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Abstract

This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to
find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will
see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms.
Comparing figures between approximate and exact solutions we show the effectiveness of the proposed method.
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Introduction
Laplace Transform (L.T.) (or operational calculus) has
played an important role in mathematics (Murray 1988),
not only for its theoretical interest, but also because
such method allows to solve, in a simpler fashion, many
problems in science and engineering, in comparison
with other mathematical techniques (Murray 1988). In
particular the L.T. is useful for solving ODES with con-
stant coefficients, and initial conditions, but also can be
used to solve some cases of differential equations with
variable coefficients and partial differential equations
(Murray 1988). On the other hand, applications of L.T.
for nonlinear ordinary differential equations mainly
focus to find approximate solutions, thus in reference
(Aminikhan & Hemmatnezhad 2012) was reported a
combination of Homotopy Perturbation Method (HPM)
and L.T. method (LT-HPM), in order to obtain highly
accurate solutions for these equations. However, just as
with L.T; LT-HPM method has been used mainly to find
solutions to problems with initial conditions (Aminikhan
& Hemmatnezhad 2012; Aminikhah 2012), because it is
directly related with them. Therefore (Filobello-Nino
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et al. 2013) presented successfully, the application of LT-
HPM, in the search for approximate solutions for non-
linear problems with Dirichlet, mixed and Neumann
boundary conditions defined on finite intervals. This
paper introduces a modification of LT-HPM, the Non-
linearities Distribution Laplace Transform-Homotopy
Perturbation Method (NDLT-HPM), which will show
better results for the case of linear and non-linear differ-
ential equations with non polynomial nonhomogeneous
terms. The case of equations with boundary conditions
on infinite intervals, has been studied in some articles,
and corresponds often to problems defined on semi-
infinite ranges (Aminikhah 2011; Khan et al. 2011).
However the methods of solving these problems, are dif-
ferent from those presented in this paper (Filobello-Nino
et al. 2013). As it is widely known, the importance of re-
search on nonlinear differential equations is that many
phenomena, practical or theoretical, are of nonlinear na-
ture. In recent years, several methods focused to find ap-
proximate solutions to nonlinear differential equations,
as an alternative to classical methods, have been re-
ported, such those based on: variational approaches
(Assas 2007; He 2007; Kazemnia et al. 2008; Noorzad
et al. 2008), tanh method (Evans & Raslan 2005), exp-
function (Xu 2007; Mahmoudi et al. 2008), Adomian’s
Decomposition Method (ADM) (Adomian 1988; Babolian
& Biazar 2002; Kooch & Abadyan 2012; Kooch &
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Abadyan 2011; Vanani et al. 2011; Chowdhury 2011; Elias
et al. 2000), parameter expansion (Zhang & Xu 2007),
HPM (Aminikhan & Hemmatnezhad 2012; Aminikhah
2012; Filobello-Nino et al. 2013; Aminikhah 2011; Khan
et al. 2011; Marinca & Herisanu 2011; He 1998; He 1999;
He 2006a; Vazquez-Leal et al. 2014; Belendez et al. 2009;
He 2000; El-Shaed 2005; He 2006b; Vazquez-Leal et al.
2012a; Ganji et al. 2008; Fereidon et al. 2010; Sharma &
Methi 2011; Biazar & Ghanbari 2012; Biazar & Eslami
2012; Araghi & Sotoodeh 2012; Araghi & Rezapour 2011;
Bayat et al. 2014; Bayat et al. 2013; Vazquez-Leal et al.
2012b; Vazquez-Leal et al. 2012c; Filobello-Niño et al.
2012; Biazar & Aminikhan 2009; Biazar & Ghazvini 2009;
Filobello-Nino et al. 2012; Khan & Qingbiao 2011; Madani
et al. 2011; Ji Huan 2006; Feng et al. 2007; Mirmoradia
et al. 2009; Vazquez-Leal et al. 2012; Vazquez-Leal et al
2013), Homotopy Analysis Method (HAM) (Rashidi et al.
2012a; Rashidi et al. 2012b; Patel et al. 2012; Hassana &
El-Tawil 2011), and perturbation method (Filobello-Nino
et al. 2013; Holmes 1995; Filobello-Niño et al. 2013b;
Filobello-Nino et al. 2014) among many others. Also,
a few exact solutions to nonlinear differential equa-
tions have been reported occasionally (Filobello-Niño
et al. 2013a).
The case of Boundary Value Problems (BVPs) for

nonlinear ODES includes, Michaelis Menten equation
(Murray 2002; Filobello-Nino et al. 2014), that de-
scribes the kinetics of enzyme-catalyzed reactions,
Gelfand’s differential equation (Filobello-Nino et al.
2013; Filobello-Niño et al. 2013b) which governing
combustible gas dynamics, Troesch’s equation (Elias
et al. 2000; Feng et al. 2007; Mirmoradia et al. 2009;
Vazquez-Leal et al. 2012; Hassana & El-Tawil 2011;
Erdogan & Ozis 2011), arising in the investigation of
confinement of a plasma column by a radiation pres-
sure, among many others.
In the same way, the theory of BVPs for linear ODES,

is a well established branch of mathematics, with many
applications. Between problems of interest, related
to these equations, are found: The one-dimensional
quantum problem, of a particle of mass m confined in
a region of zero potential by an infinite potential at
two points x = a and x = b (King et al. 2003), heat trans-
fer equation (King et al. 2003), wave equation which
describes for instance, transverse vibrations of a uni-
form stretched string between two fixed points, say x =
a and x = b (Chow 1995; Zill Dennis 2012), the Laplace
equation, which governs the temperature field corre-
sponding to the steady state in a plate (Zill Dennis
2012), and so on. Generally, many problems expressed
in terms of partial differential equations, give rise
through method of separation of variables, to BVPs for
linear ODES (Chow 1995; King et al. 2003; Zill Dennis
2012). From the above, it becomes a priority to investigate
methods, to find handy analytical approximate solutions
for linear and nonlinear ODES. With this end, we propose
NDLT-HPM method, which as will be seen has good pre-
cision and requires a moderate computational work.
The paper is organized as follows. In Section 2, we

introduce the standard HPM. Section 3, provides a basic
idea of Nonlinearities Distribution Homotopy Perturb-
ation Method (NDHPM). Section 4 introduces NDLT-
HPM. Additionally Section 5 presents two cases study.
Besides a discussion on the results is presented in Section
6. Finally, a brief conclusion is given in Section 7.

Standard HPM
The standard HPM was proposed by Ji Huan He, it was
introduced like a powerful tool to approach various
kinds of nonlinear problems. The HPM is considered as
a combination of the classical perturbation technique
and the homotopy (whose origin is in the topology), but
not restricted to small parameters as occur with trad-
itional perturbation methods. For example, HPM re-
quires neither small parameter nor linearization, but
only few iterations to obtain highly accurate solutions
(He 1998; He 1999).
To figure out how HPM works, consider a general

nonlinear equation in the form

A uð Þ− f rð Þ ¼ 0; r∈Ω; ð1Þ
with the following boundary conditions

B u; ∂u=∂nð Þ ¼ 0; r∈Γ ; ð2Þ
where A is a general differential operator, B is a bound-
ary operator, f(r) a known analytical function and Γ is
the domain boundary for Ω. A can be divided into two
operators L and N, where L is linear and N nonlinear; so
that (1) can be rewritten as

L uð Þ þ N uð Þ− f rð Þ ¼ 0: ð3Þ
Generally, a homotopy can be constructed as (He

1998; He 1999)

H U ; pð Þ ¼ 1−pð Þ L Uð Þ−L u0ð Þ½ �
þ p L Uð Þ þ N Uð Þ− f rð Þ½ �

¼ 0; p∈ 0; 1½ �; r∈Ω; ð4Þ
or

H U ; pð Þ ¼ L Uð Þ−L u0ð Þ
þ p L u0ð Þ þ N Uð Þ− f rð Þ½ �

¼ 0; p∈ 0; 1½ �; r∈Ω; ð5Þ
where p is a homotopy parameter, whose values are
within range of 0 and 1, u0 is the first approximation for
the solution of (3) that satisfies the boundary conditions.
Assuming that solution for (4) or (5) can be written as

a power series of p.



p0 : ν0 ¼ ℑ−1 1
sn

� �
ðsn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::

þU n−1ð Þ 0ð ÞÞ þ ℑ L u0ð Þf gÞ

8<
:

9=
;;

p1 : ν1 ¼ ℑ−1 1
sn

� �
ℑ N ν0ð Þ−L u0ð Þ þ f 0 rð Þf gð Þ

� �
;

p2 : ν2 ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1; f 0; f 1ð Þf g

� �
;

Filobello-Nino et al. SpringerPlus 2014, 3:594 Page 3 of 13
http://www.springerplus.com/content/3/1/594
U ¼ v0 þ v1pþ v2p
2 þ… ð6Þ

Substituting (6) into (5) and equating identical powers
of p terms, there can be found values for the sequence
v0, v1, v2,
When p→ 1, it yields the approximate solution for (1)

in the form

U ¼ v0 þ v1 þ v2 þ v3… ð7Þ

Basic idea of NDHPM
(Vazquez-Leal et al. 2012b) introduced a modified ver-
sion of HPM, which sometimes eases the solutions
searching process for (3) and reduces the complexity of
solving differential equations in terms of power series.
As first step, a homotopy of the form (Vazquez-Leal

et al. 2012b) is introduced

H U ; pð Þ ¼ 1−pð Þ L Uð Þ−L u0ð Þ½ �
þp½L Uð Þ þ N U ; pð Þ− f r; pð Þ� ¼ 0;

ð8Þ
or

H U ; pð Þ ¼ L Uð Þ−L u0ð Þ þ p½L u0ð Þ þ N U ; pð Þ− f r; pð Þ�
¼ 0; p∈ 0; 1½ �; r∈Ω:

ð9Þ
It can be noticed that the homotopy function (8) is es-

sentially the same as (4), except for the non-linear oper-
ator N and the non homogeneous function f, which
contain embedded the homotopy parameter p. The
standard procedure for the HPM is used in the rest of
the method.
We propose that (He 1998; Vazquez-Leal et al. 2012b)

U ¼ v0 þ v1pþ v2p
2 þ… ð10Þ

When p→ 1, it is expected to get an approximate so-
lution for (3) in the form

U ¼ v0 þ v1 þ v2 þ v3 þ… ð11Þ

Non-linearities distribution Laplace transform-
homotopy perturbation method (NDLT-HPM)
A way to introduce, NDLT-HPM is assume that NDLT-
HPM follows the same steps of NDHPM until (9), next
we apply Laplace transform on both sides of homotopy
equation (9), to obtain

ℑ L Uð Þ−L u0ð Þ þ p L u0ð Þ þ N U ; pð Þ− f r; pð Þg ¼ 0;½f
ð12Þ

(more generally, one could substitute f(r, p) in (8) by an-
other function g(r, p) such that, g(r, p)→ f(r) when p→ 1,
see cases study above).
Using the differential property of L.T, we have (Murray
1988)

snℑ Uf g−sn−1U 0ð Þ−sn−2U ′ 0ð Þ−…−U n−1ð Þ 0ð Þ
¼ ℑ L u0ð Þ−pL u0ð Þ þ p −N U ; pð Þ þ f r; pð Þ½ �f g;

ð13Þ

or

ℑ Uð Þ ¼ 1
sn

� �
sn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::þ U n−1ð Þ 0ð Þ
þℑ L u0ð Þ−pL u0ð Þ þ p −N U ; pð Þ þ f r; pð Þ½ �f g

8<
:

9=
;

ð14Þ

applying inverse Laplace transform to both sides of (14),
we obtain

U ¼ ℑ−1 1
sn

� �
fsn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::þU n−1ð Þ 0ð Þ

þℑ L u0ð Þ−pL u0ð Þ þ p −N U ; pð Þ þ f r; pð Þ½ �f g�
8>><
>>:

9>>=
>>;
ð15Þ

Assuming that the solutions of (3) and f(r, p) can be
expressed as a power series of p

U ¼
X∞
n¼0

pnvn; ð16Þ

f ¼
X∞
m¼0

pmf m rð Þ: ð17Þ

Then substituting (16) and (17) into (15), we get

X∞
n¼0

pnνn ¼ ℑ−1

1
sn

� �
sn−1U 0ð Þ þ sn−2U ′ 0ð Þ þ ::þU n−1ð Þ 0ð Þ� �

þ 1
sn

� �
ℑ

�
L u0ð Þ−pL u0ð Þ

þp −N
X∞
n¼0

pnνn; p

 !
þ
X∞
m¼0

pmf m rð Þ
" #�

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

ð18Þ

comparing coefficients of p, with the same power
leads to
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p3 : ν3 ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1; ν2; f 0; f 1; f 2ð Þf g

� �
;

⋮

pj : νj ¼ ℑ−1 1
sn

� �
ℑ N ν0; ν1; ν2;…; νj; f 0; f 1; f 2; ::f j

� 	n o� �
;

⋮

ð19Þ
Assuming that the initial approximation has the form:

U(0) = u0 = α0,U′(0) = α1,..,U
n − 1(0) = αn − 1; therefore the

exact solution may be obtained as follows

u ¼ lim
p→1

U ¼ ν0 þ ν1 þ ν2 þ… ð20Þ

LT-HPM is derived in a similar way to NDLT-HPM, the
difference is that in the first case the Laplace transform
applies to (5) instead of (9). From here on, takes place in
essence the same procedure followed by NDLT-HPM (12),
(13), (14), (15), (16), (17), (18) and (19) (Aminikhan &
Hemmatnezhad 2012; Aminikhah 2012; Filobello-Nino
et al. 2013; Aminikhah 2011).

Cases study
Next, NDLT-HPM, and LT-HPM are compared with the
following two cases study

CASE STUDY 1
We will find an approximate solution the following

nonlinear second order ordinary differential equation

d2y xð Þ
dx2

−y2 xð Þ−ex ¼ 0; 0≤x≤1; y 0ð Þ ¼ 0; y 1ð Þ ¼ 2:

ð21Þ
Method 1 Employing LT-HPM
To obtain an approximate solution for (21) by apply-

ing the LTHPM method, we identify

L yð Þ ¼ y″ xð Þ; ð22Þ
N yð Þ ¼ −y2 xð Þ−ex; ð23Þ

where prime denotes differentiation respect to x.
To solve approximately (21), first we expand the expo-

nential term, resulting

y″−y2 xð Þ− 1þ xþ 1
2
x2 þ ::

� �
¼ 0; 0≤x≤1; y 0ð Þ ¼ 0; y 1ð Þ ¼ 2:

ð24Þ
We construct the following homotopy in accordance

with (4)

1−pð Þ y″−y″0

 �þ p y″− y2−1−x−

1
2
x2

� 

¼ 0; ð25Þ

or
y″ ¼ y″0 þ p −y″0 þ y2 þ 1þ xþ x2

2

� 

; ð26Þ

where we have kept three terms of Taylor series.
Applying Laplace transform to (26) we get

ℑ y″

 � ¼ ℑ y″0 þ p −y″0 þ y2 þ 1þ xþ x2

2

� �� �
: ð27Þ

As it is explained in (Murray 1988), it is possible to
rewrite (27) as

s2Y sð Þ−sy 0ð Þ−y′ 0ð Þ ¼ ℑ y″0 þ p −y″0 þ y2 þ 1þ xþ x
2

2
� �� �

;

ð28Þ
where we have defined Y(s) = ℑ(y(x)).
After applying the initial condition y(0) = 0, the last

expression can be simplified as follows

s2Y sð Þ−A ¼ ℑ y″0 þ p −y″0 þ y2 þ 1þ xþ x2

2

� �� �
;

ð29Þ
where, we have defined A = y′(0).
Solving for Y(s) and applying Laplace inverse trans-

form ℑ − 1

y xð Þ ¼ ℑ−1 A
s2
þ 1
s2

ℑ y″0 þ p −y″0 þ y2 þ 1þ xþ x2

2

� �� �� �� �
:

ð30Þ
Next, suppose that the solution for (30) has the form

y xð Þ ¼
X∞
n¼0

pnνn; ð31Þ

and choosing

ν0 xð Þ ¼ Ax; ð32Þ
as the first approximation for the solution of (21) that
satisfies the condition y(0) = 0.
Substituting (31) and (32) into (30), we get

X∞
n¼0

pnνn ¼ ℑ−1
�
A
s2
þ 1
s2
ℑ

�
y″0 þ p

�
−y″0 þ ν0 þ pν1 þ p2ν2 þ ::


 �2
þ1þ xþ x2

2

���
:

ð33Þ
Equating terms with identical powers of p, we obtain

p0 : ν0 xð Þ ¼ ℑ−1 A
s2

� �
; ð34Þ

p1 : ν1 xð Þ ¼ ℑ−1 1
s2

� �
ℑ ν20 þ 1þ xþ x2

2

� �� �
; ð35Þ
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p2 : ν2 xð Þ ¼ ℑ−1 1
s2

� �
ℑ 2ν0ν1ð Þ

� �
; ð36Þ

p3 : ν3 xð Þ ¼ ℑ−1 1
s2

� �
ℑ ν21 þ 2ν0ν2

 �� �

; ð37Þ

p4 : ν4 xð Þ ¼ ℑ−1 1
s2

� �
ℑ 2ν0ν3 þ 2ν1ν2ð Þ

� �
; ð38Þ

From above we solve for ν0(x), ν1(x), ν2(x),.. we obtain

p0 : ν0 xð Þ ¼ Ax; ð39Þ

p1 : ν1 xð Þ ¼ A2 þ 1
2

� �
x4

12
þ x3

6
þ x2

2
; ð40Þ

p2 : ν2 xð Þ ¼ A
252

A2 þ 1
2

� �
x7 þ A

90
x6 þ A

20
x5; ð41Þ

p3 : ν3 xð Þ ¼ A2 þ 1
2

� �
A2

6048
þ 1
25920

� �
x10 þ A2

1440
þ 1
5184

� �
x9

þ 11A2

3360
þ 5
4032

� �
x8 þ x7

252
þ x6

120
;

ð42Þ

p4 : ν4 xð Þ ¼ 2A2 þ 1

 �

A
2A2 þ 1
943488

þ 1
156

A2

6048
þ 1
25920

� �� �� 

x13

þ 23A3

665280
þ 1:4947758� 10−5A

� 

x12

þ 11A3

665280
þ 1:211332371� 10−4A

� 

x11

þ A
2520

x10 þ A
1080

x9;

⋮
ð43Þ

and so on.
By substituting solutions (39), (40), (41), (42) and (43)

into (20) results in a fourth order approximation

y xð Þ ¼ Axþ x2

2
þ x3

6
þ A2 þ 1

2

� �
x4

12
þ A
20

x5 þ A
90

þ 1
120

� �
x6

þ A
252

A2 þ 1
2

� �
þ 1
252

� �
x7 þ 11A2

3360
þ 5
4032

� �
x8

þ A2

1440
þ 1
5184

þ A
1080

� �
x9

þ A2 þ 1
2

� �
A2

6048
þ 1
25920

� �
þ A
2520

� �
x10

þ 11A3

665280
þ 1:211332371� 10−4A

� 

x11

þ 23A3

665280
þ 1:4947758� 10−5A

� 

x12

þ 2A2 þ 1

 �

A
2A2 þ 1
943488

þ 1
156

A2

6048
þ 1
25920

� �� �� 

x13:

ð44Þ
In order to calculate the value of A, we require that

(44) satisfies the boundary condition y(1) = 2, so that we
obtain
A ¼ 1:096310072: ð45Þ
Method 2 Employing NDLT-HPM
In accordance with NDLT-HPM, we propose the

following homotopy

1−pð Þ y″−y″0

 �þ p y″−y2−pe px

� � ¼ 0; ð46Þ
we see that (46) is not exactly of the form (8), but note
that g(x, p) = pe px→ ex, if p→ 1.
After expanding the exponential term, we obtain

1−pð Þ y″−y″0

 �þ p y″−y2−p 1þ xpþ 1

2
p2x2

� �� 

¼ 0; ð47Þ

or

y″ ¼ y″0 þ p −y″0 þ y2 þ pþ p2xþ p3x2

2

� 

: ð48Þ

Applying Laplace transform to (48), we get

ℑ y″

 � ¼ ℑ y″0 þ p −y″0 þ y2 þ pþ p2xþ p3x2

2

� �� �
;

ð49Þ
it is possible to rewrite (49) as

s2Y sð Þ−sy 0ð Þ−y′ 0ð Þ ¼ ℑ y″0 þ p −0″
y þ y2 þ pþ p2xþ p3x2

2

� �� �
;

ð50Þ
where we have defined Y(s) = ℑ(y(x)).
Applying the initial condition y(0) = 0, (50) can be sim-

plified as follows

s2Y sð Þ−A ¼ ℑ y″0 þ p −y″0 þ y2 þ pþ p2xþ p3x2

2

� �� �
;

ð51Þ
where, we have defined A = y′(0).
Solving for Y(s) and applying Laplace inverse trans-

form ℑ − 1

y xð Þ ¼ ℑ−1
�
A
s2
þ 1
s2

�
ℑ

�
y″0 þ p

�
−y″0 þ y2

þpþ p2xþ p3x2

2

����
:

ð52Þ

Assuming that the solution for (52) has the form

y xð Þ ¼
X∞
n¼0

pnνn; ð53Þ

and choosing

ν0 xð Þ ¼ Ax; ð54Þ
as the first approximation for the solution of (21) that
satisfies the condition y(0) = 0.
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Substituting (53) and (54) into (52), we get

X∞
n¼0

pnνn ¼ ℑ−1
�
A
s2
þ 1
s2
ℑ

�
y″0 þ p

�
−y″0

þ 
ν0 þ pν1 þ p2ν2 þ ::Þ2

þ pþ p2xþ p3x2

2

���
:

ð55Þ

Equating terms with identical powers of p, we obtain

p0 : ν0 xð Þ ¼ ℑ−1 A
s2

� �
; ð56Þ

p1 : ν1 xð Þ ¼ ℑ−1 1
s2

� �
ℑ ν20

 �� �

; ð57Þ

p2 : ν2 xð Þ ¼ ℑ−1 1
s2

� �
ℑ 2ν0ν1 þ 1ð Þ

� �
; ð58Þ

p3 : ν3 xð Þ ¼ ℑ−1 1
s2

� �
ℑ ν21 þ 2ν0ν2 þ x

 �� �

; ð59Þ

p4 : ν4 xð Þ ¼ ℑ−1 1
s2

� �
ℑ 2ν0ν3 þ 2ν1ν2 þ x2

2

� �� �
;

⋮

ð60Þ
Solving the above equations for ν0(x), ν1(x), ν2(x)…,

we obtain

p0 : ν0 xð Þ ¼ Ax; ð61Þ

p1 : ν1 xð Þ ¼ A2

12
x4; ð62Þ

p2 : ν2 xð Þ ¼ A3

252
x7 þ 1

2
x2; ð63Þ

p3 : ν3 xð Þ ¼ 135A4

816480
x10 þ A

20
x5 þ 1

6
x3; ð64Þ

p4 : ν4 xð Þ ¼ A5

157248
x13 þ 11A2

3360
x8 þ A

90
x6 þ x4

24
;

ð65Þ
and so on.
By substituting solutions (61), (62), (63), (64) and (65)

into (20) results in a fourth order approximation

y xð Þ ¼ Axþ x2

2
þ x3

6
þ A2 þ 1=2

12
x4 þ A

20
x5

þ A
90

x6 þ A3

252
x7 þ 11A2

3360
x8 þ A4

6048
x10

þ A5

157248
x13: ð66Þ

In order to calculate the value of A, we require that
(66) satisfies the boundary condition y(1) = 2, so that we
obtain
A ¼ 1:111131377: ð67Þ
Case study 2
We will find an approximate solution for the following

linear third order ordinary differential equation with
variable coefficients.

d3y xð Þ
dx3

−xy xð Þ þ x2 sin x ¼ 0; 0 ≤x≤1;

y 0ð Þ ¼ 0; y′ 0ð Þ ¼ 1y 1ð Þ ¼ 2:

ð68Þ
Method 1 Employing LT-HPM
To obtain a solution for (68) by applying the LT-HPM

method, we identify

L yð Þ ¼ y‴ xð Þ; ð69Þ
N yð Þ ¼ −xy xð Þ þ x2 sin x; ð70Þ

where prime denotes differentiation respect to x.
To solve approximately (68), first we expand the trig-

onometric term, resulting

y‴−xy xð Þ þ x2 x−
1
6
x3 þ ::

� �
¼ 0; 0≤ x≤1;

y 0ð Þ ¼ 0; y′ 0ð Þ ¼ 1y 1ð Þ ¼ 2:

ð71Þ
We construct the following homotopy in accordance

with (4)

1−pð Þ y‴−y‴0

 �þ p y‴−xyþ x3−

x5

6

� 

¼ 0; ð72Þ

where we have kept just two terms of Taylor series,
or

y‴ ¼ y‴0 þ p −y‴0 þ xy−x3 þ x5

6

� 

: ð73Þ

Applying Laplace transform to (73), we get

ℑ y‴

 � ¼ ℑ y‴0 þ p −y‴0 þ xy−x3 þ x5

6

� �� �
: ð74Þ

In accordance with (Murray 1988), it is possible to re-
write (74) as

s3Y sð Þ−s2y 0ð Þ−sy′ 0ð Þ−y″ 0ð Þ
¼ ℑ y‴0 þ p −y‴0 þ xy−x3 þ x

2

5
� �� �

: ð75Þ

Applying the initial conditions y(0) = 0 and y′(0) = 1,
(75) adopts the following form

s3Y sð Þ−s−A ¼ ℑ y‴0 þ p −y‴0 þ xy−x3 þ x
2

5
� �� �

;

ð76Þ
where, we have defined A = y″(0).
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Solving for Y(s) and applying Laplace inverse trans-
form ℑ − 1

y xð Þ ¼ ℑ−1 A
s3
þ 1
s2
þ 1
s3

ℑ y‴0 þ p −y‴0 þ xy−x3 þ x5

6

� �� �� �� �
:

ð77Þ
Assuming that the solution for (77) has the form

y xð Þ ¼
X∞
n¼0

pnνn; ð78Þ

and choosing

ν0 xð Þ ¼ A
2
x2 þ x; ð79Þ

let be the first approximation for the solution of (68)
that satisfies the initial conditions y(0) = 0 and y′(0) = 1.
Substituting (78) and (79) into (77), we get

X∞
n¼0

pnνn ¼ ℑ−1
�
A
s3
þ 1
s2
þ 1
s3
ℑ

�
y‴0

þp

�
−y‴0 þ x



ν0 þ pν1

þ p2ν2 þ ::Þ−x3 þ x5

6

���
:

ð80Þ

Equating terms with identical powers of p, we obtain

p0 : ν0 xð Þ ¼ ℑ−1 1
s2
þ A
s3

� �
; ð81Þ

p1 : ν1 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν0−x3 þ x5

6

� �� �
; ð82Þ

p2 : ν2 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν1ð Þ

� �
; ð83Þ

p3 : ν3 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν2ð Þ

� �
; ð84Þ

p4 : ν4 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν3ð Þ

� �
; ð85Þ

From above we solve for ν0(x), ν1(x), ν2(x)…, we obtain

p0 : ν0 xð Þ ¼ A
2
x2 þ x; ð86Þ

p1 : ν1 xð Þ ¼ A=2−1
120

x6 þ x5

60
þ x8

2016
; ð87Þ

p2 : ν2 xð Þ ¼ A=2−1
86400

x10 þ x9

30240
þ x12

2661120
; ð88Þ

p3 : ν3 xð Þ ¼ x13

51891840
þ A=2−1
188697600

x14 þ x16

8941363200
;

ð89Þ
p4 : ν4 xð Þ ¼ 4:723248187� 10−12x17

þ 1:082411043� 10−12 A=2−1ð Þx18
þ1:635084351� 10−14x20;

ð90Þ

and so on.
By substituting solutions (86), (87), (88), (89) and (90)

into (20) results in a fourth order approximation

y xð Þ ¼ xþ A
2
x2 þ x5

60
þ A=2−1

120
x6 þ x8

2016
þ x9

30240
þ A=2−1

86400
x10

þ x12

2661120
þ x13

51891840
þ A=2−1
188697600

x14

þ x16

8941363200
þ 4:723248187� 10−12x17 þ 1:082411043

�10−12 A=2−1ð Þx18 þ 1:635084351� 10−14x20:

ð91Þ

In order to calculate the value of A, we require that (91)
satisfies the boundary condition y(1) = 2, so that we obtain

A ¼ 1:965892301: ð92Þ

Method 2 Employing NDLT-HPM
In accordance with NDLT-HPM, it is possible to

propose the following homotopy (see (9))

1−pð Þ y‴−y‴0

 �þ p y‴−xyþ x2pg x; pð Þ� � ¼ 0; ð93Þ

where we have defined

g x; pð Þ ¼ p2 sin pxþ x3
p5−p3

6

� �
; ð94Þ

with the property

lim
p→1

g x; pð Þ ¼ sin x: ð95Þ

after expanding the two first terms of sin function, we
obtain

1−pð Þ y‴−y‴0

 �þ p y‴−xyþ x2p3 x−x3=6


 �� � ¼ 0;

ð96Þ

or

y″ ¼ y″0 þ p −y″0 þ xy−x3p3 þ p3x5

6

� 

: ð97Þ

Applying Laplace transform to (97) we get

ℑ y″

 � ¼ ℑ y‴0 þ p −y‴0 þ xy−x3p3 þ p3x5

6

� �� �
;

ð98Þ

it is possible to rewrite (98) as
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s3Y sð Þ−s2y 0ð Þ−sy′ 0ð Þ−y″ 0ð Þ

¼ ℑ y‴0 þ p −y‴0 þ xy−x3p3 þ p3x
6

5
 ! !

; ð99Þ

where once again, we have defined Y(s) = ℑ(y(x)).
Applying the initial conditions y(0) = 0, and y′(0) = 1,

(99) can be simplified as follows

s3Y sð Þ−s−A ¼ ℑ y‴0 þ p −y‴0 þ xy−x3p3 þ p3x
6

5
 ! !

;

ð100Þ
where, we have defined A = y″(0).
Solving for Y(s) and applying Laplace inverse trans-

form ℑ − 1

y xð Þ ¼ ℑ−1 1
s2
þ A
s3
þ 1
s3
ℑ y‴0 þ p −y‴0 þ xy−x3p3 þ p3x

6

5
 ! !( )

:

ð101Þ
Next, we assume a series solution for y(x), in the form

y xð Þ ¼
X∞
n¼0

pnνn; ð102Þ

let

ν0 xð Þ ¼ A
2
x2 þ x; ð103Þ

be the first approximation for the solution of (68) that
satisfies the initial conditions y(0) = 0 and y′(0) = 1.
Substituting (102) and (103) into (101), we get

X∞
n¼0

pnνn ¼ ℑ−1
�
A
s3
þ 1
s2
þ 1
s3
ℑ

�
y‴0 þ p

�
−y‴0

þ x ν0 þ pν1 þ p2ν2 þ ::

 �

−x3p3

þ p3x5

6

���
:

ð104Þ

On comparing the coefficients of like powers of p we
have
p0 : ν0 xð Þ ¼ ℑ−1 1
s2
þ A
s3

� �
; ð105Þ

p1 : ν1 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν0ð Þ

� �
; ð106Þ

p2 : ν2 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν1ð Þ

� �
; ð107Þ

p3 : ν3 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν2ð Þ

� �
; ð108Þ

p4 : ν4 xð Þ ¼ ℑ−1 1
s3

� �
ℑ xν3−x3 þ x5

6

� �� �
; ð109Þ
Performing the above operations for ν0(x), ν1(x), ν2
(x)…, we obtain

p0 : ν0 xð Þ ¼ A
2
x2 þ x; ð110Þ

p1 : ν1 xð Þ ¼ x5

60
þ A
240

x6; ð111Þ

p2 : ν2 xð Þ ¼ x9

30240
þ A
172800

x10; ð112Þ

p3 : ν3 xð Þ ¼ x13

51891840
þ A
377395200

x14; ð113Þ

p4 : ν4 xð Þ ¼ −
x6

120
þ x8

2016
þ x17

211718707200

þ A
1847726899200

x18;

ð114Þ

and so on.
By substituting solutions (110), (111), (112), (113) and

(114) into (20) and calculating the limit when p→ 1, re-
sults in a fourth order approximation

y xð Þ ¼ xþ A
2
x2 þ 1

60
x5 þ A

240
−

1
120

� �
x6 þ 1

2016
x8

þ 1
30240

x9 þ A
172800

x10 þ 1
51891840

x13

þ Ax14

377395200
þ 1
211718707200

x17

þ Ax18

1847726899200
:

ð115Þ
In order to calculate the value of A, we require that

(115) satisfies the boundary condition y(1) = 2, resulting
an equation for A, from which we obtain the following
result

A ¼ 1:965892301: ð116Þ

Discussion
This work showed the accuracy of NDLT-HPM in solving
ordinary differential equations with nonhomogeneous
non-polynomial terms and finite boundary conditions, and
it can be considered as a continuation of (Filobello-Nino
et al. 2013) where in principle, LT-HPM already pro-
vided the possibility of solving problems, with the non-
homogeneities mentioned in this study (Aminikhan &
Hemmatnezhad 2012; Aminikhah 2012; Filobello-Nino
et al. 2013; Aminikhah 2011), but were not carried out.
One way to introduce LT-HPM to this kind of problems,
is directly apply the Laplace transform to the homotopy
equation (5) and then following a procedure identical to
that applied in (Filobello-Nino et al. 2013) (see also (12),



Figure 1 Comparison between numerical solution of (21) and LT-HPM, NDLT-HPM approximations (44), (66).
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(13), (14), (15), (16), (17), (18) and (19)), although a possible
difficulty is that, the mathematical procedure becomes long
and cumbersome, depending on the function (see (4)). It
may even happen that, the method does not work if the
Laplace transform does not exist. Another possibility, which
was followed in this study is to use a few terms of the
Taylor series of f. Although the Taylor expansion allowed
apply the LT-HPM method, we noted that a possible
drawback of this strategy is that it may not produce handy
approximate solutions, containing more computational re-
quirements. For comparison purposes, we will consider
for both cases study, that the “exact” solution is computed
Figure 2 Absolute Error (A.E.) between numerical solution of (21) and
using a scheme based on a trapezoid technique combined
with a Richardson extrapolation as a build-in routine from
Maple 17. Moreover, the mentioned routine was config-
ured using an absolute error (A.E.) tolerance of 10− 12 .
In this study was considered the exponential and sine

functions respectively and we saw that the process of
getting approximate solutions by using LT-HPM, was
unnecessarily long and complicated. In order to deal
with the above mentioned problems, this paper intro-
duced NDLT-HPM.
At the first place, we studied a nonlinear second

order ordinary differential equation with an exponential
LT-HPM, NDLT-HPM approximations (44), (66).



Figure 3 Comparison between numerical solution of (68) and LT-HPM, NDLT-HPM approximations (91), (115).
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nonhomogeneous non-polynomial term. This example,
proposed the application of LT-HPM, keeping only
three terms of the Taylor expansion of ex from where it
was obtained the fourth order approximation (44) and
although the final approximation had good accuracy
(Figure 1), it is clear that the procedure of solution was
cumbersome.
On the other hand, the application of NDLT-HPM to

the same problem is outlined in (61), (62), (63), (64) and
(65) and can be seen by inspection that exist a consider-
able saving of computational effort, even NDLT-HPM
approximation (66) not only turned out to be clearly
Figure 4 Absolute Error (A.E.) between numerical solution of (68) and
shorter than (44), but from the Figures 1 and 2 is
scarcely less accurate.
Next, we found an approximate solution for the linear

third-order equation of variable coefficients, (68) and
although we kept only two terms of the Taylor series
of sin(x), LT-HPM got a precise approximation (see
Figure 3). Iterations (86), (87), (88), (89) and (90) for LT-
HPM show again a long computational process com-
pared to NDLT-HPM (110), (111), (112), (113) and (114)
but the Figure 3 reveals that in fact, both methods are
highly accurate, and although NDLT-HPM is handier its
absolute error is again slightly less accurate.
LT-HPM, NDLT-HPM approximations (91), (115).
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In more precise terms, Figure 2 shows that LT-HPM,
NDLT-HPM approximations (44) and (66), are accurate
analytical approximate solutions for (21). The biggest ab-
solute error (A.E) of LT-HPM and NDLT-HPM turned
out to be 0.000006 and 0.000012 respectively, while from
Figure 4 we conclude that the second case study got for
the same methods, the values of A.E 0.004 and 0.014. In
Spite of this it is noted that NDLT-HPM got a slightly
small loss of accuracy with respect to LT-HPM, the com-
parison of computational effort for both methods leads
to the conclusion that NDLT-HPM is more compact,
handy and easy to compute, therefore it is an useful tool
with good accuracy in the search of solutions for ODES
of the type already mentioned.
Finally, we observe that the proposed homotopy for-

mulations (46) and (93) are something different from the
original propose in (9) (Vazquez-Leal et al. 2012b),
which shows the richness and flexibility of NDHPM and
of course of NDLT-HPM. Indeed, the mentioned homo-
topies were formulated in this way, with the aim that the
computational work was reduced considerably, without
losing a great precision in the results. Although it is pos-
sible to consider other variants of the homotopy given in
(9), the key point is that, in the limit when p→ 1, the
homotopy equation is reduced to the differential equa-
tion to be solved.
Conclusions
In this paper NDLT-HPM was introduced as a useful
strategy capable of supporting approximate methods,
simplifying mathematical iterative procedure, building
handy and easy computable expressions in comparison
with LT-HPM, in the search for analytical approximate so-
lutions for linear and nonlinear ordinary differential equa-
tions with finite boundary conditions, for the case of
equations with nonhomogeneous non-polynomial terms.
Moreover, the accuracy of the proposed approximate solu-
tions are in good agreement with the exact solutions.
Such as it was explained, NDLT-HPM method expresses

the problem of finding an approximate solution for an
ordinary differential equation, in terms of solving an
algebraic equation for some unknown initial condition
(Filobello-Nino et al. 2013). Figure 1 through Figure 4
show how good this procedure is in the search for analyt-
ical approximate solutions with good precision, and a
moderate computational effort. In addition, just as with
LT-HPM, the proposed method does not need to solve
several recurrence differential equations. From all the
above, we conclude that NDLT-HPM method is a reliable
and precise tool in practical applications.
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