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Abstract

An investigation into the mechanism of antihyperlipidemic action of 2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-
d]pyrimidin-4(3H)-one (LM-1554) was carried out through docking experiments with six different molecular targets;
Niemann Pick C1 Like1 protein (NPC1L1), ATP citrate lyase (ACL), C-reactive protein (CRP), lanosterol 14α-demethylase
(LDM), squalene synthase (SqS) and farnesiod X-receptor (FXR) known to be implicated in the physiology of
hyperlipidemia. The interactions of LM-1554 were compared with the interactions of their respective co-crystallized
native ligands at the active sites of these receptors. These comparisons are based on their docking parameters, as
well as, types of interactions and vicinity with various amino acids in the active site pockets. The interaction of
LM-1554 with the target, NPC1L1 has been found to be the quite favourable as compared to those with the other
targets assessed in this study.
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Introduction
Atherosclerosis characterised by degenerative changes in
the intima of medium and large arteries, is one of the
main causes underlying cardiovascular disorders (CVD)
and stroke which, are responsible for significant mortality,
worldwide (McGill 1985; Overturf and Loose-Mitchell
1992; Ghatak and Asthana 1995; Schwandt 1990; Tiwari
et al. 2006; Gordon et al. 1989; Go et al. 2014). Lowering
of lipid levels in the blood is one of the major ap-
proaches to prevent atherosclerosis and thereby, CVD
and stroke. Drugs currently used in therapy to treat
hyperlipidemia, have several drawbacks. Medicinal chem-
ists worldwide are routinely engaged in the discovery
and development of newer molecules which can act differ-
ently and more effectively than the drugs presently
employed in therapy. Thus, newer molecular targets related
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to hyperlipidemia are routinely exploited in the pursuit for
discovering better, effective and safer drugs (Jain et al. 2010;
Arya et al. 2014).
Thienopyrimidines have exhibited a variety of pharma-

cological activities. Thieno[2,3-d]pyrimidine 2-propionic
acids (Shiroki 1976), 2-mercapto[2,3-d]pyrimidin-4-ones
(Sauter 1972) and 2-substitutedmethylthieno[2,3-d]pyrimi-
dine-4(3H)-ones (Shishoo et al. 1990; Jain et al. 2011) have
been reported to exhibit good antihyperlipidemic activity.
One of these compounds, 2-chloromethyl-5,6,7,8-tetrahy-
drobenzo(b)thieno[2,3-d]pyrimidin-4(3H)-one (LM-1554)
(CAS # 89587-03-3) (Figure 1) was found to be promising,
when evaluated in various animal models, employing dif-
ferent protocols of evaluation at different dose levels.
Drugs used as reference standards in these studies were
gemfibrozil, clofibrate, riboflavin tetrabutyrate, ezetimibe.
Further, the acute and chronic toxicity studies of this com-
pound indicated it to be considerably safe with high LD50

values (Shishoo et al. 1990, 1981, 1996; Jain et al. 2011;
Arya 1985; Kathiravan et al. 2007).
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Figure 1 LM-1554- The title compound. Structure of LM-1554.
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This compound during its pharmacokinetic evaluation
was found to be poorly absorbed through the gastrointes-
tinal tract (Shishoo et al. 1997; Jain et al. 2007). Interest-
ingly, it was found to be active orally, but inactive when
given through parenteral route. This indicated its probable
site of action to be at the surface of the GIT (something
similar to the bile acid sequestering agents). QSAR studies
undertaken on its analogs revealed the electronic param-
eter to be positively contributing to the antihyperlipidemic
activity of these compounds. Electron withdrawing groups
(EWG) attached at the 2-methyl substituent of these
compounds, enhanced the activity (Shishoo et al. 1996;
Kathiravan et al. 2007). All these interesting observations
aroused our interest to probe into the pharmacodynamics
of this compound.
Bioinformatics tools, like molecular docking experi-

ments, which involve study and analysis of ligand-
receptor interactions, play important role in identifying
the molecular targets (receptors) for different ligands.
We have periodically reviewed some such novel mo-
lecular targets for antihyperlipidaemic drug research
(Jain et al. 2010; Arya et al. 2014). It was thought
worthwhile, to assess the interaction of compound
LM-1554, with few such molecular targets through,
its in silico docking experiments and gain some
insight on its probable mechanism of action. Six such
molecular targets related to hyperlipidaemia were se-
lected for this study. These were, Niemann Pick C1
like1 protein (NPC1L1), ATP citrate lyase (ACL), C-
reactive protein (CRP), lanosterol 14α-demethylase
(LDM), squalene synthase (SqS) and farnesiod X-
receptor (FXR). The X-ray crystal structures of these
targets complexed with their respective co-crystallized
native ligands were available from the RSCB-Protein
Data Bank (PDB).
NPC1L1 (PDB ID: 3QNT) (http://www.rcsb.org/pdb/

explore/explore.do?structureId=3QNT), is an established
molecular target for the cholesterol lowering drug
ezetimibe. It plays an important role in the intestinal
absorption of cholesterol. Inhibition or depletion of
NPC1L1 reduces intestinal cholesterol absorption,
resulting in reduction of plasma cholesterol levels
(Kwon et al. 2011; Ge et al. 2008; Weingless et al.
2008; Calvo et al. 2005 and Kathiravan et al. 2009).
ACL (PDB ID: 3MWD) (http://www.rcsb.org/pdb/ex-
plore/explore.do?structureId=3MWD) is responsible for
the supply of acetyl-CoA required for the biosynthesis of
both cholesterol, as well as, fatty acids. Due to this its
inhibition is considered to be more efficacious in cor-
recting mixed hyperlipidemia as compared to that by the
statins (Groot et al. 2003; Enache 2008; Chu et al. 2010
and Knowles et al. 1974).
CRP (PDB ID: 1B09) (http://www.rcsb.org/pdb/

explore/explore.do?structureId=1B09) selectively binds
with LDL, particularly the damaged LDL and gets de-
posited in the atherosclerotic plaques hastening the
process of atherosclerosis. Further, aggregated and/or
ligand-complexed CRP can be pro-inflammatory and
is co-deposited with activated complements in all
acute myocardial infarction lesions. Human CRP and
its complements increase final myocardial infarction
size in experimental models thus, making it a thera-
peutic target for decelerating the atherosclerotic
plaque build-up process (Ridker 2003; Pepys et al.
2006; Libby et al. 2002 and Lowe 2005).
LDM (PDB ID: 3LD6) (http://www.rcsb.org/pdb/

explore/explore.do?structureId=3LD6), a cytochrome
P450 enzyme complex is responsible for catalysing an
early step in cholesterol biosynthesis, namely the removal
of the l4α-methyl group of lanosterol. Though, inhibi-
tors of fungal LDM are used in therapy as antifungal
agents, inhibitors of human LDM are not only of
interest as mechanistic probes of the enzyme, but also
as potential therapeutic agents for treatment of hyper-
cholesterolemia (Strushkevich et al. 2010 and Gibbons
2002).
SqS (PDB ID: 1EZF) (http://www.rcsb.org/pdb/

explore/explore.do?structureId=1EZF), catalyzes the bio-
synthesis of squalene, a key cholesterol precursor,
through a reductive dimerization of two farnesyl di-
phosphate (FPP) molecules. Thus, SqS is an attractive
target for therapeutic intervention of hyperlipidemia
(Pandit et al. 2000; Nikitakis and Kourounakis 2011).
FXR (PDB ID: 1OSH) (http://www.rcsb.org/pdb/

explore/explore.do?structureId=1OSH) functions as a
bile acid (BA) sensor, coordinating cholesterol metab-
olism, lipid homeostasis and absorption of dietary fats
as well as, vitamins. It plays an important role in
maintaining bile acid and cholesterol homeostasis. In
addition, activation of FXR lowers plasma triglyceride
levels (Downes et al. 2003; Zhang et al. 2006 and
Bailey et al. 2004). Due to these reasons, FXR be-
comes an attractive molecular target for indirect con-
trol of lipid levels.

Results and discussion
By using Glide the docking simulations in the active
sites of 3QNT, 3MWD, 1B09, 1EZF, 3LD6 and 1OSH
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were performed. LM-1554, as well as, their respective
ligands (specified in Table 1), were docked in the ac-
tive sites of these target protein structures and the
best possible binding modes were obtained (Figures 2,
3, 4, 5, 6 and 7). Their corresponding docking scores,
docking energy values, per residue interactions are
listed in Table 1.

Docking of LM-1554 into PDB structure of NPC1L1 (PDB
ID: 3QNT)
The results obtained from the docking study indicated
no significant difference in the binding modes of both
the molecules, LM-1554 and ezetimibe in the same
binding pocket in NPC1L1, defined by the amino acid
residues, LEU-52, LEU-99, ALA-101, SER-102, HIS-
124, THR-128, GLN-206, LEU-103, LEU-213, GLN-
95, SER-98, and THR-209 (Figure 2a and b). The per
residue interaction profile indicated the van der
Waals contacts (−27.46 kcal/mol) to be more preva-
lent over the electrostatic contributions (−6.06 kcal/
mol) in the overall binding of LM-1554 to NPC1L1.
The compound made strongly favorable van der
Waals interactions with ILE-218, LEU-216, PRO-215,
THR-128, ASN-127, HIS-124 and LEU-103 residues
in the active site. In addition to these interactions,
LM-1554 was also found to be involved in favorable
electrostatic interactions with ASN-127, HIS-124,
SER-102, LEU-99 and SER-98, residues. The com-
pound formed hydrogen bond interactions with the
HIS-124 and GLN-95 residues of the active site. The
ligand ezetimibe was also seen to be involved in fa-
vorable van der Waals as well as electrostatic interac-
tions, with same residues, though the energies
of interactions differed slightly, as compared with
those of LM-1554 (Table 1, Sr. No. 1a & 1b). From
the analysis of these docking interactions, the docking
score of the LM-1554 (−7.85) was found to be better
than that of the docking score for ezetimibe (−6.31).
Also, the binding energy of LM-1554 (docking energy
of −33.52 kcal/mol), at the active site of NPC1L1,
compared well with the binding energy of ezetimibe
at NPC1L1. All these observations indicated that LM-
1554 probably exerted its antihyperlipidemic action
through a mechanism similar to ezetimibe, i.e., by inhibit-
ing NPC1L1.

Docking of LM-1554 into PDB structure of ATP-citrate
lyase (3MWD)
LM-1554 when docked into the PDB structure of ACL
(3MWD) occupied the pocket, defined by the amino acid
residues GLY-688, GLY-665, SER-663, ARG-662, PHE-
347, ASN-346, ALA-345, GLY-282, GLY-283, ALA-624,
VAL-626, and GLY-309 (Figure 3a and b; Table 1, Sr. No.
2a & 2b). The per-residue interaction analysis showed
LM-1554, involved in electrostatic interactions with the
amino acid residues, GLY-665, ALA-624, and GLY-283
in the binding pocket of the enzyme. In addition, LM-1554
also formed hydrogen bonds with GLY-664 (5.633 Å),
VAL-626 (7.960 Å), ALA-624 (5.650 Å), ASN-346
(8.386 Å), GLY-309 (6.767 Å) and GLY-282 (3.358 Å).
The van der Waals interactions of LM-1554 were ob-
served with some of the key amino acid residues; GLY-
688, GLY-665, SER-663, ARG-662, PHE-347, ASN-346,
ALA-345 and GLY-282. The docking score for LM-1554
was found to be −6.39, as against −6.52 observed for the
native ligand. The docking energy of interaction for
LM-1554 at the active site was −32.82 kcal/mol (van der
Waals = −28.86 kcal/mol and Coulombic = −3.96 kcal/mol).
The comparable docking scores and energies, as well as
good extent of H-bonding indicated, ACL also to be a likely
target for LM-1554.

Docking of LM-1554 into the PDB structure of C-reactive
protein (CRP)
LM-1554 when docked on this molecular target was found
to be anchored in the active pocket through two hydrogen
bonds with GLN-150 and GLU-147, at distances of
9.590 Å and 8.109 Å, respectively (Figure 4a and b; Table 1,
Sr. No. 3a & 3b). The compound also formed electrostatic
interactions with the GLN-150 and GLU-147 residues as
well as, van der Waals contacts with GLN-150, SER-149,
GLU-138, GLU-81 and ASN-61 residues. However, the
comparison of its docking score (−6.43) and docking
energy (−17.49 kcal/mol) values with those for the native
ligand having docking score (−6.83) and docking energy
(−26.30 kcal/mol) values, suggested CRP to be the less
likely molecular target for LM-1554.

Docking of LM-1554 into PDB structure of LDM (PDB ID:
3LD6)
Docking interactions of the compound, LM-1554, into
the active site of human LDM (CYP51) was analysed.
The compound was involved in hydrogen bond interac-
tions with the key amino acids of the active site; HIS-
489, ILE-379, MET-378 and PRO-376. The interaction
distances were 9.047 Å, 3.376 Å, 3.080 Å and 2.830 Å,
respectively (Figure 5a and b; Table 1, Sr. No. 4a & 4b).
Besides significant van der Waals interactions with the
residues MET-487, MET-378, ILE-377, PRO-376, HIS-
314, TRP-239, PHE-234, LEU-134 and TYR-131; LM-
1554 also showed some electrostatic interactions with
MET-487, MET-378, PRO-376 residues of the enzyme ac-
tive site. However, both the docking score (−8.87) as well
as docking energy (−55.26 kcal/mol) for the interaction of
the native ligand at the active site were seen to be more
favourable as compared to that of LM-1554 having dock-
ing score (−6.73); docking energy (−32.40 kcal/mol), indi-
cating, the later to be a less likely ligand for human LDM.



Table 1 Data for the docking interactions of LM-1554 and respective ligands at the active sites of various molecular targets

Sr. No. Target protein (PDB-ID) Ligand Docking score Energy (kcal/mol) Interactions with aminoacid residuesa

Docking Evdw Ecoul van der Waals
(kcal/mol)

Electrostatic
(kcal/mol)

H-bonding
(kcal/mol) [Å]

1a. NPC1L1 (3QNT) LM-1554 −7.85 −33.52 −27.46 −6.06 ILE-218b (−1.12) ASN-127b (−1.16) HIS-124 (−0.87) [6.058]

LEU-216b (−1.60) HIS-124 (−1.50) GLN-95 (−0.01) [9.140]

PRO-215b (−2.50) SER-102 (−3.08)

THR-128 (−1.77) LEU-99 (−0.26)

ASN-127b (−1.55) SER-98 (−0.09)

HIS-124 (−3.24)

LEU-103 (−1.55)

1b. NPC1L1 (3QNT) Ezetimibec −6.31 −32.35 −24.57 −7.77 ILE-218b (−0.03) ASN-127b (−0.03) No H-bonding observed.

LEU-216b (−0.09) HIS-124 (0.04)

PRO-215 (−0.85) SER-102 (1.30)

THR-128b (−0.01) LEU-99 (0.03)

ASN-127b (−0.01) SER-98 (−0.06)

HIS-124 (−0.05)

LEU-103 (−0.44)

2a. ACL (3MWD) LM-1554 −6.39 −32.82 −28.86 −3.96 GLY-688 (−1.27) GLY-665 (−2.02) GLY-664 (−0.73) [5.63]

GLY-665 (−3.41) ALA-624 (−1.23) VAL-626 (−0.62) [7.96]

SER-663 (−3.75) GLY-283 (−1.70) ALA-624 (−0.14) [5.65]

ARG-662b (−1.48) ASN-346 (−1.00) [8.39]

PHE-347 (−3.52) GLY-309 (−0.47) [6.77]

ASN-346 (−2.46) GLY-282 (−1.00) [3.36]

ALA-345 (−1.84)

GLY-282 (−1.04)

2b. ACL (3MWD) Citric acidd −6.52 −30.43 −25.77 −4.65 GLY-688b (−0.01) GLY-665 (−2.02) ASN-346 (−1.00) [2.858]

GLY-665 (−1.44) ALA-624 (0.69) GLY-309 (−0.31) [3.014]

SER-663 (−0.36) GLY-282 (−2.26) GLY-282 (−0.50) [4.007]

ARG-662b (−0.03)

PHE-347 (−3.29)

ASN-346 (−1.30)

ALA-345 (−2.92)

GLY-282 (−0.46)
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Table 1 Data for the docking interactions of LM-1554 and respective ligands at the active sites of various molecular targets (Continued)

3a. CRP (1B09) LM-1554 −6.43 −17.49 −5.04 −12.45 GLN-150 (−1.16) GLN-150 (−2.33) GLN-150 (−1.00) [9.590]

SER-149 (−0.03) GLU-147 (−1.23) GLU-147 (−0.50) [8.109]

GLU-138 (−2.28)

GLU-81 (−3.41)

ASN-61 (−2.12)

3b. CRP (1B09) Phosphocholined −6.83 −26.30 −8.612 −17.68 GLN-150 (−0.88) GLN150 (−5.95) GLN-150 (−0.50) [2.997]

SER-149 (−0.03) GLU147 (−0.93)

GLU-138 (−2.44)

GLU-81 (−2.20)

ASN-61 (−2.29)

4a. LDM (3LD6) LM-1554 −6.73 −32.40 −26.30 −6.37 MET-487 (−4.86) MET-487 (−0.98) HIS-489 (−1.00) [9.047]

MET-378 (−1.76) MET-378 (−1.22) ILE-379 (−0.19) [3.376]

ILE-377 (−2.40) PRO-376 (−0.15) MET-378 (−1.00) [3.080]

PRO-376 (−1.23) PRO-376 (−1.00) [2.830]

HIS-314 (−1.81)

TRP-239 (−1.13)

PHE-234 (−1.41)

LEU-134 (−1.61)

TYR-131 (−1.69)

4b LDM (3LD6) Ketoconazoled −8.87 - 55.26 −52.75 −2.51 MET-487 (−3.71) MET-487 (0.59) ILE 379 (−0.60) [4.636]

MET-378 (−2.39) MET-378 (−2.23) MET 378 (−1.00) [5.623]

ILE-377 (−2.39) PRO-376 (−0.39)

PRO-376 (−1.16)

HIS-314 (−0.39)

TRP-239 (−3.62)

PHE-234 (−1.69)

LEU-134 (−0.97)

TYR-131 (−3.50)

5a. SqS (1EZF) LM-1554 −7.18 −31.29 −28.30 −2.99 PRO-292 (−1.95) ALA-176 (−0.58) ALA-176 (−0.97) [10.940]

PHE-288 (−3.05) ASP-80 (−1.22) ASP-80 (−0.50) [8.630]

LEU-211 (−2.67)

GLY-208b (−1.49)

MET-207 (−1.92)
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Table 1 Data for the docking interactions of LM-1554 and respective ligands at the active sites of various molecular targets (Continued)

LEU-183b (−2.91)

GLY-180 (−1.29)

VAL-179 (−2.29)

ALA-176 (−0.58)

PHE-54 (−1.69)

5b. SqS (1EZF) N-{2-[trans-7-chloro −1-(2,2-dimethylpropyl) -
5-naphthalen-1-yl-2-oxo-1,2,3,5-tetrahydrobenzo[e]
[1,4]oxazepin-3-yl]-acetyl}aspartic acidd

−11.17 −67.24 −49.80 −17.44 PRO-292 (−2.23) ALA-176 b (−0.11) No H-bonding observed

PHE-288 (−3.81) ASP-80 (−1.91)

LEU-211 (−3.56)

GLY-208b (−1.39)

MET-207 (−2.82)

LEU-183b (−3.37)

GLY-180 (−1.27)

VAL-179 (−4.20)

ALA-176b (−1.08)

PHE-54b (−4.53)

6a. FXR (1OSH) LM-1554 −6.55 −29.62 −26.94 −2.68 TRP-473 (−1.72) TYR-365 (−1.95) TYR-365 (−1.00) [1.897]

MET-454 (−1.37) LEU-291 (−0.84) [5.830]

HIS-451 (−1.44)

MET-369 (−1.77)

ILE-361 (−1.99)

ILE-356 (−1.18)

MET-332 (−1.52)

ALA-295 (−1.52)

MET-294 (−2.25)

THR-292 (−1.13)

LEU-291 (−5.20)

6b. FXR (1OSH) Fexaramined −10.69 −43.71 −38.57 −5.14 TRP-473 (−0.94) TYR-365b (−0.17) No H-bonding observed

MET-454 (−1.92)

HIS-451 (−1.10)

MET-369 (−2.30)

ILE-361 (−2.58)

ILE-356 (−3.30)
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Table 1 Data for the docking interactions of LM-1554 and respective ligands at the active sites of various molecular targets (Continued)

MET-332 (−1.35)

ALA-295 (−0.74)

MET-294 (−4.17)

THR-292 (−0.82)

LEU-291 (−4.32)
aAll amino acid residues were within 5 Å from the ligand surface and 10 Å from the centroid of the ligands.
bThese amino acid residues though not visible in the figures, were actually on the rear side of this 3D pose and were observed in the interaction energy tables,as well as, in other poses.
cEzetimibe was taken as reference native ligand for better comparison.
dNative ligand as co-crystallized in the PDB 3D structures.
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a b
Figure 2 3D-docking of LM-1554 with the molecular target NPC1L1. a. 3D-docking of LM-1554 into PDB structure of NPC1L1. b. 3D-docking
of ezetimibe into PDB structure of NPC1L1.
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Docking of LM-1554 into PDB structure of SqS (PDB ID: 1EZF)
Docking of LM-1554 into PDB structure of SqS revealed
it to be interacting through hydrogen bonds as well as
electrostatic interactions with ALA-176 and ASP-80
residues of the active site (Figure 6a and b, Table 1, Sr.
No. 5a & 5b). The van der Waals interactions with key
amino acid residues, PRO-292, PHE-288, LEU-211,
GLY-208, MET-207, LEU-183, GLY-180, VAL-179, ALA-
176, PHE-54, in the binding site of SqS were observed
for both ligands. However, both, the docking score
(−11.17), as well as, docking energy (−67.24 kcal/mol)
for the interactions for the native ligand with SqS were
seen to be more favourable as compared to that of LM-
1554 having docking score (−7.18); docking energy
(−31.29 kcal/mol), during its interactions with SqS, indi-
cating, LM-1554 not a likely ligand for SqS.

Docking of LM-1554 into PDB structure of FXR (PDB ID: 1OSH)
LM-1554 as well as the respective native ligand for FXR,
were docked into the active pockets of the FXR for
the comparative assessment of the favourability of their
interactions at the active site (Figure 7a and b, Table 1,
a
Figure 3 3D-docking of LM-1554 with the molecular target ACL. a. 3D
native ligand, citric acid, into PDB structure of ACL.
Sr. No. 6a & 6b). LM-1554 besides exhibiting van der
Waals contacts with TRP-473, MET-454, HIS-451,
MET-369, ILE-361, ILE-356, MET-332, ALA-295, MET-
294, THR-292 and LEU-291 residues in the active
pocket, also exhibited electrostatic interactions with the
TYR 365 residue and hydrogen bonding with TYR-365
(1.897 Å), as well as, LEU-291 (5.830 Å). However, the
native ligand showed comparatively better interactions
with the above mentioned residues as reflected from its
comparatively favorable docking score (−10.69) and en-
ergy values (−43.71 kcal/mol), indicating, LM-1554 hav-
ing docking score (−6.55); docking energy (−29.62 kcal/
mol), less likely to be a ligand for FXR.
A perusal of the docking scores of LM-1554 at all the

above six molecular targets as compared to their respective
ligands (Table 1), revealed its better docking interactions at
NPC1L1. Further, on the basis of comparative docking en-
ergies, ACL also appeared to be its other favorable target.

Conclusions
LM-1554 (2-chloromethyl-5,6,7,8-tetrahydrobenzo(b)thieno-
[2,3-d]pyrimidin-4(3H)-one; CAS #89587-03-3), which had
b
-docking of LM-1554 into PDB structure of ACL. b. 3D-docking of



a b
Figure 4 3D-docking of LM-1554 with the molecular target CRP. a. 3D-docking of LM-1554 into PDB structure of CRP. b. 3D-docking of native
ligand, phosphocholine, into PDB structure of CRP.

Khedkar et al. SpringerPlus 2014, 3:628 Page 9 of 12
http://www.springerplus.com/content/3/1/628
shown promising antihyperlipidemic activity in its preclin-
ical evaluation and also found to be safe in its toxicity
studies warranted an investigation into its pharmaco-
dynamics. The technique of molecular docking was uti-
lised for analysing the orientation of conformations and
poses, as well as, assessing favourability of interactions
of LM-1554 into the binding pockets of six different
molecular targets related to hyperlipidemia. This was
done to gain some insights in its probable mechanism
of action, as an antihyperlipidemic entity. Concluding
from the results (Figures 2, 3, 4, 5, 6 and 7, Table 1), the
compound seemed to be acting through the inhibition
of NPC1L1. ACL also could be its molecular target to
some extent. Thus, on this basis, selective in vitro assays
involving these two targets could now be the next step to
confirm its mechanism of action. LM-1554, at dose level of
10 mg/kg. p.o. was found to exhibit good antihyperlipidemic
activity, as seen by two different evaluation protocols.

Computational details
All the molecular docking analyses for LM-1554 and
the native ligands with the molecular targets were
a b
Figure 5 3D-docking of LM-1554 with the molecular target LDM. a. 3D
native ligand, ketoconazole, into PDB structure of LDM.
performed using the Glide® molecular modeling package
(Schrödinger, Inc., USA) running on an Intel Xeon
based system with the Linux Enterprise OS.
The starting coordinates of the protein structures -

Niemann Pick C1 like1 (NPC1L1) (PDB ID: 3QNT),
ATP-citrate lyase (ACL) (PDB ID: 3MWD), C-reactive
protein (CRP) (PDB ID: 1B09), squalene synthase (SqS)
(PDB ID: 1EZF), human lanosterol 14α-demethylase
(CYP51) (3LD6) and farnesoid X receptor (FXR) (PDB
ID: 1OSH) were obtained from the RCSB Protein Data
Bank and further modified for the docking calculations.
The protein structures were prepared by running the
protein preparation wizard and applying the force field,
OPLS-2005. Thereafter, removal of crystallographic water
molecules and addition of hydrogens to the structures cor-
responding to pH 7.0 was done. The most likely positions
of hydroxyl and thiol hydrogen atoms, protonation states
and tautomers, as well as, the Chi ‘flip’ assignments for
the amino acid residues were selected using the protein
assignment script. After assigning appropriate charge
and protonation states, the prepared structures were
further refined by subjecting to energy minimization
-docking of LM-1554 into PDB structure of LDM. b. 3D-docking of



a b 
Figure 6 3D-docking of LM-1554 with the molecular target SqS. a. 3D-docking of LM-1554 into PDB structure of SqS. b. 3D-docking of native
ligand,N-{2-[trans-7-chloro-1-(2,2-dimethylpropyl)-5-naphthalen-1-yl-2-oxo-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepin-3-yl]acetyl}aspartic acid, into PDB
structure of SqS.
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until the average root mean square deviation (r.m.s.d.)
reached 0.3 Å.
For precision and accuracy of the docking protocols,

the co-crystallized ligands were extracted from the crys-
tal structures of ACL, SqS, FXR, CRP and LDM and
were re-docked using Glide docking algorithm in its XP
mode. A good agreement was observed between the
localization of the native ligands upon docking and as
such in the co-crystallized structures (r.m.s.d. <1.0 Å).
In case of NPC1L1, eventhough, the its crystal struc-

ture with ligand N-acetylglucosamine complexed with it
was available (PDB ID: 3QNT) (Kwon et al. 2011), we
considered ezetimibe, a known cholesterol lowering drug
acting on this target as a reference ligand in the present
study for a better comparison (Arya et al. 2013).
The initial 3D structure LM-1554 and ezetimibe were

built using the Maestro module (Schrödinger, Inc., USA)
and optimized by the Lig-Prep module (Schrödinger Suite).
The partial charges were assigned using the OPLS2005
(Optimized Potentials for Liquid Simulations) force-field
with target pH of 7.0. The ligand geometries were refined
a

Figure 7 3D-docking of LM-1554 with the molecular target FXR. a. 3D
ligand, Fexaramine, into PDB structure of FXR.
through energy minimization (LBFGS method) to a target
gradient of 0.001 kcal/mol/Å.
With the protein and ligand in the correct form, the next

step was the generation of the receptor-grid for defining
the active pocket for docking using Glide (Schrödinger).
All amino acids within 10 Ǻ of the co-crystallized ligand
were included in the grid file generation. Default values
were retained for the van der Waals scaling and partial
charges were assigned from the input structure, rather than
from the force field, by selecting the use input partial
charges option.
Following the grid generation, LM-1554 and the respect-

ive native ligands were docked into all the aforementioned
targets in separate docking experiments. The extra-
precision (XP) scoring function in Glide was used to rank
the docking poses and to evaluate the binding affinity of
the LM-1554 as well as the native ligands for the respect-
ive targets. To analyze the mode of binding, the docked
conformation with best Glide (XP) score was selected.
(More details on the docking protocol are provided in

the Additional file 1).
b

-docking of LM-1554 into PDB structure of FXR. b. 3D-docking of native



Khedkar et al. SpringerPlus 2014, 3:628 Page 11 of 12
http://www.springerplus.com/content/3/1/628
Additional file

Additional file 1: Supplementary data for docking protocol.
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