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Abstract

Many authors have presented studies of multi-choice stochastic transportation problem (MCSTP) where availability
and demand parameters follow a particular probability distribution (such as exponential, weibull, cauchy or extreme
value). In this paper an MCSTP is considered where availability and demand parameters follow general form of
distribution and a generalized equivalent deterministic model (GMCSTP) of MCSTP is obtained. It is also shown that all
previous models obtained by different authors can be deduced with the help of GMCSTP. MCSTP with pareto, power
function or burr-XII distributions are also considered and equivalent deterministic models are obtained. To illustrate
the proposed model two numerical examples are presented and solved using LINGO 13.0 software package.

Keywords: General form of distributions; Multi-choice programming; Stochastic transportation problem;
Transformation technique

1 Introduction
The transportation problem is one of the oldest appli-
cations of Linear Programming Problem (LPP). The
standard form of the transportation problem was first for-
mulated along with the constructive method of solution
by Hitchcock (1941). In a classical transportation prob-
lem, a product is to be transported from m sources to n
destinations. The availability of the product at ith source
is denoted by ai, where i = 1, 2, . . . ,m and the demand
required at jth destination is bj where j = 1, 2, . . . , n. The
penalty cij is the cost coefficient of the objective function
which can represent transportation cost, delivery time
etc. In many real world situations the availability ai and
demand bj are not certainly known to Decision Maker
(DM). One way to deal such uncertainty is to describe
the availability ai and demand bj parameters as random
variables rather than the deterministic one. These random
variables ai and bj are assumed to follow a given prob-
ability distribution or its probability distribution may be
estimated. This type of transportation problem is known
as “Stochastic Transportation Problem” (STP). Further-
more, suppose that there exist k routes for transporting
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the product from ith source to jth destination and the
cost of transporting a unit of product via kth route is
denoted by Ck

ij . Thus DM have multiple (i.e. ‘k’) route
choices for shipping the product from ith source to jth
destination and he has to identify exactly one among k
routes in such a manner that the combination of choices
should minimize the overall transportation cost. With the
above discussed objective the STP becomes ‘Multi Choice
Stochastic Transportation Problem’ (MCSTP) in which
the cost coefficient Cij are multi-choice and availability ai
and demand bj are random variables.
MCSTP has been extensively studied by many

researchers. Roy et al. (2012) presented an equivalent
deterministic model of MCSTP by assuming that both
availability ai and demand bj as random variables fol-
lowing exponential distribution. Biswal and Samal (2013)
obtained an equivalent deterministic model of MCSTP in
which they considered that both ai and bj follow Cauchy
distribution. Mahapatra (2014) also given equivalent
deterministic model of MCSTP involving Weibull distri-
bution. Mahapatra et al. (2013) considered the MCSTP
involving Extreme value distribution. Barik et al. (2011)
presented a stochastic transportation model involving
Pareto distribution.
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These random variables ai and bj may also be consid-
ered to follow Burr-XII or Power Function distributions.
Burr-XIImay be used in place of normal distribution when
data shows some positive skewness. Since ai and bj are
the physical quantities so it is advisable to use Burr-XII
instead of Normal distribution. When upper bound of
availability and demand is known, Power Function distri-
bution would be most suitable distribution to fit. In this
paper we considered general form of MCSTP, where ai
and bj are assumed to follow ‘General classes of distribu-
tion’ and obtained a generalised equivalent deterministic
model (GMCSTP). All the models discussed above by
many authors have been deduced by using the proposed
GMCSTP. Three new equivalent deterministic models of
MCSTP have also been obtained by considering that both
ai and bj follow Pareto, Power Function and Burr-XII
distribution (only one at a time). An equivalent deter-
ministic GMCSTP has also been obtained by considering
that ai follows any one distribution among Exponential,
Weibull, Cauchy, Exterme Value, Pareto, Power Function
or Burr-XII and bj follows any other distribution except
that of distribution of ai. To illustrate the proposed mod-
els two numerical examples are taken and solved by using
transformation technique given by Biswal and Acharya
(2009). Lingo 13.0 software has been used for obtaining
the optimal solution.

2 General classes of distributions
Let us consider a random variable y following any of
the two general classes of distributions with distribution
function (df ) F(y) as follows:

F(y) = 1 − F(y) = 1 − [ph(y) + q
]r , y ∈ (ξ ,φ) (2.1)

and

F(y) = 1 − F(y) = e−ph(y) p �= 0, y ∈ (ξ ,φ) (2.2)

where h(y) is a monotonic and differentiable function of y
and p, q, r and h(y) are chosen such that F(y) in (2.1) and
(2.2) are df over (ξ ,φ).
Differentiating (2.1) and (2.2) with respect to y the

probability density function (pdf ), f (y) may be obtained
respectively as,

f (y) = −prh′(y)
[
ph(y) + q

]r−1 (2.3)

f (y) = −ph′(y)e−ph(y) (2.4)

where F(ξ)=0 and F(φ)=1.

3 Mathematical model of multi-choice stochastic
transportation problem (MCSTP)

In this section a mathematical model of multi-choice
transportation problem involving general form of distri-
butions (2.1 or 2.2) is considered. The general form of
MCSTP is:

MCSTP1:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(3.1)

subject to,

Pr

⎡
⎣ n∑

j=1
xij ≤ ai

⎤
⎦ ≥ 1 − αi, i = 1, 2, . . . ,m (3.2)

Pr
[ m∑
i=1

xij ≥ bj

]
≥ 1 − βj, j = 1, 2, . . . , n (3.3)

xij ≥ 0 ∀ iand j (3.4)

where 0 < αi < 1, ∀i and 0 < βj < 1, ∀j, are the
aspiration levels.
It is assumed that ai, i = 1, 2, . . . ,m, bj, j = 1, 2, . . . , n

are random variables following general form of distribu-
tion,

{
C1
ij,C2

ij, . . . ,Ck
ij

}
k = 1, 2, . . . ,K are multi-choice

parameters and xij are deterministic decision variables.
The following cases are to be considered:

(i) Only ai, i = 1, 2, . . . ,m follows general form of
distribution.

(ii) Only bj, j = 1, 2, . . . , n follows general form of
distribution.

(iii) Both ai, i = 1, 2, . . . ,m and bj, j = 1, 2, . . . , n follow
general form of distribution.

3.1 Only ai i = 1, 2, . . . ,m follows (2.1) or (2.2)
It is considered that ai, i = 1, 2, . . . ,m are independent
random variable which follows any of two general form
of distributions as defined in (2.1) and (2.2) consider the
probabilistic constraint (3.2),

Pr

⎡
⎣ n∑

j=1
xij ≤ ai

⎤
⎦ ≥ 1 − αi, i = 1, 2, . . . ,m

or

Pr

⎡
⎣ai ≥

n∑
j=1

xij

⎤
⎦ ≥ 1 − αi, i = 1, 2, . . . ,m (3.5)



Quddoos et al. SpringerPlus 2014, 3:565 Page 3 of 9
http://www.springerplus.com/content/3/1/565

the above inequality (3.5) can be represented as∫ φi

∑n
j=1 xij

f (ai)dai ≥ 1 − αi

∫ φi

∑n
j=1 xij

d
dai

[−F(ai)
]
dai ≥ 1 − αi

− F(ai)|φ∑n
j=1 xij

≥ 1 − αi

−
⎡
⎣F(φi) − F

⎛
⎝ n∑

j=1
xij

⎞
⎠
⎤
⎦ ≥ 1 − αi

F

⎛
⎝ n∑

j=1
xij

⎞
⎠ ≥ 1 − αi

F

⎛
⎝ n∑

j=1
xij

⎞
⎠ ≤ αi (3.6)

Thus, we obtained a multi-choice deterministic model
MCSTP 2 as follows:

MCSTP 2:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(3.7)

subject to,

F

⎛
⎝ n∑

j=1
xij

⎞
⎠ ≤ αi, i = 1, 2, . . . ,m (3.8)

m∑
i=1

xij ≥ bj j = 1, 2, . . . , n (3.9)

xij ≥ 0 ∀ i and j (3.10)

where
∑m

i=1 F−1(αi) ≥∑n
j=1 bj (feasibility condition).

3.2 Only bj, j = 1, 2, . . . ,n follows (2.1) or (2.2)
It is considered that bj, i = 1, 2, . . . , n are independent
random variable which follows any of two general form
of distributions as defined in (2.1) and (2.2) consider the
probabilistic constraint (3.3),

Pr
[ m∑
i=1

xij ≥ bj

]
≥ 1 − βj, j = 1, 2, . . . , n

or

Pr
[
bj ≤

m∑
i=1

xij

]
≥ 1 − βj, j = 1, 2, . . . , n (3.11)

the above inequality (3.11) can be represented as

∫ ∑m
i=1 xij

ξ

f (bj)dbj ≥ 1 − βj, j = 1, 2, . . . , n

∫ ∑m
i=1 xij

ξ

d
dbj

[−F(bj)
]
dbj ≥ 1 − βj, j = 1, 2, . . . , n

− F(bj)|
∑m

i=1 xij
ξ ≥ 1 − βj j = 1, 2, . . . , n

−
⎡
⎣F
⎛
⎝ m∑

j=i
xij

⎞
⎠− 1

⎤
⎦ ≥ 1 − βj j = 1, 2, . . . , n

F
( m∑

i=1
xij

)
≥ 1 − βj j = 1, 2, . . . , n (3.12)

Thus, we obtained a multi-choice deterministic model
MCSTP 3 as follows:

MCSTP 3:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(3.13)

subject to,

n∑
j=1

xij ≤ ai i = 1, 2, . . . ,m (3.14)

F
( m∑

i=1
xij

)
≥ 1 − βj j = 1, 2, . . . , n (3.15)

xij ≥ 0 ∀ i and j (3.16)

where
∑m

i=1 ai ≥∑n
j=1 F−1(1−βj) (feasibility condition).

3.3 Both ai (i = 1, 2, . . . ,m) and bj (j = 1, 2, . . . ,n)

follow (2.1) or (2.2)
It is considered that ai (i = 1, 2, . . . ,m) and bj, j =
1, 2, . . . , n are independent random variable which follows
any of two general form of distributions as defined in (2.1)
and (2.2).
In view of (3.6) and (3.12) we may obtain a multi-choice

deterministic model GMCSTP as follows:

GMCSTP:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(3.17)



Quddoos et al. SpringerPlus 2014, 3:565 Page 4 of 9
http://www.springerplus.com/content/3/1/565

subject to,

F

⎛
⎝ n∑

j=1
xij

⎞
⎠ ≤ αi, i = 1, 2, . . . ,m (3.18)

F
( m∑

i=1
xij

)
≥ 1 − βj, j = 1, 2, . . . , n (3.19)

xij ≥ 0 ∀ i and j (3.20)

where
∑m

i=1 F−1(αi) ≥ ∑n
j=1 F−1(1 − βj) (feasibility

condition).

4 Different cases of GMCSTP
Consider the following three cases of GMCSTP

(a) when ai and bj both follow general form of
distribution defined in (2.1).

(b) when ai and bj both follow general form of
distribution defined in (2.2).

(c) when ai and bj follow general form of distribution
defined in (2.1) and (2.2) respectively or vice-versa.

4.1 When ai and bj both follow general form of
distribution defined in (2.1)

Let us consider that ai and bj follows general form of dis-
tribution of the form defined in (2.1) i.e F(y) = 1−F(y) =
1−[ ph(y) + q]r , p �= 0, y ∈ (ξ ,φ).
Putting F

(∑n
j=1 xij

)
= 1 −

[
pih
(∑n

j=1 xij
)

+ qi
]ri

in (3.18) of GMCSTP and F
(∑m

i=1 xij
) = 1 −[

p′
jg
(∑m

i=1 xij
)+ q′

j

]r′j in (3.19) of GMCSTP, we get,

GMCSTP 1:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(4.1)

subject to,⎡
⎣pih

⎛
⎝ n∑

j=1
xij

⎞
⎠+ qi

⎤
⎦
ri

≥ 1 − αi, i = 1, 2, . . . ,m (4.2)

1 −
[
p′
jg
( m∑

i=1
xij

)
+ q′

j

]r′j
≥ 1 − βj, j = 1, 2, . . . , n

(4.3)

xij ≥ 0 ∀ i and j (4.4)

4.2 When ai and bj both follow general form of
distribution defined in (2.2)

Let us consider that ai and bj in (2.2) i.e F(y) = 1−F(y) =
e−ph(y) p �= 0, y ∈ (ξ ,φ).

Putting F
(∑n

j=1 xij
)

= e−pih
(∑n

j=1 xij
)
in (3.18) ofGMC-

STP and F
(∑m

i=1 xij
) = e−p′

jg(
∑m

i=1 xij) in (3.19) of GMC-
STP, we get,

GMCSTP 2:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(4.5)

subject to,

1 − e−pih
(∑n

j=1 xij
)

≥ 1 − αi, i = 1, 2, . . . ,m (4.6)

e−p′
jg(
∑m

i=1 xij) ≥ 1 − βj, j = 1, 2, . . . , n (4.7)

xij ≥ 0 ∀ i and j (4.8)

4.3 When ai and bj follow general form of distribution
defined in (2.1) and (2.2) respectively or vice-versa

Consider a case when ai follows any one of general form
of distributions defined in (2.1) and (2.2) and bj follows
any one of general form of distribution defined in (2.2)
and (2.1) respectively, then in view of GMCSTP 1 and
GMCSTP 2 we have,

GMCSTP 3:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(4.9)

subject to,⎧⎨
⎩
⎡
⎣pih

⎛
⎝ n∑

j=1
xij

⎞
⎠+ qi

⎤
⎦
ri⎫⎬
⎭ or

{
1 − e−pih

(∑n
j=1 xij

)}
≥ 1 − αi, i = 1, 2, . . . ,m (4.10)

{
e−p′

jg(
∑m

i=1 xij)
}
or⎧⎨

⎩1 −
[
p′
jg
( m∑

i=1
xij

)
+ q′

j

]r′j⎫⎬
⎭ ≥ 1 − βj, j = 1, 2, . . . , n

(4.11)

xij ≥ 0 ∀ i and j (4.12)
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5 Deduction of some previous results along with
some new results

In this section we deduce some previous results
with the help of GMCSTP 1 and GMCSTP 2. Since
GMCSTP 1 and 2 has been modelled with the assump-
tion that both ai and bj are random variable. So we are
considering only GMCSTP 1 and 2 throughout the paper.
One can also considerMCSTP 2 or/andMCSTP 3 accord-
ing to requirement. Many previous models proposed by
Roy et al. (2012), Mahapatra (2014), Biswal and Samal
(2013) and Mahapatra et al. (2013) can be deduced from
GMCSTP 1 and GMCSTP 2 by setting different values of
pi, p′

j, qi, q′
j, ri, r′j , h

(∑n
j=1 xij

)
and g

(∑m
i=1 xij

)
.

5.1 Deductions using GMCSTP 1 and GMCSTP 2
5.1.1 When ai and bj follows exponential distribution
Let us consider that both ai and bj follow exponential dis-
tribution. In order to deduce the model obtained by S.K.
Roy et al, we set pi = 1, qi = 0, ri = θi

ki , h
(∑n

j=1 xij
)

=
e−ki

∑n
j=1 xij and p′

j = 1, q′
j = 0, r′j = θ ′

j
k′
j
, g
(∑m

i=1 xij
) =

e−k′
j
∑m

i=1 xij in GMCSTP 1 and get,

MCSTP 4:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(5.1)

subject to,
n∑

j=1
xij ≤ −θiln(1 − αi), i = 1, 2 . . .m. (5.2)

m∑
i=1

xij ≥ −θ
′
j ln(βj), j = 1, 2 . . . n. (5.3)

xij ≥ 0 ∀ i and j (5.4)

where
∑m

i=1{−θiln(1 − αi)} ≥ ∑n
j=1{−θ ′

j ln(βj)} (feasi-
bility condition) and ai ≥ 0, bj ≥ 0 and {θi, θ ′

j } > 0
are the parameters of exponential distribution. The above
MCSTP 4 is same as obtained by Roy et al. (2012).

5.1.2 When ai and bj followsWeibull distribution
Mahapatra (2014) presented a model by considering both
ai and bj followweibull distributionwhich can be obtained

by setting pi = 1, qi = 0, ri = δ
−γi
i
ki , h

(∑n
j=1 xij

)
=

e−ki
(∑n

j=1 xij
)γi

and p′
j = 1, q′

j = 0, r′j = δ′
j
−γ ′

j

k′
j
, g
(∑m

i=1 xij
) =

e−k′
j(
∑m

i=1 xij)
γ ′
j
in GMCSTP 1, as follows:

MCSTP 5:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(5.5)
subject to:

n∑
j=1

xij ≤ e
[
lnδi+ 1

γi
ln{−ln(1−αi)}

]
i = 1, 2 . . .m. (5.6)

m∑
i=1

xij ≥ e

[
lnδ

′
j+ 1

γ
′
j
ln{−ln(βj)}

]
j = 1, 2 . . . n. (5.7)

xij ≥ 0 ∀ i and j (5.8)

where
∑m

i=1 e
[
lnδi+ 1

γi
ln{−ln(1−αi)}

]
≥ ∑n

j=1 e

[
lnδ

′
j + 1

γ
′
j
ln{−ln(βj)}

]

(feasibility condition) and ai ≥ 0, bj ≥ 0 and {γi, γ ′
j } > 0

and {δi, δ′
j} > 0 are shape and scale parameters.

The aboveMCSTP 5 is same as obtained by Mahapatra
(2014).

5.1.3 When ai and bj follows Cauchy distribution
Biswal and Samal (2013) proposedMCSTPmodel by con-
sidering that ai and bj follow Cauchy distribution. On
Setting pi = − 1

π
, qi = 1

2 , ri = 1, h
(∑n

j=1 xij
)

=
tan−1

∑n
j=1 xij−lai

sai
and p′

j = − 1
π
, q′

j = 1
2 , r

′
j =

1, g
(∑m

i=1 xij
) = tan−1

∑m
i=1 xij−lbj

sbj
in GMCSTP 1, we get,

MCSTP 6:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(5.9)
subject to:

n∑
j=1

xij ≤ lai + sai tan
(
παi − π

2

)
, i = 1, 2, . . . ,m (5.10)

m∑
i=1

xij ≥ lbj + sbj tan
(π

2
− πβj

)
, j = 1, 2, . . . , n (5.11)

xij ≥ 0 ∀ i and j (5.12)

where
∑m

i=1 lai + sai tan
(
παi − π

2
) ≥ ∑n

j=1 lbj +
sbj tan

(
π
2 − πβj

)
(feasibility condition) and −∞ < ai < +

∞, −∞ < bj < +∞ and lai , lbj > 0 and sai , sbj > 0 are
the location and scale parameter of ai and bj, respectively,
Which is a multi-choice approach of the model proposed
by Biswal and Samal (2013).
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5.1.4 When ai and bj follows extreme value distribution

Setting p = 1, h
(∑n

j=1 xij
)

= e−
(∑n

j=1 xij−γi
)

δi and p′ =

1, g
(∑m

i=1 xij
) = e

−
(∑m

i=1 xij−γ ′
j
)

δ′j in GMCSTP 2 it deduces
to,

MCSTP 7:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij ,C2

ij , . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K (5.13)

subject to:
n∑

j=1
xij ≤ γi − δi [ln{−ln(αi)}] , i = 1, 2, . . . ,m (5.14)

m∑
i=1

xij ≥ γ ′
j − δ′

j
[
ln{−ln(βj)}

]
, j = 1, 2, . . . , n (5.15)

xij ≥ 0 ∀ i and j (5.16)

where ∑m
i=1 [γi − δi[ ln{−ln(αi)}] ] ≥ ∑n

j=1

[
γ ′
j − δ′

j [ ln{−ln(βj)}]
]

(feasibility condition) and−∞ < ai < +∞,−∞<bj < +
∞ and {γi, γ ′

j } > 0 and {δi, δ′
j} > 0 are location and scale

parameters of extreme value distribution, which is same
as obtained by Mahapatra et al. (2013).

5.2 Some new results using GMCSTP 1, GMCSTP 2 and
GMCSTP 3

5.2.1 When ai and bj follow Pareto distribution
Let us consider the MCSTP in which ai and bj follow
Pareto distribution. By setting pi = d−ki

i , qi = 0, ri =
− θi

ki , h
(∑n

j=1 xij
)

=
(∑n

j=1 xij
)ki

and p′
j = d′

j
−k′

j , q′
j =

0, r′
i = − θ

′
j

k′
j
, g
(∑n

j=1 xij
)

=
(∑n

j=1 xij
)k′

j in GMCSTP 1,
we get,

MCSTP 8:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij ,C2

ij , . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K (5.17)

subject to:
n∑

j=1
xij ≤ di

(1 − αi)
1
θi

, i = 1, 2, . . . ,m (5.18)

m∑
i=1

xij ≥ d′
j

(βj)

1
θ
′
j

, j = 1, 2, . . . , n (5.19)

xij ≥ 0 ∀ i and j (5.20)

where
∑m

i=1

(
di

(1−αi)
1
θi

)
≥ ∑n

j=1

⎛
⎜⎝ d′

j

(βj)

1
θ
′
j

⎞
⎟⎠ (feasibility

condition) and {di, d′
j} > 0 and {θi, θ ′

j } > 0 are scale and
shape parameters respectively and ai ≥ di and bj ≥ d′

j .

5.2.2 When ai and bj follow Burr-XII distribution

Setting p = θi, q = 1, r = −ki, h
(∑n

j=1 xij
)

=(∑n
j=1 xij

)δi
and p′ = θ

′
j , q

′ = 1, r′ = −k′
j , g
(∑m

i=1 xij
) =(∑m

i=1 xij
)δ′

j in GMCSTP 1 we get,

MCSTP 9:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij,C2

ij, . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K

(5.21)

subject to:

n∑
j=1

xij ≤
⎡
⎣ (1 − αi)

− 1
ki − 1

θi

⎤
⎦

1
δi

, i = 1, 2, . . . ,m (5.22)

m∑
i=1

xij ≥

⎡
⎢⎢⎢⎣

β

− 1
k′j

j − 1

θ
′
j

⎤
⎥⎥⎥⎦

1
δ
′
j

, j = 1, 2, . . . , n (5.23)

xij ≥ 0 ∀ i and j (5.24)

where
∑m

i=1

[
(1−αi)

− 1
ki −1

θi

] 1
δi

≥ ∑n
j=1

⎡
⎢⎢⎣β

− 1
k′j

j −1

θ
′
j

⎤
⎥⎥⎦

1
δ
′
j

(fea-

sibility condition) and ai ≥ 0, bj ≥ 0 and {θi, θ ′
j } > 0 and

{ki, k′
j} > 0 are shape parameters of Burr-XII distribution.

5.2.3 When ai and bj follow power function distribution

Setting pi = −θi, h
(∑n

j=1 xij
)

= ln
(∑n

j=1 xij
di

)
and

pj = −θ ′
j , h
(∑m

i=1 xij
) = ln

(∑m
i=1 xij
d′
j

)
in GMCSTP 2, we

get,

MCSTP 10:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij ,C2

ij , . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K (5.25)

subject to:
n∑

j=1
xij ≤ diα

1
θi
i , i = 1, 2, . . . ,m (5.26)

m∑
i=1

xij ≥ d′
j(1 − βj)

1
θ ′
j , j = 1, 2, . . . , n (5.27)

xij ≥ 0 ∀ i and j (5.28)
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where
∑m

i=1

(
diα

1
θi
i

)
≥∑n

j=1

(
d′
j(1 − βj)

1
θ ′
j

)
(feasibility

condition) and {di, d′
j} > 0 and {θi, θ ′

j } > 0 are the scale
and shape parameters of ai ≥ 0 and bj ≥ 0 respectively.

5.2.4 When ai follows Burr XII distribution and bj follows
Extreme value distribution

Setting pi = θi, qi = 1, ri = −ki, h
(∑n

j=1 xij
)

=
(∑n

j=1 xij
)δi

and p′
j = 1, g

(∑m
i=1 xij

) = e
−
(∑m

i=1 xij−γ ′
j
)

δ′j in
GMCSTP 3 we get,

MCSTP 11:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij ,C2

ij , . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K (5.29)

Subject to:

n∑
j=1

xij ≤
⎡
⎣ (1 − αi)

− 1
ki − 1

θi

⎤
⎦

1
δi

, i = 1, 2, . . . ,m (5.30)

m∑
i=1

xij ≥ γ ′
j − δ′

j [ ln{−ln(βj)}] , j = 1, 2, . . . , n (5.31)

xij ≥ 0 ∀ iand j (5.32)

where
∑m

i=1

[
(1−αi)

− 1
ki −1

θi

] 1
δi

≥∑n
j=1

[
γ ′
j − δ′

j [ ln{−ln(βj)}]
]
.

5.2.5 When ai follows power function distribution and bj
follows Pareto distribution

Setting pi = −θi, h
(∑m

i=1 xij
) = ln

(∑n
j=1 xij
di

)
and p′

j =

d′
j
−k′

j , q′
j = 0, r′

i = − θ
′
j

k′
j
, g
(∑n

j=1 xij
)

=
(∑n

j=1 xij
)k′

j in

GMCSTP 3.

MCSTP 12:

min: Z =
m∑
i=1

n∑
j=1

{
C1
ij ,C2

ij , . . . ,Ck
ij

}
xij, k = 1, 2, . . . ,K (5.33)

subject to:
n∑

j=1
xij ≤ diαi

1
θi , i = 1, 2, . . . ,m (5.34)

m∑
i=1

xij ≥ d′
j

(βj)

1
θ
′
j

, j = 1, 2, . . . , n (5.35)

xij ≥ 0 ∀ i and j (5.36)

where
∑m

i=1

(
diα

1
θi
i

)
≥ ∑n

j=1

⎛
⎝ d′

j

(βj)

1
θ ′
j

⎞
⎠ (feasibility

condition).

6 Numerical illustrations
We consider the numerical example taken by (Mahapatra
et al. 2013). Data for multi-choice cost Ck

ij are appended
below in Table 1.

6.1 Illustration 1
Let us consider that we have three known parame-
ters of availability a1, a2, a3 follow Burr-XII distribution.
The specified probability levels and shape parameters of
a1, a2, a3 are given in Table 2.
Further, consider that we have four known parameters

of demand b1, b2, b3, b4 follow extreme value distribution.
The specified probability levels and location and scale
parameters of b1, b2, b3, b4 are given in Table 3.
Using the data provided in Tables 1, 2 and 3 the follow-

ing equivalent multi-choice deterministic transportation
problem is formulated with the help of GMCSTP 3 as:
min:z ={10, 11, 12}x11 + {15, 16}x12 + {21, 22, 23, 24}x13

+ {21, 23, 25}x14 + {15, 17, 19, 21, 23, 25}x21
+ {10, 12, 14, 16, 18, 20}x22 + {9, 10, 11}x23
+ {18, 19}x24 + {20, 21, 22, 23, 24, 25, 26}x31
+ {10, 11, 12, 13, 14, 16, 17}x32
+ {20, 22, 25}x33 + {15, 20}x34

subject to,
4∑

j=1
x1j ≤ 967.544404 (6.1)

4∑
j=1

x2j ≤ 762.934875 (6.2)

4∑
j=1

x3j ≤ 612.817850 (6.3)

Table 1 Multi-choice transportation cost for route xij
SI. no. Route: xij Transportation cost(in Rupees)

Ck
ij : per unit (1 unit = 10 kg)

1 (1, 1): x11 10 or 11 or 12

2 (1, 2): x12 15 or 16

3 (1, 3): x13 21 or 22 or 23 or 24

4 (1, 4): x14 21 or 23 or 25

5 (2, 1): x21 15 or 17 or 19 or 21 or 23 or 25

6 (2, 2): x22 10 or 12 or 14 or 16 or 18 or 20

7 (2, 3): x23 9 or 10 or 11

8 (2, 4): x24 18 or 19

9 (3, 1): x31 20 or 21 or 22 or 23 or 24 or 25 or 26

10 (3, 2): x32 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17

11 (3, 3): x33 20 or 22 or 25

12 (3, 4): x34 15 or 20
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Table 2 Specified probability levels and shape parameters
of ai
Random Specified Shape Shape
parameters ai probability levels parameters 1 parameters 2

a1 0.01 0.002 0.73

a2 0.02 0.004 0.76

a3 0.03 0.006 0.79

3∑
i=1

xi1 ≥ 615.992671 (6.4)

3∑
i=1

xi2 ≥ 511.880781 (6.5)

3∑
i=1

xi3 ≥ 408.347897 (6.6)

3∑
i=1

xi4 ≥ 305246388 (6.7)

xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3, 4.

Now using the transformation technique proposed by
Biswal and Acharya (2009), we obtain the following multi-
choice deterministic transportation problem:

min: z = t11x11 + t12x12 + t13x13 + t14x14
+ t21x21 + t22x22 + t23x23 + t24x24
+ t31x31 + t32x32 + t33x33 + t34x34

subject to, (6.1)-(6.7)

where,

t11 = 10z111z
2
11 + 11z111

(
1 − z211

)+ 12
(
1 − z111

)
z211

t12 = 15z112 + 16
(
1 − z112

)
t13 = 21z113z

2
13 + 22z113

(
1 − z213

)+ 23
(
1 − z113

)
z213

+ 24
(
1 − z113

) (
1 − z213

)
t14 = 21z114z

2
14 + 23z114(1 − z214 + 25

(
1 − z114

)
z214

Table 3 Specified probability levels,location and scale
parameters of bj
Random Specified Location Scale
parameters bj probability levels parameters parameters

b1 0.04 600 5

b2 0.05 500 4

b3 0.06 400 3

b4 0.07 300 2

t21 = 15z121
(
1 − z221

) (
1 − z321

)
+ 17

(
1 − z121

)
z221
(
1 − z321

)
+ 19

(
1 − z121

) (
1 − z221

)
z321

+ 21z121z221
(
1 − z321

)+ 23
(
1 − z121

)
z221z

3
21

+ 25z121
(
1 − z221

)
z321

t22 = 10z122
(
1 − z222

) (
1 − z322

)
+ 12

(
1 − z122

)
z222
(
1 − z322

)
+ 14z122z

2
22
(
1 − z322

)
+ 16

(
1 − z122

) (
1 − z222

)
z322

+ 18z122
(
1 − z222

)
z322 + 20

(
1 − z122

)
z222z

3
22

t23 = 9z123z223 + 10z123
(
1 − z223

)+ 11
(
1 − z123

)
z223

t24 = 18z124 + 19
(
1 − z124

)
t31 = 20

(
1 − z131

) (
1 − z231

) (
1 − z331

)
+ 21z131

(
1 − z231

) (
1 − z331

)
+ 22

(
1 − z131

)
z231
(
1 − z331

)
+ 23

(
1 − z131

) (
1 − z231

) (
1 − z331

)
+ 24z131z

2
31
(
1 − z331

)+ 25z131
(
1 − z231

)
z331

+ 26
(
1 − z131

)
z231z

3
31

t32 = 10z132z232z332
)+ 11

(
1 − z132

)
z232z

3
32

+ 12z132
(
1 − z232

)
z332 + 13z132z232

) (
1 − z332

)
+ 14

(
1 − z132

) (
1 − z232

)
z332

+ 15z132
(
1 − z232

) (
1 − z332

)
+ 16

(
1 − z132

)
z232
(
1 − z332

)
+ 17

(
1 − z132

) (
1 − z232

) (
1 − z332

)
t33 = 20z133z233 + 22z133

(
1 − z223

)+ 25
(
1 − z133

)
z233

t34 = 15z134 + 20
(
1 − z134

)

1 ≤ z111 + z211 ≤ 2
1 ≤ z114 + z214 ≤ 2
1 ≤ z121 + z221 + z321 ≤ 2
1 ≤ z122 + z222 + z322 ≤ 2
1 ≤ z123 + z223 ≤ 2
1 ≤ z131 + z231 + z331 ≤ 2
1 ≤ z133 + z233 ≤ 2
where, xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3, 4.

The above non-linear mixed integer programming prob-
lem is solved by using LINGO 13.0 software package and
the optimal solution is obtained as: x11 = 615.9927, x22 =
382.1037, x23 = 408.3469, x32 = 129.7771, x34 =
305.2464 and rest of the xij are zero. The minimum
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Table 4 Specified probability levels, scale and shape
parameters of ai
Random Specified Scale Shape
parameters ai probability levels parameters parameters

a1 0.01 1000 100

a2 0.02 800 70

a3 0.03 700 60

Table 5 Specified probability levels, scale and shape
parameters of bj
Random Specified Scale Shape
parameters bj probability levels parameters parameters

b1 0.04 350 5

b2 0.05 300 6

b3 0.06 270 7

b4 0.07 230 8

transportation cost is 19532.56 obtained by choosing
multi-choice cost as follows:
xij : x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34
value of Ck

ij : 10 15 21 23 15 10 9 18 22 10 22 15

6.2 Illustration 2
Again consider, in the above illustration 1 the availability
a1, a2, a3 are supposed to follow Power Function distribu-
tion and the demand b1, b2, b3, b4 are assumed to follow
Pareto distribution. The specified probability levels, scale
and shape parameters of a1, a2, a3 are given in Table 4 and
of b1, b2, b3, b4 are given in Table 5 respectively.
Solving this in the similar manner optimal solutions are

obtained as x11 = 666.2789, x22 = 352.9524, x23 =
403.5651, x32 = 141.3123, x34 = 320.6938 and rest of the
xij are zero. The minimum transportation cost is 20047.93
obtained by choosing multi-choice cost as follows:

xij : x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34
value of Ck

ij : 10 15 23 21 21 10 9 18 25 10 20 15

7 Conclusion
In this paper we have considered a MCSTP where cost
coefficient of objective function are assumed to be of
multi-choice type and random availability and demand
of product are assumed to follow general form of dis-
tributions. With this generalized formulation of MCSTP
the DM becomes capable to fit any distribution among
exponential, weibull, cauchy, extreme value, power func-
tion, burr-XII and pareto according to the nature of data.
Thus the present model can be applied in several sit-
uations of transportation problems when demand and
availability are restricted to follow a particular probability
distribution. Here, only upto eight choices of multi-choice

cost parameters are considered because we were much
concerned about random parameters. In further studies
extended multi-choice parameters may also be taken into
account.
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