with different shape parameters. Therefore, the measures of skewness and
kurtosis of the distribution of Xr:n can be calculated.

8 Estimation and inference
In this section, we determine the maximum likelihood estimates (MLEs) of the param-
eters of the (McEG) distribution from complete samples only. Let X1,X2, . . . ,Xn be a
random sample of size n from McEG (λ, θ , a, b, c).The likelihood function for the vector
of parameters ϕ = (λ, θ , a, b, c) can be written as

Lf (x(i), ϕ) =
n∏

i=1
f (x(i), ϕ)

=
( cθλ2

B(a, b)

)n n∏
i=1

xie
−λ

n∑
i=1

xi n∏
i=1

[
1−e−λxi(1+λxi)

]θca−1

n∏
i=1

{
1 − [1 − e−λx(1 + λx)

]θc}b−1
.

(38)

Taking the log-likelihood function for the vector of parameters ϕ = (λ, θ , a, b, c)we get

log L = n log θ + 2n logλ + n log c + n log�(a + b)
− n log�(a) − n log�(b)

+
n∑

i=1
log(xi) − λ

n∑
i=1

x(i) + (θca − 1)
n∑

i=1
log

× [1 − e−λxi(1 + λxi)
]

+ (b − 1)
n∑

i=1
log
{
1 − [1 − e−λx(1 + λx)

]θc} ,

(39)

The log-likelihood can bemaximized either directly or by solving the nonlinear likelihood
equations obtained by differentiating (39). The components of the score vector are given
by

∂ log L
∂λ

= 2n
λ

−
n∑

i=1
xi + (θca − 1)

n∑
i=1

λx2i e−λxi[
1 − e−λxi(1 + λxi)

]
− θc(b − 1)

n∑
i=1

λx2i e−λxi
[
1 − e−λxi (1 + λxi)

]θc−1{
1 − [1 − e−λxi (1 + λxi)

]θc} ,
(40)
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∂ log L
∂θ

= n
θ

+ ca
n∑

i=1
log
[
1 − e−λxi(1 + λxi)

]

− c(b − 1)
n∑

i=1

[
1−e−λxi (1+λxi)

]θc log [1−e−λxi (1+λxi)
]{

1 − [1 − e−λxi (1 + λxi)
]θc} ,

(41)

∂ log L
∂a = nψ(a + b) − nψ(a) + cθ

n∑
i=1

log
[
1 − e−λxi(1 + λxi)

]
, (42)

∂ log L
∂b = nψ(a + b) − nψ(b) +

n∑
i=1

log
{
1 −[1 − e−λx(1 + λx)

]θc}
(43)

and
∂ log L

∂c = n
c + θa

n∑
i=1

log
[
1 − e−λxi(1 + λxi)

]

+ θ(b−1)
n∑

i=1

log
[
1−e−λxi(1+λxi)

] [
1−e−λxi (1+λxi)

]θc−1{
1 − [1 − e−λxi (1 + λxi)

]θc} .
(44)

We can find the estimates of the unknown parameters by maximum likelihoodmethod by
setting these above non-linear Eqs. 40- (44) to zero and solve them simultaneously. There-
fore, we have to use mathematical package to get the MLE of the unknown parameters.
Also, all the second order derivatives exist. Thus we have the inverse dispersion matrix is
given by⎛
⎜⎜⎜⎜⎜⎜⎝

λ̂

θ̂

â
b̂
ĉ

⎞
⎟⎟⎟⎟⎟⎟⎠

∼ N

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎝

λ

θ

a
b
c

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

V̂λλ V̂λθ V̂λa V̂λb V̂λc
V̂θλ V̂θθ V̂θa V̂θb V̂θc
V̂aλ V̂aθ V̂aa V̂ab V̂ac
V̂bλ V̂bθ V̂ba V̂bb V̂bc
V̂cλ V̂cθ V̂ca V̂cb V̂cc

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
. (45)

V−1 = −E

⎡
⎢⎢⎢⎢⎢⎢⎣

Vλλ Vλθ Vλa Vλb Vλc
Vθλ Vθθ Vθa Vθb Vθc
Vaλ Vaθ Vaa Vab Vac
Vbλ Vbθ Vba Vbb Vbc
Vcλ Vcθ Vca Vcb Vcc

⎤
⎥⎥⎥⎥⎥⎥⎦

The elements of Hessian matrix is given in the Appendix.
By solving this inverse dispersion matrix these solutions will yield asymptotic variance

and covariances of these ML estimators for λ̂, ,θ̂ , â , b̂ and ĉ. Using (44), we approximate
100(1 − γ )% confidence intervals for λ, θ , a, b and c are determined respectively as

λ̂ ± z γ
2

√
V̂λλ, θ̂ ± z γ

2

√
V̂θθ , â ± z γ

2

√
V̂aa, b̂ ± z γ

2

√
V̂bband ĉ ± z γ

2

√
V̂cc

where zγ is the upper 100γthe percentile of the standard normal distribution.
We can compute the maximized unrestricted and restricted log-likelihood functions to

construct the likelihood ratio (LR) test statistic for testing on some theMcEG sub-models.
For example, we can use the LR test statistic to check whether the McEG distribution for
a given data set is statistically superior to the EG distribution. In any case, hypothesis tests
of the type H0 : ϕ = ϕ0 versus H0 : ϕ �= ϕ0 can be performed using a LR test. In this
case, the LR test statistic for testing H0 versus H1 is ω = 2(�(ϕ̂; x) − �(ϕ̂0; x)), where ϕ̂

and ϕ̂0 are the MLEs under H1 and H0, respectively. The statistic ω is asymptotically (as
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n → ∞) distributed as χ2
k , where k is the length of the parameter vector θ of interest.

The LR test rejects H0 if ω > χ2
k;γ , where χ2

k;γ denotes the upper 100γ% quantile of the
χ2
k distribution.

9 Application
In this section, we compare the results of fitting the McEG and EG distributions to real
data sets. Sixty-three breaking strengths of glass fibres of length 1.5 cm were reported by
Smith and Naylor (1987). No units for the breaking strengths were given. The The data
are as follows:

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39,
1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61,
1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73,
1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24.

The LR test statistic to test the hypothesesH0 : a = b = c = 1 versus H1 : a �= 1 ∨ b �=
1 ∨ c �= 1 is ω = 30.456 > 7.815 = χ2

3;0.05, so we reject the null hypothesis.
In order to compare the two distribution models, we consider criteria like −2�, AIC

(Akaike information criterion)and CAIC (corrected Akaike information criterion) for the
data set. The better distribution corresponds to smaller −2�, AIC and CAIC values:

AIC = 2k − 2� , andAICC = AIC + 2k(k + 1)
n − k − 1

,

where k is the number of parameters in the statistical model, n the sample size and � is the
maximized value of the log-likelihood function under the considered model. Also, here
for calculating the values of KS we use the sample estimates of θ , α, a, b and c. Table 1
shows the MLEs under both distributions, Table 2 shows the values of −2�, AIC and
CAIC values. The values in Table 2 indicate that the McEG distribution leads to a better
fit than the EG distribution.
A density plot compares the fitted densities of the models with the empirical histogram

of the observed data (Figure 5). The fitted density for the McEG model is closer to the
empirical histogram than the fits of the EG model.
Empirical, fitted McEG and EG cdf of the data set is given in Figure 6. PP of McEG, EG

and KEG distribution are given, respectively in Figures 6, 7, 8 and 9.

Table 1 Estimatedparameters of the EG andMcEG distribution for the data set

Model Parameter Estimate(St. Err) −�(·; x)
EG λ̂ = 0.704(0.263); θ̂ = 2.075(3.642) 30.080

KEG λ̂ = 0.400(0.188); θ̂ = 0.033(0.007) 15.962

â = 1(−−); b̂ = 1074.381(1905.888);
ĉ = 104.66(8.933)

McEG λ̂ = 0.069(0.575); θ̂ = 0.066(0.027) 14.852

â = 0.465(0.271); b̂= 1074.380(3198.379);
ĉ = 104.659(83.267)
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Table 2 Criteria for comparison

Model KS −2� AIC CAIC

EG 0.211 60.161 64.161 64.361

KEG 0.146 31.925 39.925 40.615

McEG 0.139 29.704 39.704 40.578

10 Simulated data
In this subsection, we provided an algorithm to generated a random sample from
the McEG distribution for the given values of its parameters and sample size n. The
simulation process consists the following steps:

1. Set n, and � = (λ, θ , a, b, c).
2. Set initial value x0 for the random starting.
3. Set j = 1.
4. Generate U ∼ Uniform (0, 1).
5. Update x0 by using the Newton’s formula such as

x� = x0 −
(
F�(x)−U
f�(x)

)∣∣∣
x=x0

6. If | x0 − x� |≤ ε, (very small, ε > 0 tolerance limit). Then, x� will be the
desired sample from F(x).

7. If | x0 − x� |> ε, then, set x0 = x� and go to step 5.
8. Repeat steps 4-7, for j = 1, 2, . . . , n and obtained x1, x2, . . . , xn.

Data set

D
en
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ty

0.5 1.0 1.5 2.0 2.5

0.
0
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1.
0

1.
5 McEG

EG

Figure 5 Estimated densities of the data set.
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Figure 6 Empirical, fitted McEG and EG cdf of the data set.
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Figure 7 PP of McEG distribution.
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Figure 8 PP of EG distributions.
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Figure 9 PP of KEG distributions.
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Using the above algorithm, we generated a sample of size 100 from McEG distribution
for arbitrary values of λ = 0.1, θ = 0.5, a = 0.3, b = 4 and c = 5. The simulated sample is
given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7008305, 0.7483960, 0.7853045, 1.2086133, 1.4351042, 1.5403005, 1.6496101,

1.7987240, 1.8086419, 2.1044009, 2.2373603, 2.3224054, 2.4745068, 2.5515837,

2.5769327, 2.7464982, 2.7830230, 2.9393764, 3.0902201, 3.1860532, 3.2315367,

3.4999438, 3.5254992, 4.0541612, 4.2237028, 4.3121059, 4.5775792, 4.6437664,

5.5314075, 5.6678742, 5.8493963, 5.9392276, 5.9848478, 5.9931899, 6.1077578,

6.1878963, 6.5478836, 6.7313899, 6.8313183, 6.8318943, 6.8905060, 7.0374568,

7.4044918, 7.4948993, 7.7986252, 7.8002865, 7.8285220, 7.8669651, 7.9543936,

8.1594681, 8.3830314, 8.5531443, 9.0029935, 9.0355035, 9.2010677, 9.8657155,

9.9407176, 9.9413917, 10.020057, 10.134253, 10.456804, 10.759469, 11.361307,

11.443688, 12.109969, 12.129800, 12.574638, 12.596263, 12.610495, 12.832516,

13.253879, 13.709763, 13.981151, 14.217364, 14.279799, 14.407283, 14.426844,

14.706873, 14.906415, 15.081977, 15.117223, 15.120105, 16.009474, 16.319169,

16.547977, 16.923506, 17.011898, 17.107951, 17.117575, 17.621101, 17.718949,

18.391564, 18.756958, 20.947403, 20.956134, 21.635416, 24.205008, 26.843528,

29.050364, 29.369574.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The maximum likelihood estimates with corresponding confidence intervals are calcu-
lated based on the simulated sample. The MLEs of (λ, θ , a, b, c) are

(0.1381430, 1.4472316, 0.1033288, 3.0747396, 5.1030106)

respectively. The asymptotic confidence intervals for (λ, θ , a, b, c) are obtained as
(0 ∼ 0.278) , (0 ∼ 13.295) , (0 ∼ 0.444) , (0 ∼ 8.342) and (0 ∼ 21.30274044) respectively.
The pdf and empirical, fitted McEG cdf of the simulated data are given in (Figure 10)

and (Figure 11).

11 Conclusion
Here we propose a newmodel, the so-called theMcEG distribution which extends the EG
distribution in the analysis of data with real support. An obvious reason for generalizing
a standard distribution is because the generalized form provides larger flexibility in mod-
eling real data. We derive expansions for the moments and for the moment generating
function. The estimation of parameters is approached by the method of maximum likeli-
hood, also the information matrix is derived. We consider the likelihood ratio statistic to
compare the model with its baseline model. An application of the McEG distribution to
real data show that the new distribution can be used quite effectively to provide better fits
than EG distribution.
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Figure 10 Estimated pdf of the simulated data.
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Figure 11 Empirical, fitted McEG cdf of the simulated data.
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Appendix
The elements of Hessian matrix are:

Vλλ = ∂2L
∂λ2

= −2
n
λ2

− (θ ca − 1)
n∑

i=1

xi2e−λ xi (−1 + e−λ xi + λ xi
)

(−1 + e−λ xi + e−λ xiλ xi
)2

− (b − 1)
n∑

i=1

(
1 − e−λ xi − e−λ xiλ xi

)θ c
θ cxi2e−λ xi(−1 + e−λ xi + e−λ xiλ xi

)2 (−1 + (1 − e−λ xi − e−λ xiλ xi
)θ c)2

·
[
θ cxi2e−λ xiλ2 + 1 − (1 − e−λ xi − e−λ xiλ xi

)θ c − e−λ xi

+ e−λ xi (1 − e−λ xi − e−λ xiλ xi
)θ c −λ xi + λ xi

(
1 − e−λ xi − e−λ xiλ xi

)θ c]
Vλθ = ∂2L

∂λ∂θ
= ca

n∑
i=1

xie−λ xi (1 + λ xi) − xie−λ xi

1 − e−λ xi (1 + λ xi)

+ (b − 1)
n∑

i=1

(
1 − e−λ xi − e−λ xiλ xi

)θ c cxi2e−λ xiλ(−1 + e−λ xi + e−λ xiλ xi
) (−1 + (1 − e−λ xi − e−λ xiλ xi

)θ c)2
·
(
θ c ln

(
1 − e−λ xi − e−λ xiλ xi

)+ 1 − (1 − e−λ xi − e−λ xiλ xi
)θ c)

Vλa = ∂2L
∂λ∂a = θ c

n∑
i=1

xie−λ xi (1 + λ xi) − xie−λ xi

1 − e−λ xi (1 + λ xi)

Vλb = ∂2L
∂λ∂b = −

n∑
i=1

(
1 − e−λ xi (1 + λ xi)

)θ c
θ c
(
xie−λ xi (1 + λ xi) − xie−λ xi)(

1 − e−λ xi (1 + λ xi)
) (

1 − (1 − e−λ xi (1 + λ xi)
)θ c)

Vλc = ∂2L
∂λ∂c = θ a

n∑
i=1

xie−λ xi (1 + λ xi) − xie−λ xi

1 − e−λ xi (1 + λ xi)

− (b − 1)
n∑

i=1

(
1 − e−λ xi − e−λ xiλ xi

)θ c
θ xi2e−λ xiλ(−1 + e−λ xi + e−λ xiλ xi

) (−1 + (1 − e−λ xi − e−λ xiλ xi
)θ c)2

·
(
−θ c ln

(
1 − e−λ xi − e−λ xiλ xi

)− 1 + (1 − e−λ xi − e−λ xiλ xi
)θ c)

Vθθ = ∂2L
∂θ2

= − n
θ2

− (b − 1)

·
n∑

i=1

(
ln
(
1 − e−λ xi − e−λ xiλ xi

))2 c2 (1 − e−λ xi − e−λ xiλ xi
)θ c(

−1 + (1 − e−λ xi − e−λ xiλ xi
)θ c)2

Vθa = ∂2L
∂θ∂a = c

n∑
i=1

ln
(
1 − e−λ xi (1 + λ xi)

)

Vθb = ∂2L
∂θ∂b = −

n∑
i=1

(
1 − e−λ xi (1 + λ xi)

)θ c c ln
(
1 − e−λ xi (1 + λ xi)

)
1 − (1 − e−λ xi (1 + λ xi)

)θ c
Vθc = ∂2L

∂θ∂c = a
n∑

i=1
ln
(
1 − e−λ xi (1 + λ xi)

)+ (b − 1)

·
n∑

i=1

(
1 − e−λ xi − e−λ xiλ xi

)θ c ln (1 − e−λ xi − e−λ xiλ xi
)

(
−1 + (1 − e−λ xi − e−λ xiλ xi

)θ c)2
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·
(
−θ c ln

(
1 − e−λ xi − e−λ xiλ xi

)− 1 + (1 − e−λ xi − e−λ xiλ xi
)θ c)

Vaa = ∂2L
∂a2 = nψ ′

(a + b) − nψ ′
(a)

Vab = ∂2L
∂a∂b = nψ ′

(a + b)

Vac = ∂2L
∂a∂c = θ

n∑
i=1

ln
(
1 − e−λ xi (1 + λ xi)

)

Vbb = ∂2L
∂b2 = nψ ′

(a + b) − nψ ′
(b)

Vbc = ∂2L
∂b∂c = −

n∑
i=1

(
1 − e−λ xi (1 + λ xi)

)θ c
θ ln
(
1 − e−λ xi (1 + λ xi)

)
1 − (1 − e−λ xi (1 + λ xi)

)θ c

Vcc = ∂2L
∂c2 = − n

c2 − (b − 1)

×
n∑

i=1

(
ln
(
1 − e−λ xi − e−λ xiλ xi

))2
θ2
(
1 − e−λ xi − e−λ xiλ xi

)θ c(
−1 + (1 − e−λ xi − e−λ xiλ xi

)θ c)2
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