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A methodology for stochastic analysis of share
prices as Markov chains with finite states
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Abstract

Price volatilities make stock investments risky, leaving investors in critical position when uncertain decision is made.
To improve investor evaluation confidence on exchange markets, while not using time series methodology, we
specify equity price change as a stochastic process assumed to possess Markov dependency with respective state
transition probabilities matrices following the identified state pace (i.e. decrease, stable or increase). We established
that identified states communicate, and that the chains are aperiodic and ergodic thus possessing limiting
distributions. We developed a methodology for determining expected mean return time for stock price increases
and also establish criteria for improving investment decision based on highest transition probabilities, lowest mean
return time and highest limiting distributions. We further developed an R algorithm for running the methodology
introduced. The established methodology is applied to selected equities from Ghana Stock Exchange weekly
trading data.

Keywords: Markov process; Transition probability matrix; Limiting distribution; Expected mean return time;
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Background
Stock market performance and operation has gained
recognition as a significantly viable investment field
within financial markets. We most likely find investors
seeking to know the background and historical behavior
of listed equities to assist investment decision making.
Although stock trading is noted for its likelihood of
yielding high returns, earnings of market players in
part depend on the degree of equity price fluctuations
and other market interactions. This makes earnings very
volatile, being associated with very high risks and
sometimes significant losses.
In stochastic analysis, the Markov chain specifies a

system of transitions of an entity from one state to
another. Identifying the transition as a random process,
the Markov dependency theory emphasizes “memoryless
property” i.e. the future state (next step or position) of
any process strictly depends on its current state but
not its past sequence of experiences noticed over
time. Aguilera et al. (1999) noted that daily stock
price records do not conform to usual requirements
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of constant variance assumption in conventional stat-
istical time series. It is indeed noticeable that there
may be unusual volatilities, which are unaccounted
for due to the assumption of stationary variance in stock
prices given past trends. To surmount this problem,
models classes specified under the Autoregressive
Conditional Heteroskedastic (ARCH) and its Generalized
forms (GARCH) make provisions for smoothing unusual
volatilities.
Against the characteristics of price fluctuations and

randomness which challenges application of some statistical
time series models to stock price forecasting, it is explicit
that stock price changes over time can be viewed as a
stochastic process. Aguilera et al. (1999) and Hassan
and Nath (2005) respectively employed Functional
Principal Component Analysis (FPCA) and Hidden
Markov Model (HMM) to forecast stock price trend based
on non-stationary nature of the stochastic processes which
generate the same financial prices. Zhang and Zhang
(2009) also developed a stochastic stock price forecasting
model using Markov chains.
Varied studies (Xi et al. 2012; Bulla et al. 2010; Ammann

and Verhofen 2006; and Duffie and Singleton 1993) have
researched into the application of stochastic probability to
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portfolio allocation. Building on existing literature, we
assume that stock price fluctuations exhibit Markov’s
dependency and time-homogeneity and we specify a three
state Markov process (i.e. price decrease, no change and
price increase) and advance the methodology for determin-
ing the mean return time for equity price increases and
their respective limiting distributions using the generated
state-transition matrices. We further replicate the case for
a two-state space i.e. decrease in price and increase in
price. Based on the methodology, we hypothesize that;
Equity with the highest state transition probability and

least mean return time will remain the best choice for
an investor.
We explore model performance using weekly historical

data from the Ghana Stock Exchange (GSE); we set up
the respective transition probability matrix for selected
stocks to test the model efficiency and use.

Review of theoretical framework
Definition of the Markov process
The stochastic process {X (t), tϵT} is said to exhibit
Markov dependence if for a finite (or countable infinite)
set of points (t0, t1, … , tn, t), t0 < t1 < t2 <… < tn < t where t,
trϵT (r = 0, 1, 2, …, n).

PðX tð Þ ≤ x X tnð Þ ¼ xn; X tn−1ð Þ ¼ xn−1 ; …;X tnð Þ ¼ x0j Þ
¼ P X tð Þ ≤ x X tnð Þ ¼ xnj � ¼ F Xn; x ; tn; t½ �½

ð1Þ
From the property given by equation (1), the following

relation suffices

F Xn; x; tn; tð Þ ¼
Z
y∈S

F y; x; τ; tð ÞdF Xn; y; tn; τð Þ ð2Þ

where tn < τ < t and S is the state space of the process {X (t)}.
When the stochastic process has discrete state and

parameter space, (2) takes the following form: for n >
n1 > n2 >… > nk and n, nrϵT (r = 1, 2, …, k)

PðXn ¼ j Xn1 ¼ i1; Xn2 ¼ i2; …; Xnk ¼ ikj Þ
¼ P Xn ¼ j Xn1 ¼ i1j Þ ¼ P nk ;nð Þ

ij

� ð3Þ

A stochastic process with discrete state and parameter
spaces which exhibits Markov dependency as in (3) is
known as a Markov Process.
From the Markov property, for nk < r < n we get

P nk ;nð Þ
ij ¼ PðXn ¼ j Xnk ¼ ij Þ

¼
X
m∈S

PðXn ¼ j Xr ¼ mj ÞPðXr ¼ m Xnk ¼ ij Þ

¼
X
m∈S

P nk ;rð Þ
ij P r;nð Þ

mj

ð4Þ
equations (2) and (4) are known as the Chapman-
Kolmogorov equations for the process.

n-step transition probability matrix and n-step transition
probabilities
If P is the transition probability matrix of a Markov chain
{Xn, n = 0, 1, 2, …} with state space S, then the elements of

Pn (P raised to the power n), P nð Þ
ij i; j�S are the n-step transi-

tion probabilities where Pij
(n) is the probability that the

process will be in state j at the nth step starting from state i.
The above statement can clearly be shown from the

Chapman-Kolmogorov equation (4) as follows; for a
given r and s, write

P sþrð Þ
ij ¼

X
k∈s

P rð Þ
ik P

Sð Þ
kj

Set r = 1, s = 1 in the above equation to get

P 2ð Þ
ij ¼

X
k∈s

PjkPkj

Clearly, Pij
(2) is the (i, j)th element for the matrix prod-

uct P × P = P2. Now suppose Pij
(r) (r = 3, 4, …, n) is the

(i, j)th of Pr then by the Kolmogorov equation, the

P rþ1ð Þ
ij ¼

X
k∈S

P rð Þ
ik Pkj

which again can be seen as the (i, j)th element of the
matrix product PrP = Pr+1. Hence by induction, Pij

(n) is
the (i, j)th element of Pn n = 2, 3, ….
To specify the model, the underlying assumption is

stated about the identified n-step transition probability
(stating without proof ).
The transition probability matrix is accessible with

existing state communication. Further, there exists recur-
rence and transience of states. States are also assumed to
be irreducible and belong to one class with the same
period which we take on the value 1. Thus the states are
aperiodic.

Limiting distribution of a Markov chain
If P is the transition probability matrix of an aperiodic,
irreducible, finite state Markov chain, then

lim
t→∞

Pt ¼ π ¼
α
α
⋮
α

2
664

3
775 ð5Þ

Where α = [α1, α2, …, αm] with 0 < αj < 1 andXm
j¼1

αj ¼ 1. See Bhat (1984). The chain with this property
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is said to be ergodic and has a limiting distribution π.
The transition probability matrix P of such a chain is
primitive.

Recurrence and transience of state
Let Xt be a Markov Chain with state space S, then the
probability of the first transition to state j at the tth step
starting from state i is

f tð Þ
ij ¼ P Xt ¼ j; Xr ≠ j; r ¼ 1; 2; 3; …; t−1 X0 ¼ ij �½

ð6Þ

Thus the probability that the chain ever returns to
state j is

f ij ¼
X∞
t¼1

f ij tð Þ

and μij ¼
X∞
t¼1

tf tð Þ
ij is the expected value of first passage

time. Further, if i = j, then;

f tð Þ
ii ¼ P Xt ¼ i; Xr ≠ i; r ¼ 1; 2; 3; …; t−1 X0 ¼ ij �½

ð7Þ

and μii ¼ μi ¼
X∞
t¼1

tf tð Þ
ii is the mean recurrence time of

state i if state i is recurrent.
A state i is said to be recurrent (persistent) if and only

if, starting from state i, eventual return to this state is
certain. Thus state i is recurrent if and only if

f �ii ¼
X∞
t¼1

f tð Þ
ii ¼ 1 ð8Þ

A state i is said to be transient if and only if, starting
from state i, there is a positive probability that the
process may not eventually return to this state. This
means fii

* < 1

Model specification
Defining the problem (Equity price changes as a
three-state Markov process)
Let Yt be the equity price at time t where t = 0, 1, 2,…, n
(t is measured in weekly time intervals). Further, we de-
fine dt = Yt − Yt−1 which measures the change in equity
price at time t. Considering each closing week’s price as
discrete time unit for which we define a random variable
Xt to indicate the state of equity closing price at time t, a
vector spanned by 0, 1, 2
Xt ¼
0 if dt < 0 decrease inequityprice fromt−1 to t
1 if dt ¼ 0 nochange inequityprice fromtimet−1 to t
2 if dt > 0 increase inequityprice fromtimet−1 to t

8<
:

Next, we define an indicator vector

Ii;t ¼ 1 if Xt ¼ i
0 if Xt ≠ i

f or i ¼ 0; 1; 2 and t ¼ 1; 2; …; n

�

ð9Þ

Then clearly for the outcome of Xt we have

ni ¼
Xn
t¼1

Ii;t f or i ¼ 0; 1; 2 ð10Þ

where n ¼
X2
i¼0

ni . Hence estimates of the probability

that the equity price reduce, did not change and increased
can be obtained respectively by

P̂0 ¼ n0
n
; P̂1 ¼ n1

n
and P̂2 ¼ n2

n
ð11Þ

For the stochastic process Xt obtained above for t =
1, 2, …, n we can obtained estimates of the transition
probabilities Pij = Pr (Xt = j|Xt−1 = i) for j = 0, 1, 2 by
defining

δ i;jð Þ
t ¼ 1 if Xt ¼ i and Xtþ1 ¼ j

0 otherwise
f or t ¼ 1; 2; …; n−1

and i; j ¼ 0; 1; …; k

8>><
>>:

where k + 1 is the number of states of the chain.

nij ¼
Xn−1

t¼1
δ i;jð Þ
t f or i; j ¼ 0; 1; 2: Then P̂ij ¼ nij

ni
f or i; j ¼ 0; 1;…; k

ð12aÞ

Therefore, an estimate for the transition matrix for
k = 2 is

P̂ ¼
P̂00 P̂01 P̂02

P̂10 P̂11 P̂12

P̂20 P̂21 P̂22

2
4

3
5 ð12bÞ
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Suppose the data in Additional file 1 is uploaded as
.csv, then R code for computing estimates in (12b)
can be found in Additional file 2 (three-state Markov
Chain function column).
For a two-state Markov process
We maintain the above defined terms and set

Xt ¼ 0 if dt ≤ 0 no increase in equity price from t−1 to t
1 if dt > 0 increase in equity price from time t−1 to t

�

further set i, j = 0, 1, (for k = 1) and apply (9), (10), (11),
(12a), and (12b) sequentially, we obtain
P̂ ¼ P̂00 P̂01

P̂10 P̂11

� �

without loss of generality, suppose Xt has state space
s = {0, 1} and transition probability matrix

P ¼ 1−θ θ
β 1−β

� �
; 0 < α; β < 1 ð13Þ

Then, f00
(1) = 1 − θ and for n ≥ 2, we have;



Table 1 Summary statistics on the weekly trading price change over the study period

Number of weekly price change Weekly price change summary

Decrease No change Increase Mean SD Max Min Skew. Kurt. Count

ALW 15 77 12 0.00 0.01 0.01 −0.04 −2.30 14.23 104

AYRTN 8 89 7 0.00 0.00 0.01 −0.01 −0.10 4.39 104

BOPP 26 45 33 0.01 0.13 0.44 −0.62 −1.80 11.79 104

CAL 27 40 37 0.00 0.03 0.12 −0.07 1.69 7.26 104

EBG 30 44 30 0.00 0.19 0.50 −1.60 −5.65 51.32 104

EGL 21 46 37 0.01 0.06 0.39 −0.25 1.05 15.79 104

ETI 18 59 27 0.00 0.01 0.04 −0.04 −0.71 5.62 104

FML 22 38 44 0.03 0.12 0.85 −0.19 4.08 25.22 104

GCB 25 37 42 0.02 0.13 0.79 −0.41 1.68 12.51 104

GGBL 5 51 48 0.04 0.10 0.73 −0.20 3.84 22.70 104

GLD 7 79 18 0.04 0.34 3.13 −0.72 7.22 64.43 104

GOIL 16 53 35 0.00 0.03 0.12 −0.23 −2.99 23.63 104

HFC 8 75 21 0.01 0.03 0.27 −0.08 5.76 47.80 104

MLC 7 75 22 0.00 0.01 0.05 −0.03 1.04 5.42 104

PBC 13 81 10 0.00 0.01 0.04 −0.02 1.53 11.02 104

PZC 22 55 27 0.01 0.38 3.02 −1.00 4.78 39.15 104

SCB 38 40 26 0.14 1.30 9.54 −4.19 4.45 30.38 104

SCBPREF 11 87 6 0.00 0.01 0.01 −0.03 −2.35 9.67 104

SIC 19 67 18 0.00 0.02 0.16 −0.06 5.55 50.15 104

SOGEGH 12 89 3 0.00 0.02 0.01 −0.18 −6.56 50.60 104

SWL 9 84 11 0.01 0.45 3.15 −2.00 2.28 27.27 104

TBL 21 62 21 0.02 0.62 2.99 −3.00 0.16 12.33 104

TLW 16 56 32 0.23 0.97 6.56 −1.97 3.77 19.38 104

TOTAL 16 66 22 0.01 0.08 0.52 −0.16 4.89 29.16 104

TRANSOL 12 63 29 0.04 0.18 1.26 −0.50 4.24 24.87 104

UNIL 3 76 25 0.03 0.23 1.79 −0.77 5.23 38.66 104

UTB 12 87 5 0.00 0.01 0.02 −0.02 −1.30 6.18 104
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f tð Þ
00 ¼ P½Xt ¼ 0;Xr ≠ 0; r ¼ 1; 2; 3; …; t−1 X0 ¼ 0j �

¼ P Xt ¼ 0;Xr ¼ 1; r ¼ 1; 2; 3; …; t−1 X0 ¼ 0j �½

By the Markov property and the definition of conditional
probability, we have

f nð Þ
00 ¼ P

�
Xt ¼ 0 Xt−1 ¼ 1j �

�Yt−1
r¼2

P½Xr ¼ 1 Xr−1 ¼ 1j �
�
P½X1 ¼ 1jX0 ¼ 0�

�

¼ β 1−βð Þt−2θ ¼ θβ 1−βð Þt−2 t ≥ 2

ð14Þ

solving μ0 ¼ μ00 ¼
X∞
t¼1

tf tð Þ
00 to obtain the respective
mean recurrence time. Thus,
μ0 ¼ μ00 ¼
X∞
t¼1

tf tð Þ
00 ¼ 1−θ þ

X∞
t¼2

tθβ 1−βð Þt−2

¼ θ þ β

β

� �
ð15Þ

Similarly, we have

f tð Þ
01 ¼ θ 1−θð Þt−1; t ≥ 1 μ01 ¼ 1

f tð Þ
10 ¼ β 1−βð Þt−1; t ≥ 1 μ10 ¼ 1

f 1ð Þ
11 ¼ 1−βð Þ;
f tð Þ
11 ¼ θβ 1−αð Þt−2;

t ¼ 1
t ≥ 2

g μ11 ¼ μ1 ¼
θ þ β

θ

� �

ð16Þ

With the corresponding R algorithm shown in
Additional file 2 (two-state Markov Chain function column).
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Generating eigen vectors for computation of
limiting distributions
After the transition probabilities are obtained for both
two-state and three-state chains, the R codes in the
lower portions of columns one and two in Additional file
2 were used to generate the respective eigen vectors for
computation of limiting distributions.



Figure 1 A plot of mean and standard deviation of weekly price changes of equities. The plot indicates a very volatile weekly market price
fluctuation for any market participating investor. This indicates high level of risk associated with equity purchase decision. We consider that the
rational investor would basically seek to maximize purchasing decisions faced with this risk.
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Findings and discussions
Data structure and summary statistics
Data used for this paper are weekly trading price changes
for five randomly selected equities on the Ghana Stock
Exchange (GSE), each covering period starting from
January 2012-December 2013. We obtain the weekly
price changes using the relation dt = Yt − Yt−1 where Yt
represents the equity closing price on week t and Yt−1 is
the opening price for the immediate past week. The equi-
ties selected include Aluworks (ALW), Cal Bank (CAL),
Ecobank Ghana (EBG), Ecobank Transnational Incorporated
(ETI), and Fan Milk Ghana Limited (FML).
In all, 104 (52 weeks) observational data points

where obtained. Summary statistics on all respective
Figure 2 t-step transition probabilities for share price increases.
equities on the GSE are shown in Table 1. We
present summaries on the respective number of weekly
price decreases, no change in price and price increase.
Descriptive statistics for each equity weekly price change
is also shown.
Overall, the frequency of “no price change” was

more experienced over the study period. The lowest
and highest price changes for the trading period are
respectively −4.19 and 9.54. The estimated values of
the kurtosis and skewness are also shown. Figure 1
presents a plot of the average weekly equity price
changes of respective equities listed on the GSE over the
study period in comparison to the standard deviation of
weekly price changes.



Table 2 Entries of the limiting distribution at for
respective equities

Equity Limiting distribution

α1 α2 α3
ALW 0.141509 0.745283 0.113208

CAL 0.244980 0.406396 0.348625

EBG 0.269568 0.443025 0.287407

ETI 0.168470 0.586912 0.244618

FML 0.198113 0.386792 0.415094

Table 3 Entries of two-state transition matrices for
selected equities

Equities P00 P01 P10 P11

1 − θ θ β 1 − β

ALW 0.133333 0.866667 0.142857 0.857143

CAL 0.296296 0.703704 0.227848 0.772152

EBG 0.433333 0.566667 0.210526 0.789474

ETI 0.166667 0.833333 0.170455 0.829545

FML 0.380952 0.619048 0.152941 0.847059

Table 4 Expected mean return time for respective stocks

Equity μ00 μ11
θþβð Þ
β

θþβ
θ

ALW 1.1555556 7.4285714

CAL 1.3837280 3.6060127

EBG 1.5488889 2.8218623

ETI 1.2009132 5.9772727

FML 1.4497355 3.2235294

Mettle et al. SpringerPlus 2014, 3:657 Page 9 of 11
http://www.springerplus.com/content/3/1/657
Empirical results on model application (three-state
Markov chain)
For the five randomly selected equities, the transition
probabilities of the equities are presented as follows.
These were obtained from equation (12a) defining
Pij ¼ nij

ni
w.r.t. the three-state space Markov process.

A 3 × 3 transition matrix is obtained for respective equities
as defined by (12b).
From the results of the algorithm, we select 5 equities

with which we implement the hypothesis. They include;

ALW transition probability matrix

P̂ ¼
0:133333 0:666667 0:200000
0:139241 0:759494 0:101266
0:166667 0:750000 0:083333

2
4

3
5

CAL transition probability matrix

P̂ ¼
0:296296 0:407407 0:296296
0:261905 0:476190 0:261905
0:189189 0:324324 0:486486

2
4

3
5

EBG transition probability matrix

P̂ ¼
0:433333 0:366667 0:200000
0:255319 0:553191 0:191489
0:137931 0:344828 0:517241

2
4

3
5

ETI transition probability matrix

P̂ ¼
0:166667 0:611111 0:222222
0:131148 0:639344 0:229508
0:259259 0:444444 0:296296

2
4

3
5

FML transition probability matrix

P̂ ¼
0:380952 0:523810 0:095238
0:170732 0:487805 0:341463
0:136364 0:227273 0:636364

2
4

3
5

Clearly, P̂ ij > 0 for all i, j = 0, 1, 2 indicating irreducibility
of the chains for all equities. Hence state 0 for all the
equities is aperiodic and since periodicity is a class
property, the chains are aperiodic. These imply that
the chains are ergodic and have limiting distributions.
Figure 2 presents the t − step transition probabilities

for share price increases based on the assumption of
time-homogeneity. This shows linear plot of transition
probabilities for P22

(t) for each selected stock as com-
puted above. It measures the probability that a share
at initial state (i. e. state 2) at inception transited to
state 2 again after t weeks. Regarding the plot of the
transition probabilities, the logical reasoning is to
choose the equity which has the highest P22.
From the plot, FML share is the best choice for the

investor since the probability that it increases from a
high price to another higher price is higher when
compared to the other selected stocks. ALW recorded
the least probability of transition within the period.
Comparing CAL to EBG, the methodology shows that
CAL shares maintain high probability of moving to
higher prices as compared to EBG shares although
the later started with high prices at inception.
Using equation (5), the limiting distributions of the

respective equities were computed. These probabilities
measure the proportions of times the equity states within
a particular state in the long run. From Table 2, ALW
equity has 14% chance of reducing and 11% chance of
increasing in the long run. It however has 75% chance of
no change in price. Similarly, in the long run, FML equity
has 20% chance of reducing, 39% chance of experiencing
no change in price and 42% chance of increasing in price.
It is easily seen that for this instance, FML equity has the
highest probability of price increase in the long run.

Empirical model application (the two-state Markov process)
Defining a two-state space Markov process following from
equation (13), we derive the state transition probabilities.
The two-state transition probability matrix entries are
indicated in Table 3 below;



Figure 3 Mean recurrence time of selected shares.
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Applying equations (15) and (16) to the transition
probabilities, we obtain the respective mean return time
of the selected equities. These are shown in Table 4 below;
Mean return time is measured in weeks with μij as

defined in (15) and (16). The mean return time measures
the expected time until the equity price’s next return to
the state it was initially in at time 0. Figure 3 presents a
plot of expected return time of the selected stocks at μ11.
This determines the expected time until the next increase
in share. We expect that the choice of share should not
only have the highest transition probability, but should
relatively possess a lower mean return time. Possessing
the least mean return time for μ11 signifies the shortest
return time to a price increase.

Conclusion
The Markov Process provides a credible approach for
successfully analyzing and predicting time series data
which reflect Markov dependency. The study finds that
all states obtained communicate and are aperiodic and
ergodic hence possessing limiting distributions. It is
distinctive from Figures 1 and 2 (expected return time
and t-step state transition probabilities of equity price in-
creases i.e. Pij transition from state 2 to state 2) that the
investor gains good knowledge about the characteris-
tics of the respective equities hence improving deci-
sion making in the light return maximization. With
regards to the selected stocks, FML equity recorded the
highest state transition probabilities, highest limiting dis-
tribution but the second lowest mean return time to price
increases (i.e. 3.224 weeks).
Our suggested use of Markov chains as a tool for

improving stock trading decisions indeed aids in improving
investor knowledge and chances of higher returns given
risk minimization through best choice decision. We showed
that the proposed method of using Markov chains as
a stochastic analysis method in equity price studies
truly improves equity portfolio decisions with strong
statistical foundation. In our future work, we shall explore
the case of specifying an infinite state space for the
Markov chains model in stock investment decision making.

Additional files
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Additional file 2: R algorithm for respective methodologies.
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