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A class of Fourier integrals based on the electric
potential of an elongated dipole
Georgios Aim Skianis
Abstract

In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals
are associated with a group of functions at space domain, which represent the electric potential of a distribution of
elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by
the Fourier transform of the Green’s function of the potential of the dipole distribution, times a definite integral in
which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression
of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These
integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated
dipole distributions, at spatial frequency domain.
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1. Introduction
In earth sciences it is well known that the electric field
which is produced by a fault with a geothermal activity
may be simulated by a system of dipoles oriented per-
pendicularly to the surface of the fault (Corwin and
Hoover 1979, Fitterman 1984). The geometry of the
geothermal field is presented in Figure 1. A vertical
fault with an infinite horizontal dimension is consid-
ered. h is the depth of the roof of the fault. T is its ver-
tical dimension. t is the distance of a certain dipole
from the roof of the fault and it takes values between 0
and T. x is the location of a point at ground surface.
The Green’s function of the electric potential V(x) is
the potential of a dipole with a small length and
polarization m(t) per unit length t (Fitterman 1979). m
(t) may be constant with depth, but it may also in-
crease with t (Corwin and Hoover 1979, Corwin et al.
1981).
If the dipole has an infinite horizontal dimension

and a dipole axis parallel to ground surface, it pro-
duces an elementary electric potential dV(x), which is
given by (Murty and Haricharan 1985):
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dV xð Þ ¼ x:m tð Þ
t þ hð Þ2 þ x2

dt ð1Þ

The electric potential V(x) is given by:

V xð Þ ¼
ZT
0

x:m tð Þ
x2 þ t þ hð Þ2dt ð2Þ

The quantitative interpretation of the electric potential
V(x) may be done at space domain, according to equation
(2). It can also be done at spatial frequency domain, by
taking the Fourier transform U(u) of V(x), according to
the relation:

U uð Þ ¼
Z∞
−∞

V xð Þ: exp −iuxð Þdx ð3Þ

u is the spatial frequency.
For various expressions of m(t) a closed form of the

integral V(x) can not be easily found. On the other hand,
it is possible to derive the Fourier transform U(u) in a
closed form, for certain types of the function m(t). In
geophysics, the quantitative interpretation of potential
anomalies in spatial frequency domain is quite usual and
may give reliable results (Odegard and Berg 1965, Rao
et al. 1982, Skianis et al. 2006, Skianis 2012). Therefore the
derivation of expressions of U(u) may have applications
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Figure 1 A representation of the electric field which is produced by a vertical fault.
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in geosciences and, possibly, in other fields of physics
and engineering, as concerns the behaviour of the elec-
trical field produced by a dipole distribution.
The subject of the present paper is the derivation of non

tabulated expressions of the Fourier integral of V(x) of
equation (2), for various forms of m(t). An appropriate
change of the order of integration must be done before
proceeding to the derivation of the integral transform.
Consequently, various integrals can be obtained, in closed
form, for different expressions of m(t).

2. A general form for the Fourier integral U(u)
In the following mathematical analysis, it is assumed
that u > 0. For u = 0, U(0) = 0, since the function V(x) is
antisymmetric, as it can be seen from equations (2), (3)
and from Figure 1. On the other hand, for u < 0 the Fou-
rier integral U(u) is the complex conjugate of U(|u|).
Therefore, knowledge of U(u) for u ≥ 0 is sufficient to
describe the behaviour of the Fourier integral at negative
u values.
Combining equations (2) and (3) and changing the

order of integration, U(u) takes the form:

U uð Þ ¼
Z∞
−∞

x
ZT
0

m tð Þ
x2 þ t þ hð Þ2 dt⋅ exp −iuxð Þdx

¼
ZT
0

m tð Þ
Z∞
−∞

x

x2 þ t þ hð Þ2 exp −iuxð Þdx
2
4

3
5dt
ð4Þ

It is well known (Spiegel 1976) that:
Z∞
−∞

x

t þ hð Þ2 þ x2
exp −iuxð Þdx

¼ −iπ exp − t þ hð Þu½ � ð5Þ

Plugging equation (5) into (4) gives:

U uð Þ ¼ −iπ exp −huð Þ
ZT

m tð Þ exp −utð Þdt ð6Þ

0

Therefore, the Fourier transform of V(x) may be
expressed as the product of the function -iπexp(-hu)
times the integral of m(t)exp(-ut) for dt. Equation (6)
may be used in deriving the Fourier integral U(u) for
various forms of m(t).

3. The Fourier integral U(u) for a constant m(t)
For m(t) = 1 equation (6) becomes:

U uð Þ ¼ −iπ exp −huð Þ
ZT
0

exp −utð Þdt ð7Þ

It can be easily found that:

U uð Þ ¼ iπ
u

exp − hþ Tð Þu− exp −huð Þgð½f ð8Þ

Further, for m(t) = 1 the equation (2) for V(x) becomes:



� �
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V xð Þ ¼
ZT
0

x

t þ hð Þ2 þ x2
dt ð9Þ

In order to derive a closed expression for V(x) the fol-
lowing tabulated integral (Spiegel 1976) has to be taken
into account:

Z
dz

x2 þ z2
¼ 1=xð Þ arctan z=xð Þ ð10Þ

Putting z = t + h and substituting in equation (10), the
closed expression for V(x) in equation (9) can be found.
V(x) is given by:

V xð Þ ¼ arctan
T þ h

x

� �
− arctan

h
x

� �
ð11Þ

Therefore, according to the equations (8) and (11) the
following transform pair FT is obtained:

V xð Þ ¼ arctan
T þ h

x

� �
− arctan

h
x

� �
←FT→U uð Þ

¼ iπ
u

exp − hþ Tð Þu− exp −huð Þgð½f
ð12Þ

3. The Fourier integral for m(t) proportional to t
For m(t) = t equation (6) becomes:

U uð Þ ¼ −iπ exp −huð Þ
ZT
0

t exp −utð Þdt ð13Þ

It can be easily found that:

U uð Þ ¼ iπ exp − hþ tð Þu½ �⋅ T=uþ 1=u2
� �

− exp −huð Þ=u2� �
ð14Þ

On the other hand, since m(t) = t, the equation (2) for
V(x) becomes:

V xð Þ ¼
ZT
0

xt

t þ hð Þ2 þ x2
dt ð15Þ

Taking into account the tabulated integral of equation
(10) and making a proper change of variable (z = t + h),
it can be found, after some algebraic manipulation, that:

V xð Þ ¼ x=2ð Þ ln T þ hð Þ2 þ x2

h2 þ x2
−h arctan

T þ h
x

� �

þ h arctan h=xð Þ
ð16Þ

According to the equations (14) and (16) the following
Fourier transform pair is obtained:
V xð Þ ¼ x=2ð Þ ln T þ hð Þ2 þ x2

h2 þ x2
−h arctan

T þ h
x

þ h arctan h=xð Þ←FT→

U uð Þ ¼ iπ exp − hþ tð Þu½ �⋅ T=uþ 1=u2ð Þ− exp −huð Þ=u2f g
ð17Þ

In case that h = 0, which physically means that the roof
of the geothermal fault is located at ground surface,
equation (16) becomes:

V xð Þ ¼ x=2ð Þ lnT
2 þ x2

x2
ð18Þ

Equation (14) becomes:

U uð Þ ¼ iπ
exp −Tuð Þ⋅ Tuþ 1ð Þ−1

u2

� 	
ð19Þ

According to the equations (18) and (19) the following
Fourier transform pair is obtained:

V xð Þ ¼ x=2ð Þ lnT
2 þ x2

x2
←FT→U uð Þ

¼ iπ
exp −Tuð Þ⋅ Tuþ 1ð Þ−1

u2

� 	
ð20Þ

4. The Fourier integral for m(t) varying
exponentially with t
In the previous paragraphs, m(t) had such a form that a
closed expression for V(x) could be found, according to
the equation (2). Furthermore, the Fourier transform
pairs of equations (12), (17) and (20), could be derived
straight from equation (3), by integrating for x and tak-
ing into account tabulated Fourier integrals which may
be found in Spiegel (1976) and Abramowitz and Stegun
(1968). There are cases, however, that m(t) has such a
form that the closed expression for V(x) can not be
found by tabulated integrals, therefore a closed expres-
sion for U(u) can not be derived by equation (3). This
happens, for example, when an exponential function exp
(at), with a real is involved in the expression for m(t). In
such a case, equation (6) may be the only way to find U
(u) in a closed form.
An alternative approach would be to expand exp(at)

to a series of (at)n/n!, express equation (2) as a sum of
definite integrals ((at)n/n!)dt/(x2 + (t + h)2), find the Fou-
rier integral of each separate term according to equation
(3) and try to find a closed expression for the sum of in-
finite terms. The whole procedure seems quite tedious
and it is not sure if a closed expression for U(u) may be
derived. Therefore, it is more convenient to proceed ac-
cording to equation (6).
For m(t) = exp(at) the expression for V(x), according

to the equation (2), is:
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V xð Þ ¼
ZT
0

x exp atð Þ
x2 þ t þ hð Þ2 dt ð21Þ

There are no tabulated integrals to find a closed ex-
pression for V(x), according to the equation (21). It is
possible, however, to find the Fourier integral of V(x).
For m(t) = exp(at) the equation (6) becomes:

U uð Þ ¼ −iπ exp −huð Þ
ZT
0

exp atð Þ⋅ exp −utð Þdt ð22Þ

It can be easily found that:

U uð Þ ¼ −iπ exp −huð Þ exp a−uð ÞT½ �−1
a−u


 �
ð23Þ

Taking into account that u is positive, the denominator
at the right part of equation (23) becomes zero at u = a
for a > 0. It can be easily proved, however, that U(u) is
continuous at this point and that:

lim
u →a

U uð Þ ¼ U að Þ ¼ −iπT exp −hað Þ ð24Þ

According to the equations (3), (21) and (23), the
following Fourier transform pair is obtained:

ZT
0

x exp atð Þ
x2 þ t þ hð Þ2 dt←FT→−iπ exp −huð Þ

� exp a−uð ÞT½ �−1
a−u


 �
ð25Þ

4. Some Fourier integrals for an infinitely big T
The case of an infinitely big T represents a fault with a
very big vertical dimension. The function V(x), according
Figure 2 Variation of the polarization m against vertical dipole distan
to the equation (2), may be defined if polarization m is
zero for t equal to zero. Three forms of the function m
(t) are considered.
In the first case, m(t) is given by:

m tð Þ ¼ 1− exp −btð Þ ð26Þ

with b > 0.
A polarization m(t) of the type of equation (26) en-

sures that the potential V(x) takes finite values. From the
physical point of view it expresses a fault of geothermal
activity with an increasing polarization with depth,
which tends to a constant value. In Figure 2 the vari-
ation of m with t is presented.
Equation (2) becomes:

V xð Þ ¼
Z∞
0

x⋅ 1− exp −btð Þ½ �
x2 þ t þ hð Þ2 dt ð27Þ

Combining the equations (3), (6) and (27) gives:

V uð Þ ¼ −iπ exp −huð Þ
Z∞
0

1− exp −btð Þ½ � exp −utð Þdt

ð28Þ

It can be easily found that:

V uð Þ ¼ −
iπb exp −huð Þ
u bþ uð Þ ð29Þ

Combining the equations (3), (27) and (29), the follow-
ing Fourier transform pair is obtained:
ce t from the roof of the fault.
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Z∞
0

x⋅ 1− exp −btð Þ½ �
x2 þ t þ hð Þ2 dt←FT→−

iπb exp −huð Þ exp −buð Þ
u bþ uð Þ

ð30Þ

The function m(t) = 1-exp(-bt) is equal to zero for t = 0
and increases with t tending to unity.
The function m(t) = erf[sqrt(bt)] (erf is the error function)

has a similar behaviour with t, since it is zero for t = 0 and
tends to unity as long as t increases. It also ensures finite
values of V(x). Taking into account the equation (2), the ex-
pression for V(x) becomes:

V xð Þ ¼
Z∞
0

x⋅erf
ffiffiffiffiffi
bt

p� �
x2 þ t þ hð Þ2dt ð31Þ

Combining the equations (3), (6) and (31) gives:

V uð Þ ¼ −iπ exp −huð Þ
Z∞
0

erf
ffiffiffiffiffi
bt

p
 �
exp −utð Þdt

ð32Þ

It is well known (Spiegel 1976, Abramowitz and Stegun
1968) that:

Z∞
0

erf
ffiffiffiffiffi
bt

p
 �
exp −utð Þdt ¼

ffiffiffi
b

p

u
ffiffiffiffiffiffiffiffiffiffiffi
bþ u

p ð33Þ

Combining the equations (3), (31), (32) and (33), the
following Fourier transform pair is obtained:

Z∞
0

x⋅erf
ffiffiffiffiffi
bt

p� �
x2 þ t þ hð Þ2dt←FT→−iπ exp −huð Þ

ffiffiffi
b

p
ffiffiffiffiffiffiffiffiffiffiffi
bþ u

p

ð34Þ

The third case is that of m(t) = tn, for 0 < n < 2.
According to the equation (2), the expression for V(x)

becomes:

V xð Þ ¼
Z∞
0

xtn

x2 þ t þ hð Þ2dt ð35Þ

Combining the equations (3), (6) and (35) gives:

V uð Þ ¼ −iπ exp −huð Þ
Z∞
0

tn exp −utð Þdt ð36Þ

It is well known (Abramowitz and Stegun 1968) that:
Z∞
0

tn exp −utð Þdt ¼ Γ nþ 1ð Þ
unþ1

ð37Þ

Γ is the Gamma function.

Combining the equations (3), (35), (36) and (37) the
following Fourier transform pair is obtained:

Z∞
0

xtn

x2 þ t þ hð Þ2dt←FT→−iπ exp −huð Þ Γ nþ 1ð Þ
unþ1

ð38Þ

Equation (38) is valid for 0 < n < 2. For n greater than
or equal to 2 the generalised integral of equation (2)
does not converge to a finite number.
It is important to mention that the generalized inte-

grals on the right side of equations (28), (32) and (36)
are the Laplace transforms of the respective polarization
functions m(t).

5. Conclusions
A class of non tabulated Fourier transform pairs have
been derived, based on the Green’s function of the po-
tential of a distribution of elongated electric dipoles. The
Fourier integrals may be expressed as the product of the
Fourier transform of the Green’s function exp(-hu) times
an integral which depends on the polarization function
m(t). For an infinite vertical dimension T, this integral is
actually the Laplace transform of m(t).
The Fourier integrals are expressed in rather simple

closed forms and they can be used in the direct or iterative
quantitative interpretation of surface electric potential
measurements at geothermal fields (Corwin and Hoover
1979, Corwin et al. 1981, Thanassoulas and Lazou 1993,
Apostolopoulos et al. 1997, Jouniaux and Ishido 2012).
Further applications may possibly be developed in model-
ling of electric fields produced by distributions of elon-
gated electric dipoles.
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