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Abstract

be leveraged to promote healthy aging.

Since the initial observation that a calorie-restricted (CR) diet can extend rodent lifespan, many genetic and
pharmaceutical interventions that also extend lifespan in mammals have been discovered. The mechanism by
which CR and these other interventions extend lifespan is the subject of significant debate and research. One
proposed mechanism is that CR promotes longevity by increasing insulin sensitivity, but recent findings that
dissociate longevity and insulin sensitivity cast doubt on this hypothesis. These findings can be reconciled if
longevity is promoted not via increased insulin sensitivity, but instead via decreased PI3K/Akt/mTOR pathway
signaling. This review presents a unifying hypothesis that explains the lifespan-extending effects of a variety of
genetic mutations and pharmaceutical interventions and points towards new molecular pathways which may also
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Introduction

Calorie restriction (CR), first discovered to extend rat
lifespan in the 1930, is one of the most effective known
techniques for promoting longevity (McCay et al. 1939).
A CR diet, in which total caloric intake is reduced while
maintaining adequate nutrition, promotes lifespan not
only in rats, but in yeast, worms, flies, dogs, and even
primates (Lamming and Anderson 2014). A CR diet also
increases healthspan — that portion of a life where one is
healthy and vigorous. The mechanism underlying the ef-
fect of a CR diet on longevity has been hotly debated,
with suggestions ranging from a passive mechanism in
which CR slows metabolism, to a more active mechanism
in which a CR diet induces protective stress response path-
ways (Anderson and Weindruch 2010; Sinclair 2005).

A conserved response to CR in mammals, including
humans as well as non-human primates, is a significant
increase in insulin sensitivity (Kemnitz et al. 1994; Cartee
et al. 1994). As high-fat, obesity-promoting diets clearly
inhibit insulin sensitivity as well as lifespan (Olefsky and
Glass 2010), it is logical to suppose that the enhanced in-
sulin sensitivity induced by CR may be responsible for its
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effects on healthspan and lifespan. In favor of this hy-
pothesis, the Ames and Snell dwarf mice, which have
an exceptionally long lifespan, likewise display significantly
increased insulin sensitivity (Bartke and Brown-Borg
2004). However, as discussed below, data from genetically
modified organisms and the surprising effects of the pro-
longevity drug rapamycin on insulin sensitivity show that
these effects can be disassociated. The common feature
behind many insulin-sensitizing and insulin-desensitizing
longevity interventions is decreased mTOR pathway sig-
naling, suggesting that endocrine factors which directly or
indirectly regulate mTOR signaling may be potential regu-
lators of longevity.

Review

Reduced activity of the PI3K/Akt/mTOR signaling pathway
promotes longevity

Reduced signaling through the insulin/IGF-1/mTOR
(insulin-like growth factor 1/mechanistic Target Of
Rapamycin) signaling pathway has been proposed as
an essential mechanism by which a CR diet extends
lifespan (Lamming and Anderson 2014). Consistent
with this theory, both genetic and pharmacological in-
terventions that reduce signaling through the insulin/
IGF-1/mTOR signaling pathway extend lifespan. As de-
tailed in Figure 1, genetic interventions in this pathway
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Figure 1 The PI3K/Akt/mTOR signaling pathway. Insulin, amino acids and glucose stimulate signaling through the PI3K/Akt/mTOR signaling
pathway to regulate ribosomal biogenesis, translation, autophagy, and metabolism and stress resistance.
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reported to extend lifespan include mice null for either
IrsI or S6KI, mice heterozygous for either Igflr or Aktl,
mice expressing a hypomorphic allele of mTOR, and mice
heterozygous for both mTOR and mLST8 (Selman et al.
2009, 2011; Lamming et al. 2012; Bokov et al. 2011; Wu
et al. 2013; Nojima et al. 2013). Deletion of the insulin re-
ceptor specifically in adipose tissue (the FIRKO mouse)
also extends lifespan (Bluher et al. 2003), as does deletion
of insulin receptor substrate 2 (IRS2) specifically in the
brain (Taguchi et al. 2007).

Although the insulin sensitivity model of CR would
predict that all of the interventions noted above should
display increased insulin sensitivity, only mice lacking
S6K1 and the FIRKO mouse display increased insulin
sensitivity and improved glucose tolerance. Mice hetero-
zygous for Aktl, mice expressing a hypomorphic allele
of mTOR, and mice heterozygous for both mTOR and
mLST8 have essentially normal glucose homeostasis. In-
deed, mice lacking Irsi or that lack Irs2 specifically in
the brain become insulin resistant, while mice heterozy-
gous for Igflr become glucose intolerant and insulin re-
sistant with age (Garg et al. 2011). Mice treated with
rapamycin, an FDA-approved immunosuppressive and
anti-cancer agent, have a significant increase in lifespan,
even when treatment is begun late in life (Harrison et al.

2009). While rapamycin was originally proposed to act
as a CR mimetic, analysis of the effects of rapamycin on
gene expression have revealed the two interventions to
be quite distinct (Fok et al. 2014a). From the standpoint
of glucose homeostasis and insulin sensitivity, rapamycin
and CR have quite divergent effects, with rapamycin
treatment resulting in glucose intolerance and hepatic
insulin resistance (Lamming et al. 2012, 2013a). This
clearly demonstrates that insulin sensitivity is not re-
quired for extended longevity — and that insulin resist-
ance, although perhaps undesirable, is not sufficient to
block extended longevity.

It is worth noting that not all genetic interventions in
the PI3K/Akt/mTOR signaling pathway that decrease in-
sulin sensitivity promote longevity. For instance, mice
heterozygous for expression of the insulin receptor are
insulin resistant, but do not have increased mean life-
span (Nelson et al. 2012). Indeed, the ultimate mechan-
ism by which reduced mTOR signaling extends lifespan
is unknown. The mTOR protein kinase is found in two
distinct complexes (Figure 1), each with distinct func-
tions and substrates. The canonical target of rapamycin
is mTOR complex 1 (mTORC1), which is acutely sensi-
tive to rapamycin and regulates ribosomal protein bio-
genesis, protein translation and autophagy. Extensive
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genetic studies in yeast and C. elegans have demonstrated
that inhibition of protein translation or the activation of
autophagy is sufficient to extend lifespan (reviewed in
(Lamming et al. 2013b)). Deletion of TSCI activates
mTORC], resulting in a significant decrease in lifespan
due to liver hemangiomas (Kwiatkowski et al. 2002).

While these results suggest that mTORC]1 is very im-
portant in the response to decreased PI3K/Akt/mTOR
signaling, chronic rapamycin treatment also inhibits
mTORC?2 in vivo. Through regulation of key residues on
AKT and SGK, mTORC?2 regulates the FOXO and p38
MAPK pathways (Lamming et al. 2014). These path-
ways, in particular the FOXO proteins, are crucial in the
regulation of lifespan and stress resistance in C. elegans,
and siRNA knockdown of Rictor, an essential protein
subunit of mTORC2, in C. elegans extends lifespan.
However, male mice heterozygous for Rictor have a short
lifespan despite normal glucose tolerance. The long life
of mice heterozygous for Akt1 is likely not attributable
to activation of FOXO family members, and is instead
likely due to decreased mTORC]1 activity (Nojima et al.
2013). The role of mTORC?2 in the regulation of lifespan
is therefore uncertain, and may be mediated largely by
its role as a modulator of mTORCI signaling.

The clear conclusion to be drawn from these studies is
that the insulin sensitivity explanation for the positive
effects of a CR diet is naive. Instead, a common theme is
that interventions in the PI3K/Akt/mTOR pathway that
reduce mTORCI activity significantly increase lifespan.
While much attention has recently focused on rapamycin
and genetic mutations in the mTOR complexes and their
substrates, at the physiological level mTOR is regulated by
a diverse set of physiological stimuli. Some of the most im-
portant of these are endocrine factors that collectively
serve to coordinate PI3K/Akt/mTOR signaling in multiple
tissues. We discuss some of the most important of these
pathways below, and highlight opportunities and un-
answered questions regarding many of these pathways.

Insulin-like Growth Factor 1 (IGF-1) signaling and longevity
Signaling by insulin and the closely related hormones
insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) is
mediated by hormone binding to the insulin receptor,
the IGF-1 receptor, or hybrid insulin-IGF-1 receptor
complexes (van Heemst 2010). Signaling through these
receptors activates PI3K/Akt/mTOR signaling and
regulates aging (Figure 2). Because of the shared na-
ture of the receptors, which bind each hormone with
different affinities, it can be difficult to determine rela-
tive contribution of each hormone to metabolic and
lifespan effects. Nonetheless, a preponderance of evi-
dence points to a specific role for IGF-1 in the regula-
tion of lifespan in a manner dependent upon PI3K/
Akt/mTOR signaling.
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IGE-1 is very strongly linked to lifespan, with multiple
long-lived mouse models, including the Ames and Snell
dwarf mice, the FIRKO mouse, and IgfIr*’~ mice show-
ing decreased levels of IGF-1. Ames and Snell dwarf
mice have a primary defect that results in low growth
hormone production and therefore extremely low IGF-1
plasma levels (Brown-Borg and Bartke 2012), as well as
reduced mTORC]1 substrate phosphorylation (Sharp and
Bartke 2005). Growth hormone receptor knockout mice
have very similar phenotypes in terms of IGF-1 levels,
and these mice also live longer. However, a recent publi-
cation using mice that produce less IGF-1 shows that
while reducing IGF-1 levels in serum and tissue by ap-
proximately 50% extends maximum lifespan, it does not
increase mean lifespan, suggesting that decreased IGF-1
levels do not fully explain the long lifespan of Ames and
Snell dwarf mice (Lorenzini et al. 2014).

IGF-1 does not circulate freely in the blood; instead,
circulating IGF-1 is almost always found bound to one
of the IGF binding proteins (IGFBPs) which regulate the
activity, bioavailability, and retention of IGF-1 (Boisclair
et al. 2001). While many contemporary references refer
to six IGFBPs, an additional member, IGFBP-7, was
characterized almost 20 years ago (Oh et al. 1996).
When IGF-1 is bound to either IGFBP-3 and IGFBP-5, a
third protein, the acid labile subunit (ALS) is also re-
cruited (Boisclair et al. 2001). The presence of the ALS
is critically important in the maintenance of serum levels
of IGF-1 and IGFBP3.

While it is clear that IGF-1 activity is regulated by the
IGFBPs, this interaction has not yet been thoroughly ex-
plored with regard to the regulation of PI3K/Akt/mTOR
signaling and lifespan, and individual IGFBPs may pro-
mote or inhibit IGF-1 activity (Figure 2). Mice lacking
pregnancy-associated plasma protein A, a metallopro-
teinase that degrades inhibitory IGFBPs and thus in-
creases IGF-1 signaling, have decreased IGEF-1 signaling
and a significantly extended lifespan (Conover and Bale
2007). With regards to specific IGFBPs, IGFBP2 appears
to be the most interesting with regards to the regulation
of insulin sensitivity. Igfbp2 expression is transcription-
ally induced in response to leptin in liver and skeletal
muscle, and acute overexpression of IGFBP-2 in the liver
of ob/ob mice significantly improves glucose tolerance
and blood glucose and insulin levels (Hedbacker et al.
2010; Yau et al. 2014). While its role on PI3K/Akt/
mTOR signaling is unclear, it is actually induced by insulin
via the PI3K/Akt/mTOR signaling pathway (Li et al. 2012).
However, the effect of IGFBP2 expression on lifespan is not
known; indeed, of the IGFBPs, only IGFBP7 has been
shown to extend lifespan when overexpressed — in D.
melanogaster (Alic et al. 2011). Understanding the role
of the IGFBPs in mammalian lifespan is likely to prove
an important area for future research.
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Figure 2 Regulation of PI3K/Akt/mTOR signaling by growth hormone, IGF-1, leptin and adiponectin. Growth hormone signaling
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promotes the expression of IGF-1 by the liver and adipose tissue, which signals through the insulin/IGF-1 receptor to promote PI3K/Akt/mTORC1
signaling and aging. Several mutant mice, such as the Ames Dwarf mouse, are deficient for the production of growth hormone, and consequently
have low IGF-1 levels and low mTORCT activity in IGF-1 sensitive tissues. Growth hormone also normally represses adiponectin, a hormone from
white adipose tissue that inhibits mTORC1 activity by activating AMPK. Leptin promotes PI3K/Akt/mTOR signaling via the Jak2-mediated
phosphorylation of insulin receptor substrate. Leptin also promotes IGF-1 signaling by stimulating the GH/IGF-1 axis. Functions such as translation

mTORCT activity.

and autophagy that impact aging are shown in a green box if stimulated by PI3K/Akt/mTORCT activity, and gray box if inhibited by PI3K/Akt/

Growth hormone and Adiponectin regulate PI3K/Akt/
mTOR signaling via distinct pathways

The long lifespan of the Ames and Snell dwarf mice,
which have a primary defect of impaired growth hormone
production, strongly suggest that growth hormone (GH)
regulates longevity. Growth hormone Receptor KnockOut
(GhRKO) mice, which are unable to sense growth hor-
mone, likewise have extended lifespan. It was discovered
in 2005 that Ames dwarf mice have decreased PI3K/Akt/
mTOR signaling (Sharp and Bartke 2005), but it has not
generally been appreciated that decreased mTOR signal-
ing may be a major mechanism by which decreased levels
of GH signaling extend lifespan. As shown in Figure 2, the
effect of GH on PI3K/Akt/mTOR signaling is likely medi-
ated in large part by decreased levels of IGF-1.

GH may also promote PI3K/Akt/mTOR signaling
through IGF-1 independent pathways. For example,
GH has profound effects on methionine metabolism
(Brown-Borg and Rakoczy 2013), and amino acids
regulate mTORC1 via the Rag family of GTPases
(Bar-Peled and Sabatini 2014). GH directly modulates
glucose uptake by skeletal muscle (Yakar et al. 2004), and
glucose regulates mTORC1 signaling directly via the Rag
family of GTPases (Efeyan et al. 2013). Another major ef-
fect of GH on physiology is altered lipid metabolism, with
Ames dwarf mice showing significantly reduced levels of
plasma free fatty acids and tissue triglyceride levels and
decreased body fat in adults (Wang et al. 2006; Heiman
et al. 2003). Reduced lipid levels could promote insulin
sensitivity and thus impact PI3K/Akt/mTOR signaling.
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Adiponectin is a protein hormone secreted from white
adipose tissue that is heavily implicated in the extension
of lifespan, being increased in mice on a CR diet as well
as GHRKO and Ames dwarf mice (Wang et al. 2006). It
was first discovered as a hormone that is decreased in
the serum of humans with type 2 diabetes, and that was
increased upon weight loss (Hotta et al. 2000). Adipo-
nectin exerts antidiabetic effects in part by increasing
hepatic insulin sensitivity and decreasing skeletal muscle
insulin resistance (Yamauchi et al. 2001; Berg et al.
2001). Adiponectin action is meditated by the adiponec-
tin receptors AdipoR1, which activates AMPK, and
AdipoR2, which activates the PPARa signaling pathway.
The increase in skeletal muscle insulin sensitivity is
mediated by the activation of AMPK, which leads to the
inhibition of mTORCI1 (Figure 2), decreasing the activa-
tion of its substrate S6K1 and reducing the inhibitory
serine phosphorylation of IRS1 (Wang et al. 2007).
There is significant interest in adiponectin as a potential
mediator of the beneficial effects of a CR diet, but on-
going studies have not conclusively linked adiponectin
levels to longevity in humans (Stenholm et al. 2011).

Overexpression of adiponectin in mice leads to a sig-
nificant increase in lifespan on both normal and high-fat
diets (Otabe et al. 2007). Many of the metabolic effects
of adiponectin overexpression are similar to those of
Ames dwarf mice and GhRKO mice (Brown-Borg and
Bartke 2012). Fascinatingly, decreasing the elevated adi-
ponectin levels of GhRKO mice by surgical removal of
the visceral fat depots leads to normalization of meta-
bolic phenotypes associated with longevity, including
insulin sensitivity, body temperature, and respiratory
quotient (Masternak et al. 2012). It remains to be seen if
this surgical intervention also normalizes the lifespan of
GhRKO mice; however, it is apparent from genetic ex-
periments that loss of GhR specifically in adipose tissue
is not sufficient to increase adiponectin or increase insu-
lin sensitivity (List et al. 2013). Investigation of PI3K/
Akt/mTOR signaling in these mouse models of normal-
ized adiponectin expression may provide insight into the
possible effects of these interventions on longevity.

One important distinction between the Ames dwarf
mouse and the GhRKO mouse is that the long lifespan
of the Ames dwarf mouse can be extended by a CR diet
— an effect mediated by GH (Gesing et al. 2014) -
whereas GhRKO mice are largely insensitive to the ef-
fects of a CR diet on lifespan (Bonkowski et al. 2006).
Notably, wild type mice placed on a CR diet have in-
creased insulin sensitivity and decreased signaling to
Akt, but these effects do not occur in GhRKO mice
(Al-Regaiey et al. 2005). While it is not clear why the
GH receptor is required for the effect of CR, these re-
sults correlate with a model in which CR promotes life-
span via decreased PI3K/Akt/mTOR signaling.
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Leptin promotes PI3K/Akt/mTOR pathway signaling
Understanding the source of hunger and satiety has been
an area of significant research in the face of the obesity
epidemic sweeping much of the world. Leptin, the most
famous of the satiety hormones, is a hormone produced
by white adipose tissue. Leptin was identified by pos-
itional cloning of the spontaneous mouse ob mutation
(Zhang et al. 1994), leading to the identification of a
small serum protein that regulates energy expenditure
and food intake (Halaas et al. 1995). By regulating food
intake and obesity, leptin indirectly impacts insulin sensi-
tivity, but emerging evidence suggests that leptin may also
directly regulate insulin signaling. Expression of leptin
receptor in neurons of the hypothalamic arcuate nucleus
improves insulin sensitivity (Morton et al. 2005).

As outlined in Figure 2, it is now known that leptin ac-
tivates the PIBK/Akt/mTOR signaling pathway via Jak2
mediated phosphorylation of insulin receptor substrate
(Park and Ahima 2014). Leptin also promotes PI3K/Akt/
mTOR signaling via activation of the GH/IGF-1 axis
(Watanobe and Habu 2002). The role of leptin in healthy
aging and lifespan has been the subject of significant
study. The dramatic phenotype of 0b/ob and db/db mice
that are deficient for leptin signaling clearly indicates
that intact leptin signaling is required for healthy aging.
Leptin resistance increases with age, and it has been sug-
gested that diminished leptin action may be a cause of
aging (Gabriely et al. 2002).

Leptin is reduced by a CR regimen (Schlitt and Schulz
2012), and the role of leptin in promoting PI3K/Akt/
mTOR activity (Figure 2) would lead us to predict that
decreased leptin levels would be beneficial for lifespan.
However, despite the positive effect of leptin on PI3K/
Akt/mTOR signaling, the net physiological consequence
of leptin administration is a reduction in food intake and
body weight (Halaas et al. 1997). Transgenic leptin mice
have reduced food intake and an approximately 60% de-
crease in serum insulin levels (Qiu et al. 2001), which is
likely to result in a net drop of PI3K/Akt/mTOR activity.
The effect of leptin overexpression or lifelong adminis-
tration of leptin on lifespan has not yet been examined.
Leptin is a fascinating case in which the physiological
context in which PI3K/Akt/mTOR pathway signaling is
regulated may modify the net effect of the hormone on
lifespan.

The role of many other hormones in PI3K/Akt/mTOR and
lifespan is not yet clear

While the role of growth hormone, IGF-1, adiponectin,
and leptin in the regulation of PI3K/Akt/mTOR signal-
ing is becoming clear, there are many other metabolic
regulatory hormones that may also play a role in the
regulation of PI3K/Akt/mTOR pathway signaling and
longevity. However, significant additional research will
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be required to elucidate these links. In the following sec-
tion, we provide a brief introduction to resistin, ghrelin,
cholecystokinin (CCK), glucagon like peptide 1 (GLP-1),
the fibroblast growth factors, and humanin, all of which
impinge upon glucose metabolism and insulin signaling,
and are thus also candidate factors which may regulate
PI3K/Akt/mTOR activity and thus regulate lifespan.

Resistin

Resistin is a protein hormone secreted by white adipose
tissue, but in contrast to adiponectin, resistin acts to de-
crease insulin sensitivity (Steppan et al. 2001). Resistin
was initially discovered in a screen for adipocyte genes
responsive to treatment with the anti-diabetes drug rosi-
glitazone, and blocking the action of resistin with an
antibody significantly increases glucose tolerance in mice.
Resistin levels are decreased by a CR regimen in rats, likely
mediated by GH and IGF-1 (Chiba et al. 2008), and are
also decreased in the fat of GhRKO mice (Masternak et al.
2012). While longevity studies have not been performed
with mice overexpressing or lacking resistin, a recent
paper found that resistin impacts cholesterol metabolism
by regulating the expression of low-density lipoprotein
receptor (Melone et al. 2012), suggesting an important
role for this hormone in healthspan.

Ghrelin

Ghrelin, the so-called “hunger hormone”, is released pri-
marily by endocrine cells in the stomach when the stomach
is empty. Ghrelin acts as a neuropeptide that effectively an-
tagonizes the action of leptin, and many of the same cells in
the arcuate nucleus of the hypothalamus express both lep-
tin and ghrelin receptors. However, ghrelin receptors are
also expressed in other tissues (Geary 2004). Deletion of
the receptor for ghrelin, the growth hormone secretagogue
receptor, significantly improves insulin sensitivity during
aging via the regulation of fat metabolism (Lin et al. 2011).
Administration of ghrelin has some positive effects on the
physiology of middle aged mice, reducing body weight pri-
marily via a reduction in fat mass (Ariyasu et al. 2008).
While no true lifespan study has been performed in healthy
mice, it has been speculated that ghrelin might be an “anti-
aging hormone” (Maejima et al. 2011). However, a recent
study has linked ghrelin signaling in the hypothalamus to
the activation of mTORC1 (Stevanovic et al. 2013), which
would lead us to predict (Figure 2) that ghrelin might actu-
ally promote aging. As with leptin, it is likely that thor-
oughly understanding the physiological context in which
ghrelin regulates PI3K/Akt/mTOR signaling will be re-
quired to understand the role of ghrelin in longevity.

Cholecystokinin
Cholecystokinin (CCK) is a hormone released by duo-
denal I-cells that stimulate gallbladder contraction and

Page 6 of 11

pancreatic exocrine secretion, but it is also a neuropep-
tide that modulates satiety (Lavine et al. 2010; Dufresne
et al. 2006). CCK receptor antagonists and agonists have
attracted pharmaceutical company attention as a means
of modulating feeding behavior, as well as treating pain
and anxiety. With the exception of proglumide, a drug
that inhibits gastric secretions and is used in ulcer treat-
ment (Bergemann et al. 1981) CCK-based therapies have
not successfully translated to the clinic. For example, the
CCK agonist GI181771X was tested in clinical trials as a
treatment for obesity, but humans taking GI181771X did
not lose weight (Jordan et al. 2008).

CCK is actually a family of related peptides produced
by processing of pre-pro-cholecystokinin, and are also
often sulfated — in fact, sulfated CCK-8 is the most bio-
active form. It has been known since the 1980’s that in
addition to their role in satiety, CCK also plays a role in
the regulation of glucose homeostasis, and CCK-8 stim-
ulates insulin secretion in both rodents and humans
(Ahren et al. 2000). CCK may also play an important
role in the regulation of beta cell mass (Lavine et al
2010; Linnemann et al. 2014). In pancreatic acinar cells,
CCK promotes PI3K/Akt/mTOR signaling (Williams
et al. 2002). OLETF rats, which have a spontaneously
arising mutation in the CCK-A receptor, develop late
onset hyperglycemia as well as diabetic nephropathy.
OLETF rats have decreased cardiac IGF-1 expression
as well as decreased phosphorylation of cardiac Akt
(Makino et al. 2009). Although no longevity studies have
been conducted with exogenously delivered CCK, it is
therefore likely that CCK activates PI3K/Akt/mTOR
signaling. However, CCK also acts synergistically with
leptin to promote satiety, possibly by activating AMPK
in the hypothalamus (Akieda-Asai et al. 2014), which
may inhibit mTORCI signaling. It therefore appears
likely that the context in which CCK activation takes
place may be important in understanding its effect on
PI3K/Akt/mTOR activity.

Glucagon-like peptide 1 (GLP-1)

Glucagon-like peptide 1 (GLP-1) is a hormone derived
from processing of the proglucagon gene product by the
small intestine in response to nutrients. GLP-1 potently
stimulates insulin secretion, but its activity is short-lived
due to the action of dipeptidyl peptidase-4 (DPP4), a cir-
culating enzyme which cleaves and inactivates GLP-1
(Kimple et al. 2014). Several drugs based on GLP-1 are
now approved, including exenatide and liraglutide, GLP-
1 agonists that are resistant to cleavage by DPP4, and
sitagliptin, an inhibitor of DPP4.

GLP-1 has shown success in reversing some of the
phenotypes of aging, specifically in reversing the age-
related decline in glucose tolerance in aged rats (Wang
et al. 1997). This effect is due in part to the effects of
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GLP-1 on beta cell function. GLP-1 administration in-
creases insulin content and potentiates glucose stimulated
insulin secretion in aged rats, while also stimulating in-
creased beta cell mass and proliferation (Doyle and Egan
2001). Although no aging studies have been conducted with
GLP-1 in healthy aged animals, GLP-1 has attracted some
excitement as a possible therapy for diseases of neuronal in-
jury, including Alzheimer’s disease, stroke, Huntington’s
disease, and Parkinson’s disease (Li et al. 2009, 2010; Martin
et al. 2009). Indeed, two clinical trials of the GLP-1 agonist
liraglutide in Alzheimer’s disease are in progress; no results
have yet been reported. Perhaps surprisingly for a drug with
so many positive effects in neuronal injury models, liraglu-
tide activates PI3K/Akt/mTORC1 signaling in beta cells
(Miao et al. 2013). Understanding the mechanism by which
GLP-1 agonists may promote healthspan and longevity is
clearly a ripe area for future research.

Fibroblast growth factors

The role of fibroblast growth factors in aging was an un-
expected discovery, arising from investigations into the
ability of the Klotho gene to suppress aging (Kuro-o
et al. 1997; Kurosu et al. 2005). It was noticed that
the phenotypes of Klotho mutant mice - which include
infertility, kyphosis, atherosclerosis, skin atrophy, muscle
atrophy, T-cell dysregulation, pulmonary emphysema, al-
tered phosphate and calcium metabolism, and shortened
lifespan — are similar to the phenotype of mice lacking
Fgf23 (Kurosu and Kuro 2009). This suggested that
Klotho and FGF23 might function in the same pathway,
and it was soon realized that Klotho and its homologue
BKlotho form complexes with FGF receptors, increasing
the affinity of the receptor for FGF23 in the case of
Klotho, and FGF15/19 and FGF21 in the case of fKlotho
(Kurosu and Kuro 2009). Although initially unclear, it is
now believed that FGF23 does not play a vitamin D —
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independent role in either glucose homeostasis or aging
(Streicher et al. 2012).

In contrast, FGF21 is well-established as an insulin-
sensitizing hormone produced in the liver in response to
fasting or a CR diet (Kuhla et al. 2014). FGF21 antago-
nizes the GH-IGF1 signaling axis by in the liver by
blocking Jak2/Stat5 signaling and suppressing the tran-
scription of Igfl while also inducing IgfbpI (Inagaki et al.
2008). Mice that overexpress FGF21 have an approxi-
mately 30% increase in male lifespan, with female life-
span being extended by over 40% (Zhang et al. 2012).
They also have significantly improved glucose homeosta-
sis, with lower fasting glucose and insulin levels, and
improved whole body insulin sensitivity (Zhang et al.
2012). Surprisingly, FGF21 expression is positively medi-
ated by PI3K/Akt signaling (Izumiya et al. 2008), and its
expression does not increase during CR (Mendelsohn
and Larrick 2012). Although FGF21 may be a partial CR
mimetic, it likely functions via a distinct mechanism
from the PI3K/Akt/mTORCI1 signaling discussed above.

Humanin

Humanin is a short, 24-residue peptide originally identi-
fied as the result of a cDNA library screen for neuropro-
tective genes (Tajima et al. 2002). It was immediately
noted that the open reading frame for humanin was
identical to that of mitochondrial 16S ribosomal RNA,
resulting into some controversy as to whether the pro-
tein for humanin was expressed. Interestingly, although
humanin binds to IGFBP-3 both in vitro and in vivo
(Ikonen et al. 2003), research on the role of humanin
remained focused on its potential role as a neuroprotec-
tive agent. However, as researchers began to explore the
potential role of insulin resistance in the pathogenesis of
Alzheimer’s disease, it was found that humanin is also
a central regulator of peripherial insulin sensitivity
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(Muzumdar et al. 2009). Humanin also promotes beta
cell survival in nonobsese diabetic (NOD) mice, delay-
ing the onset of diabetes and improving glucose toler-
ance (Hoang et al. 2010). The actions of humanin on
glucose homeostasis are likely mediated in part by its
promotion of glucose stimulated insulin secretion by
beta cells (Kuliawat et al. 2013).

While the effect of humanin on lifespan has not yet
been determined, humanin and humanin analogues have
shown efficacy in mouse models of cardiac injury, as
well as positive effects on neuronal survival and memory
in the mouse models of Alzheimer’s disease, suggesting
that humanin treatment may lead to increased longevity
(Tajima et al. 2005; Muzumdar et al. 2010). It will be in-
teresting to learn if humanin regulates PI3K/Akt/mTOR
signaling, either directly or via modulation of IGF-1.
Future study of humanin and other mitochondrial de-
rived peptides are likely to lead to important biological
discoveries in the biology of aging.

Conclusions

Herein, we have discussed some of the major endocrine
factors that regulate glucose homeostasis and their
effects — or possible effects — on longevity. We have pre-
sented a unifying model in which growth hormone, IGF-
1, adiponectin, and leptin may all regulate lifespan via
their effect on the PI3K/Akt/mTOR signaling pathway.
While it remains to be conclusively proven, a CR diet
may similarly act via decreased PI3K/Akt/mTOR signal-
ing. Decreased fasting blood glucose and insulin levels
are widely conserved effects of a CR diet in mammals
(Lamming and Anderson 2014), and a CR diet signifi-
cantly inhibits the PI3K/AKT/mTOR signaling pathway
even in humans (Heilbronn et al. 2006; Mercken et al.
2013). At least some genetic mouse models of increased
insulin sensitivity have a short lifespan (Nelson et al
2012), again correlating with a model in which increased
PI3K/AKT/mTOR signaling pathway activity acts to limit
lifespan.

We have also briefly touched on a number of other
endocrine factors that may regulate longevity via this
same PI3K/Akt/mTOR signaling pathway. While some
of these factors have established connections to PI3K/
Akt/mTOR signaling, future research will be required to
learn if the others regulate this pathway. There are many
other insulin sensitizing hormones we have not dis-
cussed, including prolactin, which regulates hepatic
insulin sensitivity (Yu et al. 2013) as well as beta cell
function and mass (Park et al. 2012); the recently discov-
ered meteorin-like which regulates beige fat thermogen-
esis (Rao et al. 2014); and the lipocalin family of
hormones, which includes LCN2 (Rao et al. 2014),
LCN13 (Zhou and Rui 2013), and Mupl (Major urinary
protein 1) (Zhou et al. 2009). While the role of these
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proteins in the regulation of lifespan and the PI3K/Akt/
mTOR signaling pathway is largely unknown, this area is
ripe for study.

Finally, we have discussed that the context in which
PI3K/Akt/mTOR signaling is regulated may be critical
to understanding the effect on longevity. One of the
most significant contexts is sex, and both genetic and
pharmaceutical interventions in the insulin/IGF-1/
mTOR signaling pathway consistently show greater
benefits in females than males. This sexual disparity in
lifespan extension is observed in mice null for either
Irs1 or S6K1 (Selman et al. 2009, 2011), mice hetero-
zygous for both mTOR and mLST8 (Lamming et al.
2012), and consistently and across a range of doses in
mice treated with rapamycin (Figure 3) (Miller et al.
2014). While the mechanistic and physiologic basis for
this effect is unknown, 17p-estradiol plays a protective
role against the development of rapamycin-induced
diabetes, suggesting a possible contribution of sex hor-
mones (Schindler et al. 2014). A deeper understanding
the role of sex hormones and other endocrine factors
in the PI3K/Akt/mTOR-dependent regulation of lon-
gevity will provide a platform for the development of
interventions that can extend lifespan across the sexes
and in a wide range of physiological contexts.
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