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Abstract

solid-state fermentation.

Solid-state fermentation

Fibrinolytic enzymes are agents that dissolve fibrin clots. These fibrinolytic agents have potential use to treat
cardiovascular diseases, such as heart attack and stroke. In the present article, a fibrinolytic enzyme producing
Pseudoalteromonas sp. IND11 was isolated from the fish scales and optimized for enzyme production. Cow dung
was used as a substrate for the production of fibrinolytic enzyme in solid-state culture. A two-level full factorial
design was used for the screening of key ingredients while further optimization was carried out using the central
composite design. Statistical analysis revealed that the second-order model is significant with model F-value of 6.88
and R? value of 0.860. Enzyme production was found to be high at pH 7.0, and the supplementation of 1% (w/w)
maltose and 0.1% (w/w) sodium dihydrogen phosphate enhanced fibrinolytic enzyme production. The optimization
of process parameters using response surface methodology resulted in a three-fold increase in the yield of
fibrinolytic enzyme. This is the first report on production of fibrinolytic enzyme using cow dung substrate in
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Introduction

Fibrin is the main component of the blood clot, and it
is normally formed from fibrinogen by the action of
thrombin (EC. 3. 4. 21. 5). The accumulation of fibrin
in the blood vessels usually results in thrombosis.
Thrombus in blood vessels or in a chamber of the heart
leads to myocardial infarction and other cardiovascular
diseases (CVDs). For thrombolytic therapies, both in-
jection and oral administration of thrombolytic agents
have been extensively investigated. Based upon their
mechanism of activation of the fibrinolytic system, fi-
brinolytic agents are classified into two types. One is
plasminogen activator such as tissue-type plasminogen
activator (t-PA) (Collen and Lijnen 2004) and urokinase
(Duffy 2002). The other one is plasmin-like fibrinolytic
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enzymes, which can directly degrade the fibrin in blood
clots, thereby dissolving the thrombi rapidly. Examples of
that type of protease are nattokinase (Sumi et al. 1987) and
lumbrokinase (Mihara et al. 1991). Urokinase and t-PA are
still widely used in thrombolytic therapy, but these agents
have some undesirable side effects when orally adminis-
tered and are expensive also (McGrath et al. 1985; Bode
et al. 1996). Therefore, the search for safer thrombolytic
agents from other sources is ongoing.

Microbial fibrinolytic protease is considered as a potent
fibrinolytic agent to treat CVDs (Mine et al. 2005). Many
thrombolytic agents have been identified and characterized
from different sources (Fujita et al. 1993; Peng et al. 2003;
Jeong et al. 2004; Wang et al. 2006). Although microbial
fibrinolytic enzymes have been extensively studied, only
few reports are available concerning statistical medium
optimization (Liu et al. 2005; Deepak et al. 2010; Mahajan
et al. 2012). In recent years, an attempt was made to iso-
late a potent fibrinolytic enzyme producing organism from
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marine environment (Mahajan et al. 2012). The newly
established genus Pseudoalteromonas contains numerous
species that synthesize biologically active molecules
(Holmstrom and Kjelleberg 1999). The protease production
of Pseudoalteromonas sp. has been reported by various re-
searchers (Porro et al. 2003; Olivera et al. 2007; Xiong et al.
2007; Wang et al. 2008). Thrombolytic enzyme secreting
marine bacteria Alteromonas piscicida was isolated by
Demina et al. (1990). Hence, it is worthwhile to screen this
Pseudoalteromonas sp. for fibrinolytic enzyme secretion
and statistical optimization for enzyme production.

In the present article, solid-state fermentation (SSF) was
employed for the production of fibrinolytic enzyme using
cow dung substrate. Cattle manure consists of cellulose
(35.4%), hemicelluloses (32.6%), ash (13.3 - 13.4%) and
nitrogen (1.2 — 1.6%) (Misra et al. 2003). Cow dung sub-
strate was effectively used for the production of alkaline
protease recently in SSF (Vijayaraghavan and Vincent
2012; Vijayaraghavan et al. 2012). In enzyme bioprocess,
designing a suitable medium for maximum production
is of critically important because the medium compo-
nents significantly affect the product yield. Considering
its cheap cost and availability, an attempt was made to use
cow dung as a substrate for the production of fibrinolytic
enzyme from Pseudoalteromonas sp. IND11. The trad-
itional one-at-a-time optimization strategy is simple and
easy, but it fails frequently. Statistical experimental design
provides an efficient approach to optimize the medium
components. Fractional factorial design (FED) is especially
suitable to account for the interactions and identify the
most significant components in the medium formula.
A combination of factors generating a certain optimum
response can be identified through factorial design and
the use of response surface methodology (RSM). The
statistical method is more satisfactory and effective than
other classical one-at-a-time optimization strategies be-
cause it can study many variables simultaneously with
a lower number of observations, thus saving time and
cost (Montogomery 2001). RSM is a well-known method
applied in the optimization of medium constituents and
other critical variables responsible for the production of
biomolecules (Hong et al. 2004) and enzymes (Long et al.
2009; Zhang et al. 2012; Farid et al. 2013).

The aim of this work was to optimize the fermentation
medium by statistical approach to increase fibrinolytic
enzyme production by Pseudoalteromonas sp. using cow
dung, which is a low cost substrate.

Methods

Screening and identification of a fibrinolytic enzyme
producing Pseudoalteromonas sp. IND11
Pseudoalteromonas sp. IND11 producing a fibrinolytic
enzyme was isolated along with other bacteria from the
fish scales in Kanyakumari, India. Primary screening was
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carried out using skimmed milk agar plates. The sample
was homogenized and platted on skimmed milk agar plates
(peptone, 5 g/L; beef extract, 1.5 g/L; yeast extract, 1.5 g/L;
sodium chloride, 5 g/L; agar, 15 g/L; skim milk, 10 g/L).
All plates were incubated at 37°C for 24 h, and a total of
nine positive isolates were obtained based on their mor-
phological and cultural characteristics. All nine organisms
were cultured in nutrient broth medium (peptone, 5 g/L;
beef extract, 1.5 g/L; yeast extract, 1.5 g/L; sodium chlor-
ide, 5 g/L; and casein, 10 g/L) and incubated at 37°C in a
shaker (150 rpm) for 48 h. These isolates were further
screened using fibrin plates. The cell-free extracts (15 pl)
were dropped into the well of fibrin plate (pH 7.4). The
single strain showing the largest halo zone on fibrin-
agarose plate was selected and further identified. Various
biochemical tests of the isolate Pseudoalteromonas sp.
IND11 were done to identify it according to the “Bergey’s
Manual of Systematic Bacteriology” (Sneath 1986) and
by 16S rDNA sequencing. The genomic DNA of the iso-
late was extracted using genomic DNA extraction kit
(QIAGEN, Germany) per manufacturer’s instructions. Amp-
lification of the 16S rDNA was performed with universal
primers 27 F (5'-AGAGTTTGATCMTGGCTAG-3") and
1492R (5'-ACGGGCGGTGTGTRC-3"), using a research
gradient Peltier Thermal cycler machine PTC-225 (USA).
PCR products were isolated from the agarose gel using a
QIA quick gel extraction kit (QIAGEN, Germany) and se-
quenced. A sequence similarity search was performed
using BLAST in the NCBI database. The 612 bp 16S
rDNA sequence of strain has been submitted to Genbank
database and assigned accession number KF683956.

Assay of fibrinolytic activity

Fibrinolytic activity was measured by the hydrolysis of
fibrin according to the method described by Ansen (1939)
with some modifications. The incubation mixture con-
tained 2.5 ml of 1.2% fibrin (w/v), 2.5 ml of 0.1 M Tris-HCI
(0.01 M CaCl,, pH 7.8), and a suitable amount of enzyme.
The incubation was carried out at 37°C for 30 min, and
the reaction was stopped by adding 5 ml of 0.11 M
trichloroacetic acid containing 0.22 M sodium acetate and
0.33 M acetic acid. The absorbance of the supernatant
was measured at 275 nm. A fibrinolytic unit was defined
as the amount of enzyme that gave an increase in absorb-
ency at 275 nm equivalent to 1 pg of tyrosine per minute
at 37°C. The total protein content determination was per-
formed by Lowry et al. (1951).

Optimization for fibrinolytic enzyme production by
one-variable-at-a-time approach

Cow dung was collected locally and dried for one week
(sun drying). It was powdered using a mixer grinder, sieved
and stored at room temperature for further use. Cow dung
was used as the substrate. SSF was carried out in a 100 ml
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Erlenmeyer conical flask containing 2 g substrate. In the
present article, the requirement of medium components
including various carbon (1% [w/w], glucose, sucrose,
maltose, xylose, trehalose, and starch) and nitrogen sources
(1% [w/w], yeast extract, urea, casein, gelatin, beef ex-
tract, and peptone) and inorganic salts (1% [w/w], am-
monium chloride, ferrous sulfate, disodium hydrogen
phosphate, calcium chloride, sodium nitrate, sodium
dihydrogen phosphate, and ammonium sulfate) were
optimized. The physical factors such as fermentation
period (24-96 h), pH (5-10), moisture (80%—160%),
and inoculum (3%—15%) were also evaluated before be-
ing subjected to statistical optimization. Cow dung
substrate was moistened with tris buffer (pH 8, 0.1 M)
at 100% level and was treated as the control. The con-
tents were sterilized and inoculated with 0.2 ml of 18 h
grown culture broth (0.983 OD at 600 nm) under ster-
ile conditions. The enzyme was extracted from cow
dung using 20 ml double distilled water by shaking on
a rotary shaker (150 rpm) for 30 min. This was centri-
fuged at 10000 rpm for 10 min at 4°C and the clear
supernatant was used as the crude enzyme.

Evaluation of significant components with two-level full
factorial design

A two-level full factorial design (2°) was employed to find
the key ingredients that affect fibrinolytic enzyme produc-
tion. The important physical parameters (pH and moisture)
and nutrient factors (maltose, casein, and sodium dihy-
drogen phosphate) were evaluated by statistical method.
The other factors such as fermentation period and in-
oculum were kept at optimum level. Based on two-level
full factorial design, each factor was examined at two
levels (-1 for low level and +1 for high level). The vari-
ables and the levels were described in Table 1. Two-
level full factorial designs were based on the following
first-order polynomial model:

Y = ap + 2aix; + Zagxix + Zagroixixg
i ij ijk
FXagjxinixix; + ZimX XK XX,

ijkl ijklm

Table 1 Variables selected for 2-level full factorial design

Coded levels

Factors Units

-1 +1
A-pH 8 10
B-Moisture % 80 120
C-Maltose % 0.1 1.0
D-Casein % 0.1 0.5

E-NaH,PO, % 0.05 0.25
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where Y is the response (fibrinolytic activity); a;;, a;,
@ and &g, were the ijth, ijkth, ijkith, and ijkimth
interaction coefficients, respectively; a; was the ith linear
coefficient; and a, was an intercept.

Fibrinolytic enzyme assay was carried out in duplicates,
and the average of these experimental values was taken
as response Y (Table 2). The statistical software “Design-
Expert 8.0” (StatEase Inc., Minneapolis, USA) was used
to analyze the experimental results. The factors that
affect fibrinolytic enzyme production significantly (p < 0.05)
were further optimized by central composite design (CCD)
and RSM.

Table 2 Experimental design and results of the two level
(2°) full factorial design

Run pH Moisture Maltose Casein NaH,PO, Enzyme
activity (U/ml)
1 1 -1 1 1 1 151
2 -1 -1 -1 -1 -1 638
3 1 1 -1 1 -1 274
4 -1 1 =1 1 1 1388
5 -1 1 -1 -1 -1 1118
6 1 -1 -1 -1 1 521
7 1 -1 -1 -1 -1 398
8 -1 1 1 —1 =1 844
9 -1 1 -1 1 -1 404
10 -1 1 =1 =1 1 1029
11 1 1 1 —1 =1 638
12 -1 -1 1 -1 1 631
13 1 1 1 1 =1 645
14 -1 -1 -1 -1 1 617
15 1 1 -1 1 -1 899
16 -1 -1 1 1 =1 576
17 1 -1 -1 1 -1 761
18 -1 -1 -1 1 1 652
19 1 -1 -1 1 =1 727
20 1 1 1 -1 1 384
21 1 -1 -1 1 1 684
22 -1 1 1 =1 1 727
23 -1 1 1 1 -1 576
24 -1 1 1 1 1 912
25 1 1 -1 -1 1 713
26 1 -1 1 —1 1 350
27 1 1 -1 1 1 363
28 -1 -1 1 1 1 1160
29 1 -1 1 1 =1 1251
30 1 1 1 1 1 89
31 -1 -1 1 -1 =1 748
32 1 -1 1 -1 -1 562
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Statistical optimization of fibrinolytic enzyme production
in SSF by CCD and RSM
CCD was employed to optimize the fermentation con-
ditions, namely, pH, maltose, and sodium dihydrogen
phosphate at five levels (-a, -1, 0, +1, +a) (Table 3). The
CCD contains a total of 20 experimental runs (8 factorial,
6 central, and 6 axial points). The experiments were
conducted in duplicates, and the mean value (U/ml) of
fibrinolytic activity was taken as the response (Y) (Table 4).
The statistical software “Design-Expert 8.0” (StatEase) was
used to analyze the experimental results. The experimental
results of CCD were fitted with a second-order polynomial
equation as shown below:

For a three-factor system, the second-order polynomial
equation is as follows:

3 3 3
Y = By + ZBXi + 2B X7 + ZBy Xy
ij=1

where Y is the response; S is the offset term; and S;, f5;;
and f3; were the coefficients of linear terms, square terms,
and coefficients of interactive terms, respectively. X;’s were
A, B, and C; X;;'s were AB, AC, and BC (A-coded value
of pH; B-coded value of maltose; C-coded value of sodium
dihydrogen phosphate).

Validation of the experimental model

To validate the model equation, experiments were con-
ducted in triplicates for fibrinolytic enzyme production
under optimum conditions predicted by the model.

Results and discussion

Novel compounds from the marine microbes

Marine organisms known to produce a diverse spectrum
of novel metabolites are an untapped source for the dis-
covery of new bioactive compounds (Mahajan et al. 2012).
Further, it is believed that sea water, which is saline in
nature and chemically closer to the human blood plasma,
could provide biomolecules, in particular enzymes that
could have lower or no toxicity or side effects when used
for therapeutic applications (Sabu 2003). Recently many
researchers had focused their efforts on isolating and
screening of microorganisms for enzyme production with

Table 3 The independent variables and their levels for
the central composite experimental design

Variables  Symbol  Units Coded levels

-a -1 0 +1 +a
pH A 6.32 7 8 9 9.68
Maltose B % -001 025 05 10 126
NaH,PO, C % =002 001 006 01 0.13

Page 4 of 10

Table 4 Experimental design and results of CCD

Run pH Maltose NaH,PO, Enzyme
activity (U/ml)

1 0 0 0 1028
2 0 0 0 1276
3 1 -1 -1 910
4 1.682 0 0 558
5 0 —1.681 0 683
6 0 0 0 1000
7 0 0 1.682 699
8 0 0 0 1173
9 -1 -1 -1 703
10 -1 -1 1 1186
11 1 -1 1 531
12 0 0 0 1104
13 -1 1 -1 1573
14 1 1 -1 765
15 1 1 1 462
16 0 0 -1.682 897
17 -1 1 -1 966
18 0 0 0 1055
19 -1.682 0 0 903
20 0 1.682 0 1345

high fibrinolytic activity from various sources (Jeong et al.
2001; Lee et al. 2001; Agrebi et al. 2009). Although fi-
brinolytic enzymes have been isolated from various or-
ganisms, the quest for new fibrinolytic enzymes has not
been stopped yet (Mahajan et al. 2012). In this article,
a marine isolate Pseudoalteromonas sp. IND11 was
subjected to screening and optimizing for fibrinolytic
enzyme production. Many organisms from the genus
Pesudoalteromonas secreted proteolytic enzymes, for
example, Pseudoalteromonas sp. strain CP76 (Porro et al.
2003) and Pseudoalteromonas sp. NJ276 (Wang et al. 2008).

Isolation, screening, and identification of fibrinolytic
enzyme producing Pseudoalteromonas sp. IND11

In the present article, nine fibrinolytic enzymes secreting
organisms were isolated from the fish scales, obtained from
Arabian sea, 25 km from Kanyakumari coast, Tamilnadu,
India. The extracellular fibrinolytic enzyme production was
determined by fibrin plate method. Among the isolates,
Pseudoalteromonas sp. IND11 showed more activity; hence
this was selected for further studies (Figure 1la). It was
Gram - negative, rod - shaped and positive in oxidase
test. It showed positivity in tests of catalase and Voges -
Proskauer and in casein -, and starch - hydrolysis. The
strain was negative in tests of nitrate - reduction, urease -,
indole -, gas-production and citrate utilization. The isolate



Vijayaraghavan and Vincent SpringerPlus 2014, 3:60
http://www.springerplus.com/content/3/1/60

Page 5 of 10

b ——— gblJX530547.1| Uncultured Pseudoalteromonas sp.
gblKF313363.1| Pseudoalteromonas sp. AW28M34b

gblJX525985.1! Uncultured Pseudoalteromonas sp.

gblJX527243.1] Uncultured Pseudoalteromonas sp.

gblKF482378.1| Pseudoalteromonas sp. DG1838
gblKF266767.1| Pseudoalteromonas sp. F12A
Pseudoalteromonas sp. IND11

gblKF560346.1| Pseudoalteromonas sp. BG-7-R2
gblJX531433.1] Uncultured Pseudoalteromonas sp.
gblJX531431.11 Uncultured Pseudoalteromonas sp.
gblJX530955.1] Uncultured Pseudoalteromonas sp.
gblJX528898.1| Uncultured Pseudoalteromonas sp.
gblJX527514.1] Uncultured Pseudoalteromonas sp.
gblJX527466.11 Uncultured Pseudoalteromonas sp.
gblJX527262.1] Uncultured Pseudoalteromonas sp.
gblJX527111.11 Uncultured Pseudoalteromonas sp.
gblKF208362.1| Pseudoalteromonas sp. DL-6

gblKF482377.1| Pseudoalteromonas sp. DG1810
gblKF193897.1| Pseudoalteromonas paragorgicola strain N224

0.001

Pseudoalteromonas sp. (b).

gblJX527261.1] Uncultured Pseudoalteromonas sp
gblJX525977.11 Uncultured Pseudoalteromonas sp

Figure 1 Analysis of fibrinolysis on fibrin-agarose plate (a). Phylogenetic relationships of strain IND11 and other closely related

was identified as Pseudoalteromonas sp. The 612 bp
16S rDNA sequence of Pseudoalteromonas sp. IND11
has been submitted to the GenBank database and
assigned accession number KF683956. A phylogenetic
tree was derived from 16S rDNA sequences, and it
showed the phylogenetic position of Pseudoalteromonas
sp. IND11 to closely related species in the genus
Pseudoalteromonas (Figure 1b).

Cow dung: a cheap substrate for enzyme production

This article has showed that cow dung can be used as a
solid substrate for fibrinolytic enzyme production. The
selection of an ideal substrate for the production of any
metabolite is an important factor from an industrial point
of view. An ideal substrate should be available throughout

the year (Pandey et al. 2000). Reports on SSF of cow dung
substrate for the production of fibrinolytic enzyme are
limited or, perhaps, not available. Recently, we used cow
dung substrate for the production of proteolytic enzymes
(Vijayaraghavan and Vincent 2012; Vijayaraghavan et al.
2012), and further now we use the cow dung substarte
for fibrinolytic enzyme production. Based on the results
obtained from the present article, cow dung is an ideal
substrate for fibrinolytic enzyme production. Cow dung
substrate supplies nutrients to the microbial culture and
anchorage for the growing cells. This is the first report
on production of fibrinolytic enzyme from a marine
bacterial isolate, Pseudoalteromonas sp. IND11, using
statistical experimental design and RSM in optimization
of its production under SSF.
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Preliminary screening of nutrients and physical factors for
statistical optimization

The microbial strain is unique in their molecular, bio-
chemical, metabolic, and enzyme production properties.
Hence, an in-depth knowledge of kinetics and catalytic
behavior during protease production from any new strain
is a prerequisite for the evaluation of its biotechnological
potential (Prakasham et al. 2006). The nutrient factors and
physical parameters were optimized to increase fibrinolytic
enzyme secretion. The effect of carbon sources was shown
in Figure 2a. In this article, among all the supplementary
carbon sources (1% [w/w]), maltose has been found to be
the best source for fibrinolytic enzyme production. These
results were in accordance with reported protease produc-
tion in the presence of different sugars (Ellaiah et al. 2002).
When different concentrations of maltose were added,
maltose (1% [w/w]) supported the maximum fibrinolytic
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enzyme production (1038 U/ml). It was shown in bacteria
that the production of fibrinolytic enzyme was induced by
maltose in the culture medium (Liu et al. 2005). The other
sources such as glucose, sucrose, xylose, trehalose, and
starch also supported fibrinolytic enzyme production.
Among nitrogen sources, the addition of casein supported
maximum fibrinolytic enzyme production (Figure 2b).
When different concentrations of casein were supple-
mented, casein at 1.5% supported the maximum fibrino-
lytic enzyme production (1006 U/ml). The supplemented
casein stimulated fibrinolytic enzyme production. These
results are in accordance with the observation made with
Bacillus sp. strain AS-S20-1 (Mukherjee and Rai 2011).
The sources such as yeast extract, urea, gelatin, beef
extract, and peptone also enhanced fibrinolytic enzyme
production. In SSE, the addition of inorganic salts enhanced
fibrinolytic enzyme production except ammonium chloride.

1200
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600 -
400 -
200 -

Enzyme activity (U/ml) *

Glucose Sucrose Maltose

o

1000 -

800 -

600 -

400 -

200 -

Enzyme activity (U/ml)

Yeast Urea Casein

extract

900
800
700
600
500
400
300
200
100
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Amm.
chloride

Carbon sources (1%)
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Figure 2 Effect of various carbon (a), nitrogen (b) and inorganic salts (c) on production of fibrinolytic enzymes.
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Among the inorganic salts, sodium dihydrogen phosphate
enhanced fibrinolytic enzyme production. These results are
in accordance with the observation made with Bacillus
subtilis (Artemov and Samuilov 1990). This is because
upon translocation across the plasma membrane, serine
protease is bound to the outer surface of cell membranes.
This bounded protease inhibits extracellular protease syn-
thesis and the metal ions induce the displacement of this
enzyme. This could be the possible reason for showing
major effect of Na* ion on fibrinolytic enzyme production
(Mahajan et al. 2012). Ammonium chloride (1% [w/w])
totally inhibited fibrinolytic enzyme production (Figure 2c).
The repression of the synthesis of protease by excess am-
monium has been reported earlier (Kole et al. 1988).

In SSF, moisture content is one of the critical factors
for fibrinolytic enzyme production. One-factor-at-a-time
experiment revealed that moisture (140%) significantly
affected enzyme production. Among the several factors
that are important for microbial growth and enzyme
production under SSF, moisture content is a critical fac-
tor (Pandey et al. 2000). Alkaline protease production
by microbial strains strongly depends on the extracellular
pH (Ellaiah et al. 2002). In the present article, the pH
of the substrate greatly affected enzyme production.
Hence, these variables were also selected for statistical
optimization experiments.

Two-level full factorial experimental design and an
analysis of main effects

The most significant factors such as pH, moisture, mal-
tose, casein, and sodium dihydrogen phosphate were se-
lected for optimization studies. The matrix developed by
the two-level full factorial design and the results were
shown in Table 2. The fibrinolytic enzyme production var-
ied from 89 to 1388 U/ml. According to the two-level full
factorial design, the optimum medium compositions were
as follows: pH 8.0, 120% moisture, 0.1% maltose, 0.5%
casein, and 0.25% sodium dihydrogen phosphate. The
analysis of variance (ANOVA) was used to analyze the
main effects and was shown in Table 5. The model F-value
of 96.26 implies that the model is significant. There is only

Table 5 ANOVA table for two-level full factorial design

Source Sum of squares df Mean square F- Value p-value
Model 3.777E+ 006 28 1.349E+005  90.26 0.0016
pH 5.161E+ 005 T 5161E+005 34536 0.0003
Moisture 10368 1 10368 6.94 0.0781
Maltose 27730 T 27730 1854 0.023
Casein 4900 1 4900 3.28 0.167
NaH,PO, 14792 1 14792 9.90 0.05
Residual 448337 3 1493

Cor total ~ 3.781E + 006 31
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a 0.16% chance that a “Model F-value” this large could
occur due to noise. Values of “Prob > F” less than 0.05 indi-
cate that model terms are significant. In this model, enzyme
production was significantly affected by pH (<0.01), maltose
(<0.05), and sodium dihydrogen phosphate (<0.05). The
coefficient estimate was negative to pH, maltose and so-
dium dihydrogen phosphate. This states that the lower
levels of pH and maltose and sodium dihydrogen phos-
phate concentrations would benefit fibrinolytic enzyme
production. The coefficient estimate was positive to
moisture and casein; these indicated that the increase of
moisture content and casein concentration in the cow
dung medium will support for enzyme production. The
“predicted R-squared” of 0.865 is in reasonable agreement
with the “adjusted R-squared” of 0.987. Adequate precision
measures the signal-to-noise ratio. A ratio greater than 4 is
desirable. In this model, the ratio of 43.54 indicates an ad-
equate signal. This model can be used to navigate the de-
sign space. Neglecting the insignificant variables, the model
equation for fibrinolytic enzyme production is as follows:
Final equation in terms of coded factor:

Enzyme activity = 686-127A + 18B-29C + 12D
-21E-78AB + 14AC-133AE
-75BC-99BD + 53BE + 36CD
-87CE + 33DE + 28ABC
-61ABD-12ABE + 23ACD
-61ACE-121ADE-18BCE
+79BDE-54CDE + 21ABCD
+77ABCE-43ACDE-39BCDE
+65ABCDE

The three significant factors such as pH, maltose, and
casein were further optimized with CCD.

Response surface methodology

The effect of the three variables (pH, maltose, and sodium
dihydrogen phosphate) on fibrinolytic enzyme production
was evaluated by CCD and RSM. The CCD model helps
to study the interactions between the various variables,
and RSM helps to explore the optimum concentrations
of each of the variables. The maximum activity of the
fibrinolytic enzyme was observed at run 13 (Table 4).
The results obtained from CCD were analyzed using
ANOVA. The model F-value of 6.88 implies that the model
is significant (Table 6). There is only a 0.29% chance that a
“Model F-value” this large could occur due to noise. Values
of “Prob > F” less than 0.05 indicate that model terms are
significant. In this case, A, B, AC, A% and C? are significant
model terms. The second-order polynomial model was
used to correlate the independent variables with fibrinolytic
enzyme activity. The coefficient of determination (R?)
was calculated to be 0.86, indicating that the model could
explain 86% of the variability. A value of >0.75 indicates
appropriate for the model. The “Lack-of-Fit F-value” of
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Table 6 ANOVA for response surface quadratic model
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Source Sum of squares df Mean square F Value p-value

Model 1.392E + 006 9 1.546E + 005 6.88 0.0029 Significant
A-pH 4.010E + 005 1 4.010E + 005 17.83 0.0018

B-Maltose 1.758E + 005 1 1.758E + 005 7.82 0.0189

C-NaH,PO,4 4414 1 44.14 1.963E-003 0.9655

AB 93312 1 93312 4.15 0.069

AC 3.925E + 005 1 3.925E + 005 1746 0.0019

BC 5000 1 5000 0.22 0.6474

A2 2.075E + 005 1 2.075E+ 005 9.23 0.0125

B’ 56289 1 56289 0.25 06277

c 1.483E + 005 1 1.483E + 005 6.59 0.0280

Residual 2.249E + 005 10 22485.08

Lack of fit 1.715E+ 005 5 34307.37 322 0.1127 Not significant
Pure error 53314 5 10662.80

Cor total 1.617E + 006 19

3.22 implies that the lack of fit is not significant relative to
the pure error. There is only an 11.27% chance that a
“Lack-of-Fit F-value” this large could occur due to noise.
“Adequate precision” measures the signal-to-noise ratio. A
ratio greater than 4 is desirable. A ratio of 10.02 indicates
the adequate signal. The response (Y) was well fitted with
a quadratic second-order polynomial equation.
Final equation in terms of coded factors:

Fibrinolytic activity (¥) = +1104-171A + 113B
+1.8C-108AB-221AC
+ 25BC-120A2-19B2-101C?

where A is the pH of the substrate, B is maltose (%), and C
is sodium dihydrogen phosphate (%).

The three-dimensional surface plots show the combined
effect of two independent variables for fibrinolytic enzyme
production, while the third variable was kept at zero-coded
level (Figure 3a—c). A perturbation plot compared the effect
of the entire factor at a particular point in the design space
(Figure 3d). Among the variables used for RSM, medium
pH had a significant effect on fibrinolytic enzyme produc-
tion compared with other variables. The perturbation graph
shows that the factor maltose had a significant role on
fibrinolytic enzyme production. Before optimization, the
enzyme production was 505 U/ml, and threefold increased
enzyme production was achieved after optimizing the
medium by RSM. The predicted maximum fibrinolytic en-
zyme production was estimated to be 1573 U/ml. To valid-
ate the experimental design, experiments were conducted
in triplicates in optimized conditions, and a fibrinolytic
activity of 1610 U/ml was obtained. This experimental
value (1610 U/ml) is in good agreement with that of
the predicted value that validates the model design.

Recently, Al- Nahas et al. (2011) found the fibrino-
lytic potential of exopolysaccharide synthesized by
Pseudoalteromonas spp. from the deep sea sediments.
Pseudoalteromonas sp. synthesizes variety of active
compounds (Holmstrom and Kjelleberg 1999). The isolate
Pseudoalteromonas sp. IND11 grows on cow dung sub-
strate, so it is worthwhile to use cow dung substrate for
the production of other useful compounds too. Although
fibrinolytic enzyme producing organisms from various
marine isolates were reported, only very few reports
are available on the secretion of fibrinolytic enzyme by
Pseudoalteromonas sp. These kinds of study not only
exploit this organism for the optimized production of
fibrinolytic enzymes but also help to synthsize other
useful compounds.

Optimization and validation

Validation of the predicted results was done under op-
timized conditions in three independent experiments.
In this model, the experimental fibrinolytic activity of
1365 U/ml was obtained which correlated to the predicted
activity (1340 U/ml) confirming the rationality of the
model. This is 3 fold higher than that obtained before
optimization. Thus, overall 3 fold increase in fibrino-
lytic activity was observed after optimization.

Conclusion

A fibrinolytic enzyme-secreting Pseudoalteromonas sp.
IND11 was grown on cow dung substrate in solid-state
culture. The fermentation medium for fibrinolytic enzyme
production was optimized using two-level full factorial
design and CCD. In the present article, supplementation
of 1% (w/w) maltose and 0.1% (w/w) sodium dihydrogen
phosphate increased fibrinolytic enzyme production. The
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optimized medium showed 1573 U/ml of fibrinolytic
activity, which is three times higher than the unopti-
mized medium.
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