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Abstract

In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations
which are known as exp-function and the exp(−ϕ(ξ)) -expansion method. Recently, there are several methods to use
for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for
solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling
wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many
physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional
plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions
and periodic solutions are also given to visualize the dynamics of the equation.
1. Introduction
The effort in finding exact solutions to nonlinear equa-
tions is witnessed significant curiosity and progress in
finding solutions to nonlinear partial differential equa-
tions (NPDEs) that resemble physical phenomena. The
nonlinear wave phenomena observed in fluid dynamics,
plasma and optical fibers are often modeled by the bell
(i.e. non-topological solitons) shaped sech solutions and
the kink (i.e. topological solitons) shaped tanh solutions.
Both mathematicians and physicists have devoted con-
siderable effort of research regarding this matter. A peek
at the literature reveals a lot of effective methods that
solve this type of NPDEs.
For instance the inverse scattering transform (Ablowitz

and Clarkson 1991; Vakhnenko and Parkes 2002;
Vakhnenko and Parkes 2012a; Vakhnenko and Parkes
2002b), the complex hyperbolic function method
(Zayed et al. 2006; Chow 1995), the rank analysis method
(Feng 2000), the ansatz method (Hu 2001a; Hu 2001b;
Majid et al. 2012), the (G′/G) -expansion method
(Wang et al. 2008; Roshid et al. 2013a; Bekir 2008;
Roshid et al. 2013b; Zhang 2008; Alam 2013), the
modified simple equation method (Jawad et al. 2010),
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the exp-functions method (He and Wu 2006), the
Hirota method (Hirota 1971), the sine-cosine method
(Wazwaz 2004), the tanh-function method (Parkes
and Duffy 1996), extended tanh-function method
(Fan 2000; Parkes 2010a; Parkes 2010b), the Jacobi
elliptic function expansion method (Liu 2005; Chen
and Wang 2005), the F-expansion method (Wang
and Zhou 2003; Wang and Li 2005), the Backlund
transformation method (Miura 1978), the Darboux
transformation method (Matveev and Salle 1991), the
homogeneous balance method (Wang 1995; Zayed et al.
2004; Wang 1996), the Adomian decomposition method
(Adomain 1994; Wazwaz 2002), the auxiliary equation
method (Sirendaoreji and Sun 2003; Sirendaoreji 2007),
the exp(−ϕ(ξ)) -expansion method (Khan and Akbar 2013)
and so on.
Recently, a remarkable and important discover has

been made by Vakhnenko and Parkes (Vakhnenko and
Parkes 1998), who have confirmed an integrable equation
as follows:

uuxxt−uxuxt þ u2ut ¼ 0 ð1Þ

The traveling wave solutions of this Vakhnenko-Parkes
equation was investigated in (Kangalgil and Ayaz 2008;
Parkes 2010b; Gandarias and Bruzon 2009; Yasar 2010;
Abazari 2010; Liu and He 2013, Ostrovsky 1978) and Liu
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(Liu and He 2013) found traveling wave solutions of this
equations by improved (G′/G) -expansion method with
auxiliary equation GG″ =AG2 + BGG′ +C(G′)2.
In this paper, we investigate the traveling wave solutions

of the Vakhnenko-Parkes equation (1) via two methods
namely the Exp-function and the exp(−ϕ(ξ)) -expansion
methods.
The rest of the paper is organized as follows: In

section 2, we build up an introduction of exp-function
and the exp(−ϕ(ξ)) -expansion method. By these methods,
we gain the exact solutions of Vakhnenko-Parkes equation
in section 3. In section 4, we out line results and discus-
sion of the achieved solutions. Finally, some conclusions
are drawn in the section 5.

2. The methodologies
In this section, we will go over the main points of the exp-
function method and the exp(−ϕ(ξ)) -expansion method to
raise the rational solitary wave and periodic wave solutions
for the Vakhnenko-Parkes equation which have been paid
attention by many researchers in mathematical physics.
Consider a nonlinear equation with two independent

variable x and t, is given by

P U ;Ux;Ut ;Uxx;Uxt;Utt ;……ð Þ ¼ 0 ð2Þ
where U = U(x,t) is an unknown function, P is a polynomial
in U = U(x,t) and its partial derivatives, in which the highest
order derivatives term and nonlinear terms are involved.
Combining the independent variable x and t into one

traveling wave variable ξ = x ±wt, we suppose that

U x; tð Þ ¼ u ξð Þ; ξ ¼ x� wt; ð3Þ
The travelling wave variable (3) permits us to convert

the Eq. (2) to an ODE for u = u(ξ) is

P u; u′; u″;⋯ ⋯⋯
� � ¼ 0 ð4Þ

2.1. The exp-function method
We now discuss the exp-function method to solve partial
differential equation Eq. (1).

Step-2.1.1. Assume the solution of the Eq. (1) can be
expressed in the following form (He and Wu, 2006):

u ξð Þ ¼

Xd
n¼−c

an exp nξð Þ
Xq
m¼−p

bn exp nξð Þ

¼ a−c exp −cξð Þ þ⋯⋯þ ad exp dξð Þ
b−p exp −pξð Þ þ⋯⋯þ bq exp qξð Þ ð5Þ

where c, d, p and q are positive unknown integers that
could be determine subsequently, an and bm are unknown
constants, Eq. (5) can be re-written in the following
form:

u ξð Þ ¼ ac exp cξð Þ þ⋯⋯þ a−d exp −dξð Þ
bp exp pξð Þ þ⋯⋯þ b−q exp −qξð Þ ð6Þ

Step-2.1.2: To determine the values of c and p, we
balance the highest order linear term with the highest
order nonlinear term in Equation Eq. (4). Similarly, to
determine the values of d and q, we have to balance
the lowest order linear term with the lowest order
nonlinear term in Equation Eq. (4). This confirms the
determination of the values of c, d, p and q.

Step-2.1.3: Inserting the values of c, d, p and q into
Eq. (6) and then substituting Eq. (6) into Eq. (4) and
simplifying, we attain;X

j

Cj exp jξð Þ ¼ 0 ð7Þ

Then collecting all coefficient Cj and setting each of
them to zero, yields a system of algebraic equations for
ac’s and bp’s. Then unknown ac’s and bp’s can be evalu-
ated by solving the system of algebraic equations with
the help of maple-13. Substituting these values into
Eq. (6), we gain traveling wave solutions of the Eq. (1).

2.2. The exp(−ϕ(ξ)) -expansion method

Step 2.2.1. Assume that the solution of ODE (4) can be
expressed by a polynomial in exp(−ϕ(ξ)) as follows:

u ¼
Xm
i¼0

li exp −ϕ ξð Þð Þi ð8Þ

where ϕ′(ξ) satisfies the ODE

ϕ′ ξð Þ ¼ exp −ϕ ξð Þð Þ þ μ exp ϕ ξð Þð Þ þ λ; ð9Þ

The well-known solutions of the ODE (9) are as follows:

Whenλ2−4μ > 0; μ≠0; thenϕ ξð Þ

¼ ln
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

ffiffiffiffiffiffiffiffiffi
λ2−4μ

p
2 ξ þ Cð Þ

� �
−λ

2μ

0
BB@

1
CCA

ð10Þ

Whenλ2−4μ < 0; thenϕ ξð Þ

¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

ffiffiffiffiffiffiffiffiffi
4μ−λ2

p
2 ξ þ Cð Þ

� �
−λ

2μ

0
BB@

1
CCA

ð11Þ
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When λ2−4μ > 0; μ ¼ 0; then ϕ ξð Þ
¼ − ln

λ

exp λ ξ þ Cð Þð Þ−1
� �

ð12Þ

When λ2−4μ ¼ 0; μ≠0; λ≠0; thenϕ ξð Þ
¼ ln −

2 λ ξ þ Cð Þ þ 2ð Þ
λ2 ξ þ Cð Þ

� �
ð13Þ

Whenλ2−4μ ¼ 0; μ ¼ λ ¼ 0; then ϕ ξð Þ
¼ ln ξ þ Cð Þ ð14Þ

li, w, λ; i = 0,⋯⋯,m and μ are constants to be deter-
mined later, lm ≠ 0, the positive integer m can be deter-
mined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms arising
in the ODE(4).

Step 2.2.2. By substituting Eq. (8) into Eq. (4) and
using the ODE (9), and then collecting all terms with
the same order of exp(−ϕ(ξ)) together, the left hand
side of Eq. (4) is converted into new polynomial in exp
(−ϕ(ξ)). Setting each coefficient of this polynomial to
zero, yields a system of algebraic equations for li,⋯ w,
λ; i = 0,⋯⋯,m and μ. Solving the system of algebraic
equations and substituting li,⋯ w; i = 0,⋯⋯,m, and
the general solutions of Eq. (9) into Eq. (8). We have
more traveling wave solutions of nonlinear evolution
equation Eq. (1).

3. Application
In this section, we exert the exp-function method and the
exp(−ϕ(ξ)) -expansion method to construct the rational soli-
tary wave, non-topological soliton, periodic wave solutions
for some nonlinear evolution equations in mathematical
physics via the Vakhnenko-Parkes equation Eq. (1).
Inserting Eq. (3) into Eq. (1), we amend the Eq. (1)

into the ODE:

uu‴−u′u″ þ u2u′ ¼ 0 ð15Þ
Integrating Eq. (15) with respect to ξ and setting the

integration constant equal to zero yields

3uu″−3 u′
� �2 þ u3 ¼ 0 ð16Þ

3.1. Solution of Vakhnenko- Parkes equation via the
exp-function method
Now, we apply the Exp-function method to create the
generalized traveling wave solutions of the Vakhnenko-
Parkes Eq. (1).
According to Step 2.1.1 in the Exp-function method, the

solution of Eq. (16) can be written in the form of Eq. (6).
To determine the values of c and p, according to Step 2.1.2,
we balance the term of the highest order in uu″ and the
highest nonlinear terms u3 in Eq. (16). With the aid of com-
putational software Maple 13, yields p = c. To find out the
values of q and d, we balance the term of lowest order uu″
in Eq. (16) with lowest order nonlinear term u3, with the
aid of computational software Maple 13, yields to result q =
d. The parameters are free, so we can arbitrarily prefer the
values of c and d, but the ultimate solution does not depend
upon the choices of them.

Case 1: Suppose p = c = 1 and q = d = 1.

u ξð Þ ¼ a1eξ þ a0 þ a−1e−ξ

b1eξ þ b0 þ b−1e−ξ
ð17Þ

Since there are some free variables, for simplicity, we
presume b1 = 1.

u ξð Þ ¼ a1eξ þ a0 þ a−1e−ξ

eξ þ b0 þ b−1e−ξ
ð18Þ

Now, substituting Eq. (18) into Eq. (16) and by employing
the computer algebra, such as Maple 13, we gain

1
A
ðC1e

8ξ þ C2e
7ξ þ C3e

6ξ þ C4e
5ξ þ C5e

4ξ þ C6e
3ξ

þ C7e
2ξ þ C8e

ξ þ C9Þ ¼ 0

Where A = (e2ξ + b0e
ξ + b‐ 1)

4,

C1 ¼ a31; C2 ¼ a31b0 þ 3a0a21 þ 3a0a1−3a21b0;
C3 ¼ 3a20a1 þ 3a−1a21 þ a31b−1 þ 3a0a21b0−12a

2
1b‐1

þ 12a−1a1;

C4 ¼ 18a−1a1b0 þ 6a0a1a−1 þ 3a0a21b−1 þ 3a0a−1
−3a21b−1b0 þ a30
þ 3a−1a21b0−18a0a1b−1 þ 3a20a1b0
−3a20b0 þ 3a0a1b

2
0;

C5 ¼ a30b0 þ 3a20a1b−1 þ 6a0a1a−1b0 þ 12a−1a1b
2
0

þ 3a20a−1−12a
2
0b−1 þ 3a21a−1b‐1 þ 3a1a2−1

C6 ¼ −18a0a−1b−1 þ 3a0a1b
2
−1 þ 3a1a2−1b0

þ 18a−1a1b0b−1 þ 3a0a2−1
þ 6a0a−1a1b−1 þ a30b−1−3a

2
−1b0−3a

2
0b−1b0

þ 3a20a−1b0 þ 3a0a1b
2
0;

C7 ¼ 12a−1a1b
2
−1 þ 3a20a−1b−1 þ a3−1 þ 3a0a2−1b0

þ 3a2−1a1b‐1−12a
2
−1b−1;

C8 ¼ 3a0a−1b
2
−1 þ 3a0a2−1b−1 þ a3−1b0−3a

2
−1b−1b0 and

C9 ¼ a3−1b−1

Setting these equations to zero and solving the system
of algebraic equations with the aid of commercial software
Maple-13, we achieve the following solution.

a−1 ¼ 0; a0 ¼ 3b0; a1 ¼ 0; b0 ¼ const and b−1 ¼ b20=4
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Setting these values in the Eq. (18) we acquire the
solution

u ξð Þ ¼ 3b0
eξ þ b0 þ b20e

−ξ=4
¼ 12b0

4eξ þ 4b0 þ b20e
−ξ

¼ 12b0
4þ b20
� �

coshξ þ 4−b20
� �

sinhξ þ 4b0
; where ξ

¼ x−wt

ð19Þ
If we set
If we choose

b0 ¼ 2; u ξð Þ ¼ 3
coshξ þ 1

ð20Þ

Case 2: Suppose p = c = 2 and q = d = 1.

u ξð Þ ¼ a2e2ξ þ a1eξ þ a0 þ a−1e−ξ

b2e2ξ þ b1eξ þ b0 þ b−1e−ξ
ð21Þ

Since there are some free parameters, for simplicity,
we imagine b2 = 1, b− 1 = 0.

u ξð Þ ¼ a2e2ξ þ a1eξ þ a0 þ a−1e−ξ

e2ξ þ b1eξ þ b0
ð22Þ

Executing the same procedure as described in case-1,
we gain

a−1 ¼ a0 ¼ a2 ¼ 0; a1 ¼ 3b1; b1 ¼ const andb0
¼ b21=4:

Setting these values in the Eq. (22) we acquire the
solution

u ξð Þ ¼ 12b1
4þ b21
� �

coshξ þ 4−b21
� �

sinhξ þ 4b1
where ξ

¼ x−wt

ð23Þ
which is same obtain in the previous case-1.

Case 3: Suppose p = c = 2 and q = d = 2.

u ξð Þ ¼ a2e2ξ þ a1eξ þ a0 þ a−1e−ξ þ a−2e−2ξ

b2e2ξ þ b1eξ þ b0 þ b−1e−ξ þ b−2e−2ξ
ð24Þ

Since there are some free parameters, for simplicity,
we presume a− 2 = a− 1 = 0, b− 2 = b− 1 = 0, b1 = 1.

u ξð Þ ¼ a2e2ξ þ a1eξ þ a0
b2e2ξ þ eξ þ b0

ð25Þ
Executing the same procedure as described in the
case-1 and in the case-2, we attain

a0 ¼ 0; a1 ¼ 3; a2 ¼ 0; b0 ¼ const; b1
¼ const and b2 ¼ 4b0ð Þ−1

Hence require solution is

u ξð Þ ¼ 12b0
1þ 4b20
� �

coshξ þ 1−4b20
� �

sinhξ þ 4b0
ð26Þ

where ξ = x − wt.

This is also similar solutions achieved in the previous
cases and so we should not repeat the procedure again
and again for different values of the parameters. Actually
the solution is a bell shape soliton solution which referred
to as non-topological solitons solution. But in generally,
we can obtain all of the above solutions and another
family of solutions in case 4.

Case 4: Suppose p = c = 1 and q = d = 1.

u ξð Þ ¼ a1eξ þ a0 þ a−1e−ξ

b1eξ þ b0 þ b−1e−ξ
ð27Þ

Now, substituting Eq. (27) into Eq. (15) and by employing
the computer algebra, such as Maple 13, we gain

eξ

A
ðC1e

8ξ þ C2e
7ξ þ C3e

6ξ þ C4e
5ξ þ C5e

4ξ þ C6e
3ξ

þ C7e
2ξ þ C8e

ξ þ C9Þ ¼ 0

Where A = (b1e
2ξ + b0e

ξ + b‐ 1)
5, others are omitted for

simplicity and setting these equations to zero and solv-
ing the system of algebraic equations with the aid of
commercial software Maple-13, we achieve the following
solution.

(i) a−1 ¼ 0; a0 ¼ 3b0; a1 ¼ 0; b0 ¼ const and b−1 ¼
b20=4b1:

(ii) a−1 ¼ −b20=4b1; a0 ¼ 2b0; a1 ¼ −b1; and b−1 ¼
b20=4b1:

The solution (i) is same obtained in case 1.
Setting these values of (ii) in the Eq. (18) we acquire

the solution

u ξð Þ ¼ −b1eξ þ 2b0−b20e
−ξ=4b1

b1eξ þ b0 þ b20e
−ξ=4b1

; where ξ

¼ x−wt ð28Þ
If we choose

b0 ¼ 2 b1; u ξð Þ ¼ −1þ 3b0
b1eξ þ b0 þ b20e

−ξ=4b1
ð29Þ

Or if choose
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b0 ¼ 1; b1 ¼ 1=2; u ξð Þ ¼ −1þ 3
coshξ þ 1

ð30Þ

Remark-1: We have the solution (19) in the form via
Exp-function method, u ξð Þ ¼ 12b0

4eξþ4b0þb20e
−ξ

It note that if b0 > 0 and exp(−x0) = 2/b0 then it can be
written u ξð Þ ¼ 3

2 sech
2 1

2 x−wt−x0ð Þ� �
and if b0 <0 and

exp(−x0) = 2/|b0| then it can be written u ξð Þ ¼ − 3
2 cosech

2

1
2 x−wt−x0ð Þ� �

. These two solutions are just solutions u11
and u12 in Parkes (Parkes 2010b) with k = 1/2.
And for the solution (29) in the form via Exp-function

method, u ξð Þ ¼ −1þ 3b0
b1eξþb0þb20e

−ξ=4b1

It note that if b1/b0 > 0 and exp(−x0) = 2b1/b0 then it
can be written u ξð Þ ¼ −1þ 3

2 sech
2 1

2 x−wt−x0ð Þ� �
and if

b1/b0 < 0 and exp(−x0) = 2b1/|b0| then it can be written
u ξð Þ ¼ −1− 3

2 cosech
2 1

2 x−wt−x0ð Þ� �
. These two solutions

are just solutions u21 and u22 in Parkes (Parkes 2010b)
with k = 1/2.

3.2. Solutions of Vakhnenko- Parkes equation via the exp
(−ϕ(ξ)) -expansion method
Balance the highest order derivate term uu″ with the
highest nonlinear terms u3 in Eq. (16), we obtain m = 2,
so assume the equation Eq. (1) has the solution

u ξð Þ ¼ l0 þ l1 exp −ϕ ξð Þð Þð Þ þ l2 exp −ϕ ξð Þð Þð Þ2 ð31Þ
Inserting Eq. (31) into Eq. (16) and using the ODE (9),

and then collecting all terms with the same order of exp
(−ϕ(ξ)) together, Eq. (16) is converted into new polyno-
mial in exp(−ϕ(ξ)). Setting each coefficients of this poly-
nomial is to zero, yields a system of algebraic equations
for l0, l1, l2 , λ; and μ which are as follows:

3l0l1λμþ 6l0l2μ2−3l
2
1μ

2 þ l30 ¼ 0;
3l20l1 þ 6l0l1μ−3l21μλ−6l1l2μ

2 þ 3l0l1λ
2 þ 18l0l2λμ ¼ 0;

24l0l2μ−3l1l2λμ−6l22μ
2 þ 3l0l

2
1 þ 9l0l1λþ 12l0l2λ

2 þ 3l20l2 ¼ 0;
6l0l1l2 þ l31 þ 3l21λþ 6l1l2μþ 6l0l1−6l

2
2λμþ 30l0l2λþ 3l1l2λ

2 ¼ 0;
3l21l2 þ 15l1l2λþ 3l21 þ 3l0l

2
2 þ 18l0l2 ¼ 0;

3l1l
2
2 þ 12l1l2 þ 6l22λ ¼ 0; 6l22 þ l32 ¼ 0

Solving the system of algebraic equations and we
obtained l0 = − 6μ, l1 = − 6λ, l2 = − 6. Substituting the
values of l0, l1, l2 in the general solutions of Eq. (9) achieve
more traveling wave solutions of nonlinear evolution
equation Eq. (1) as follows:
Table 1 Comparison between Liu and He’s (Liu and He 2013)

Liu and He (Liu and He 2013)

(i) If A = 1, B = 0, C − 1 = μ and c2 = 0 then from equation (19) we obtain
u ξð Þ ¼ −6μ−6μ cot2

ffiffiffi
μ

p
ξ

� �
(ii) If A = 1, B = 0, C − 1 = μ and c2 = 0 then from equation (20) we obtain
u ξð Þ ¼ −6μþ 6μ coth2

ffiffiffiffiffiffi
−μ

p
ξ

� �
When λ2 − 4μ > 0, μ ≠ 0, then

∴u ξð Þ ¼ −6μþ 6λ
2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
2

ξ þ Cð Þ
0
@

1
Aþ λ

0
BBBBBB@

1
CCCCCCA

−6
2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
2

ξ þ Cð Þ
0
@

1
Aþ λ

0
BBBBBB@

1
CCCCCCA

2

ð32Þ
When λ2 − 4μ < 0, then

∴u ξð Þ ¼ −6μ−6λ
2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
2

ξ þ Cð Þ
0
@

1
A−λ

0
BBBBBB@

1
CCCCCCA

−6
2μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
2

ξ þ Cð Þ
0
@

1
A−λ

0
BBBBBB@

1
CCCCCCA

2

ð33Þ
When λ2 − 4μ > 0, μ = 0, then

∴u ξð Þ ¼ −6λ
λ

exp λ ξ þ Cð Þð Þ−1
� �

−6
λ

exp λ ξ þ Cð Þð Þ−1
� �2

ð34Þ
When λ2 − 4μ = 0, μ ≠ 0, λ ≠ 0, then

∴u ξð Þ ¼ −6μþ 6λ
λ2 ξ þ Cð Þ

2 λ ξ þ Cð Þ þ 2ð Þ
� �

−6
λ2 ξ þ Cð Þ

2 λ ξ þ Cð Þ þ 2ð Þ
� �2

ð35Þ

When λ2−4μ ¼ 0; μ ¼ λ ¼ 0; then∴u ξð Þ
¼ −6

1
ξ þ C

� �2

ð36Þ
solutions and our solutions

Our solution

(i) If λ = 0, C = 0 then our solutions (33) reduced to
u ξð Þ ¼ −6μ−6μ cot2

ffiffiffi
μ

p
ξ

� �
(ii) If λ = 0, C = 0 then our solutions (32) reduced to
u ξð Þ ¼ −6μþ 6μ coth2

ffiffiffiffiffiffi
−μ

p
ξ

� �



Table 2 Comparison between Parkes’s (Parkes 2010b) solutions and our solutions

Parkes’s (Parkes 2010b) Our solution

(i) If k2 = μ, η = ξ + C then solution u14 we obtain
u ξð Þ ¼ −6μ−6μ cot2

ffiffiffi
μ

p
ξ þ Cð Þ� � (i) If λ = 0, then our solutions (33) reduced to

u ξð Þ ¼ −6μ−6μ cot2
ffiffiffi
μ

p
ξ þ Cð Þ� �

(ii) If k2 = − μ, η = ξ + C then from solution u12 we obtain
u ξð Þ ¼ −6μþ 6μ coth2

ffiffiffiffiffiffi
−μ

p
ξ þ Cð Þ� � (ii) If λ = 0, then our solutions (28) reduced to

u ξð Þ ¼ −6μþ 6μ coth2
ffiffiffiffiffiffi
−μ

p
ξ þ Cð Þ� �

(iii) If k = λ/2, η = ξ + C then solution u12 we obtain
u ξð Þ ¼ 3

2 λ
2− 3

2 λ
2 coth2 1

2 λ ξ þ Cð Þ� � (iii) Eq. (34) can be simplified to gives
u ξð Þ ¼ 3

2 λ
2− 3

2 λ
2 coth2 1

2 λ ξ þ Cð Þ� �
(iv) If η = ξ + C + λ/2 then solution u3 we obtain u ξð Þ ¼ − 6

ξþCþλ=2ð Þ2 (iv) Eq. (35) can be simplified to gives u ξð Þ ¼ − 6
ξþCþλ=2ð Þ2
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Remark-2: All of the solutions presented in this latter
have been checked with Maple by putting them back
into the original equations.
4. Results and discussion
In this paper we exerted the exp-function methods and
the exp(−ϕ(ξ)) -expansion method as useful mathematical
tools to construct topological soliton, non-topological soli-
ton, periodic wave solutions for the Vakhnenko- Parkes
equation. The methods have successfully handled with the
aid of commercial software Maple-13 that greatly re-
duces the volume of computation and improves the re-
sults of the equation. We have achieved a family of
solutions via exp-function method. It is worth declaring
that some of our obtained solutions via the exp(−ϕ(ξ))
-expansion method is in good agreement with already
Figure 1 Bell shape (non-topological) soliton solution of the Eq. (19)
published results which is presented in the Tables 1 and
2. The others are completely new solutions achieved by
exp(−ϕ(ξ)) -expansion method.
4.1. Physical interpretation
In this subsection, we describe the physical interpret-
ation of the solutions for the Vakhnenko- Parkes equa-
tion. Solitons are solitary waves with stretchy dispersion
possessions, which described many physical phenomena
in soliton physics. Soliton preserve their shapes and
speed after colliding with each other. Soliton solutions
also give ascend to particle-like structures, such as
magnetic monopoles etc. The solution (19) in Figure 1
of the equation (1) is represented the exact Bell type
solitary (non-topological soliton) wave solution for the
parameters b0 = 4, w = 1 with − 3 ≤ x, t ≤ 3 via exp-function
for the parameters b0 = 4, w = 1.



Figure 2 Cuspon soliton solution of the Eq. (32) for the parameters λ = 3, μ = c =w = 1.
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method. Since second family Eq. (30) has a constant
different with first family it figure is also the exact Bell
type solitary (non-topological soliton) wave solution.
Others solutions via exp-function method are similar to
this solution or can be obtained from this solution which
profiles are similar to the Figure 1. The solution (32)
obtained by the exp(−ϕ(ξ)) -expansion method is cuspon
Figure 3 Periodic solution of the Eq. (33) for the parameters λ = 1, μ =
whose shape is depicted in the Figure 2 for the parameters
λ = 3, μ = c =w = 1 with − 3 ≤ x, t ≤ 3.
The solution (33) of the equation Eq. (11) is presented

the periodic travelling wave solution for various values
of the physical parameters. The Figure 3 has been shown
the shape of the solution (33) for the parameters λ = 1,
μ = c = 2,w = 1 with − 3 ≤ x, t ≤ 3.
c = 2,w = 1.



Figure 4 Singular soliton solution of the Eq. (34) for the parameters λ =w = 1, μ = c = 0.
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Solutions (34) of the equation Eq. (1) represent
singular soliton solution for the parameters λ = w = 1,
μ = c = 0 with − 3 ≤ x, t ≤ 3 whose shape is given by
the Figure 4.
Finally, solution (35) and (36) are similar type solu-

tions and they represent the multiple soliton solution.
Omitting one figure we depicted the Figure 5 of the Eq.
Figure 5 Multiple soliton solution of the Eq. (35) for the parameters λ
(35) for the parameters λ =w = 1, μ = c = 0 with − 3 ≤ x,
t ≤ 3.

4.2. Graphical representations
The graphical illustrations of the solutions are given
below in the figures (Figures 1, 2, 3, 4 and 5) with the
aid commercial software of Maple-13.
= c = 2, μ = c = 1.
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5. Conclusion
In this research some new solitary wave solutions of
the Vakhnenko-Parkes equation is found using the
exp-function method and the exp(−ϕ(ξ)) -expansion
method. As a results two family of bell type solitary
wave solutions Eq. (19) or Eq. (26) and Eq. (30) using
exp-function method and five solutions Eq. (32)-Eq.
(36) including cuspon, singular soliton, multiple soli-
ton and periodic solutions are achieved via exp(−ϕ
(ξ)) -expansion method of the Vakhnenko- Parkes
equation exist for real sense depends on different relevant
physical parameters. Numerical results of the solu-
tions for real sense by using Maple software have
been shown graphically and discussed. This will have
a good sense to encourage the extensive application
of the equations.
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