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Abstract

The purpose of this study is to model the progression of HIV/AIDS disease of an individual patient under ART
follow-up using non-homogeneous semi-Markov processes. The model focuses on the patient’s age as a relevant
factor to forecast the transitions among the different levels of seriousness of the disease. A sample of 1456 patients
was taken from a hospital record at Amhara Referral Hospitals, Amhara Region, Ethiopia, who were under ART
follow up from June 2006 to August 2013. The states of disease progression adopted in the model were defined
based on of the following CD4 cell counts: >500 cells/mm? (SI); 349 to 500 cells/mm? (SlI); 199 to 350 cells/mm?
(SII); <200 cells/mm? (SIV): and death (D). The first four states are referred as living states. The probability that
an HIV/AIDS patient with any one of the living states will transition to the death state is greater with increasing
age, irrespective of the current state and age of the patient. More generally, the probability of dying decreases
with increasing CD4 counts over time. For an HIV/AIDS patient in a specific state of the disease, the probability
of remaining in the same state decreases with increasing age. Within the living states, the results show that the
probability of being in a better state is non-zero, but less than the probability of being in a worse state for all
ages. A reliability analysis also revealed that the survival probabilities are all declining over time. Computed conditional
probabilities show differential subject response that depends on the age of the patient. The dynamic nature of AIDS
progression is confirmed with particular findings that patients are more likely to be in a worse state than a better
one unless interventions are made. Our findings suggest that ongoing ART treatment services could be provided more

effectively with careful consideration of the recent disease status of patients.
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Introduction

The rate of spread of the HIV/AIDS epidemic has
reached a shocking level. On a global scale, the HIV epi-
demic has stabilized, although with unacceptably high
levels of new HIV infections and AIDS deaths (United
Nations Programme on HIV/AIDS UNAIDS 2013). The
hallmark of the HIV infection is the progressive deple-
tion of a class of lymphocytes named CD4+ which plays
a pivotal regulatory role in the immune response to in-
fections and tumors. The immune suppression resulting
from the CD4+ decline leads to high susceptibility to oppor-
tunistic infections and possibly unusual tumors (Anderson
et al. 1986; Satten and Longini 1999; Dessie 2014b). Infec-
tion by the human immunodeficiency virus (HIV) gradually
evolves to the acquired immune deficiency syndrome
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(AIDS), and AIDS evolves to death if not handled care-
fully. One may consider this progression of HIV infec-
tion to AIDS and then to death as a stochastic process,
by splitting the progression into various states of the
disease based on the immunological indicators, namely
CD4+ count, including death as one state (Janssen and
Manca 2001).

Many HIV/AIDS patients are being treated with drug
antiretroviral therapy (ART) that has been found to reduce
mortality and improve quality of life of the patients. The ef-
fect, however, varies from country to country (Braitstein
et al. 2006). Egger (2007) indicated that there are sev-
eral predictors of mortality for HIV/AIDS patients
who are undergoing treatment on ART, including
CD4 count, viral load, total lymphocytes, body mass
index and adherence.
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Recent studies have shown that the predicted probabil-
ity of a patient changing his or her status given his or
her current status allows for improved treatment of the
HIV/AIDS (Goshu and Dessie 2013). Since the discovery
of HIV/AIDS, numerous mathematical models Corradi
et al. (2004), Ouhbi and Limnios (1999) and Blasi and
Manca (2004) have been developed to describe infec-
tious disease transmission dynamics, assess the impact
of interventions on public health or forecast the future
of epidemics. Among recent papers in biomedicine,
Giuseppe et al. (2007) and Dessie (2014a) analyzed HIV/
AIDS dynamic evolution as defined by CD4 levels from
a macroscopic point of view by means of homogeneous
semi-Markov processes. Other relevant publications in-
clude (Davidov and Zelen (2000); Limnios and Oprisan
(2000); and Jannsen and Manca (1997)).

Non-homogeneous semi-Markov Processes (NHSMP)
were defined the first time in Iosifescu-Manu (1972).
The discrete time NHSMP were defined in Janssen and
De Dominicis (1984). Several authors have discussed the
use of non homogeneous semi-Markov in analysis of
health data, including (but not limited to) (D'Amico
et al. (2009); Mathieu et al. (2007) and Andersen et al.
(1991)). Another approach to NHSMPs was presented in
Vassiliou and Papadopoulou (1992).

In this paper, the author proposes the application of
the non-homogeneous Markov process to study the evo-
lution of HIV/AIDS. The consideration of the non-
homogeneity allows the researcher to take into account
not only the length of the period of the HIV patients as
well as the randomness in the different states in which
the infection can evolve. This approach also allows one
to differentiate patient's age according to the starting
time. The author also presents the results of modelling
of the progression of HIV/AIDS with a focus on the pa-
tient’s age as a relevant factor to predict the future clin-
ical state and survival probability of a patient.

Methods

Ethics Statement

This investigation was conducted according to the prin-
ciples expressed in the Declaration of Bahir Dar Univer-
sity, Ethiopia. It was approved by the research ethics
committee at the University of Bahir Dar and all partici-
pants who agreed to participate in this study signed a
consent form.

Data and model descriptions

The target population for this study was patients under
the follow up of ART at Amhara Referral Hospitals,
Amhara Region, Ethiopia from June 2006 to August
2013. Multistage sampling was used to select study
subjects. The calculated sample size was proportionally
allocated to Eastern (n=482) and Western (n=874)
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areas respectively. The sampling frame consists of 65000
HIV/AIDS patients who have visited the hospitals
since the initiation of ART. The study may consider all
HIV infected patients under ART whose age is >15 years
regardless of their treatment category during the study
period in Amhara Referral Hospitals, Amhara Region,
Ethiopia.

The states of disease progression adopted in the multi-
state model were defined based on the following CD4
cell counts as in Giuseppe et al. (2007): >500 cells/mm?
(SI); 349 to 500 cells/mm?® (SII); 199 to 350 cells/mm®
(SIID); <200 cells/mm?> (SIV); and death (D). The death
state is considered to be an absorbing state, meaning
that once a patient is in the death state she/he will re-
main in that state forever. The time elapse between
state transitions was determined using the difference
(in years) between the dates of CD4 tests.

In Figure 1 the graph model is displayed. It shows all
the immunological states a HIV infected patient can go
into. All the states apart from the death state are inter-
related, and also improvements (moving into a higher
CD4 cell count state) are considered. It is also possible
that an examination will show that the patient’s state has
not changed.

Non-homogenous semi-Markov processes
In this part, the non-homogeneous semi-Markov model
is described using the notation of D’Amico et al. (2010).

On a complete probability space the author define
three random variables. Let J,: Q — S be the stochastic
process with state space S=1{51,5; ... S,,,}, T,,: Q — N be
the time of the n™ transition and A,,: Q2 — N be the age
of the patient when she/he had the n™ transition, with
0 domain of the process and N set natural numbers.
Here the time is a random variable.

The kernel Q =[Q;(s,t)] associated with the process
and the transition matrix Pj(s,t) of the embedded Markov
chain is defined as follows:

“Q;(s,8) = Plwir =y Apsast|Jw =i, Ay = a+]
(2.1)

aPij(Sa t) = tlirgﬂQij(S? t) (22)

Define the probability of making next transition be-
fore time ¢ being in state i at time s with age a+s is
given by

“Hi(s,t) = P[Tyi<t |y =i, Tu=sAn=a+s]|
= Zanj(sﬂ t)
j=1

(2.3)
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Figure 1 Communication between the states of the process.
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The distribution of waiting time in each state i, given
that the state j is subsequently occupied is

aGij(Sat) :P[Tn+15t|]n =i a1 =), Tu =5,As :‘1+5]

an'/'(S7t) ra
_ 7“Pij(s,t) if “Py(s, )20
1 if “Py(s,t) =0

(2.4)

For any non-homogeneous semi-Markov process {“Z
(2) = Juniey t € N}, the transition probabilities are given by
(5) for which the solutions should be obtained using the
progression (6).

“p;(s,t) = P[*Z(t) =j|"Z(s) =i, T =5, An(s) = a + §]
(2.5)

0y(s.0) = (-t 0)05+ > [ Qulsrgy(r.0dr

=1 s+1
(2.6)

Here §;; represents the Kronecker delta. An approxi-
mate solution of (6) can be obtained using the general
numerical integration formula given in Janssen and
Manca (2001). In the same paper, they proved that the
numerical solution of the process converges to the
discrete time NHSMP described as an infinite countable
linear system:

m t
“pi(s,t) = di(s,0) + > > “vals, 7).“ oy (r,0)

=1 1=s+1
(2.7)

m t
Where the term Z Z “V,-l(s,r).”“'s(plj(r, t) repre-
I=1 t=s+1
sents the probability of entering in any state | at any
time 7 with next transition given the entrance with last

transition in state i at time s with age a + s. and

) _ 10 if iz
dy(s1) = { 1-H(st)  ifi=]
a o ifs =t
Vij(Sa t) - {aQij(S, t) _a Qij(sa t— 1) y(‘ t > s
(2.8)
In matrix form, Equation (8) becomes:
t
(s, t)- Y VH(s,1)®(7,t) = D(s,¢) (2.9)

T=s+1

The fact that the matrix @(s, t) is stochastic is already
proved in Janssen and Manca (2001). The following al-
gorithm with suggested matrix form is used for solving
the evolution Equation (9):

vie” =pT (2.10)
The variables involved are the following:
m = number of states of SMP.
T = number of periods to be examined for the
transient analysis of SMP.
P () =matrix of order m of the embedded markov
chain in SMP.
G = square upper-triangular block matrix of order T + 1
whose blocks are of order m.



Dessie SpringerPlus 2014, 3:537
http://www.springerplus.com/content/3/1/537

Q =It represents the kernel of SMP.

@ =square upper-triangular block matrix of order T + 1
whose blocks are of order m.

D =square upper-block matrix of order T + lwhose
blocks are of order m.

V = square lower-triangular block matrix of order T + 1
whose blocks are of order m.

H = block vector of order T + 1 the block of which are
the diagonal square matrix of order m. the diag-

ua
onal element of each block t is H;; = Z Q;i(s, ).
=1
Given an epoch s, T, matrices G! and P, the algorithm
solves the linear system (10) for the unknown matrix
@(s, T) by means of a purely iterative procedure. The al-
gorithm is:

(0)Read the inputs: m, s, T, P(s), G(s)
(1)Construct: Q(s, T), V(s, T), D(s, T)

V(s,s) =1 Q(s,s) =0; H(S»S) =0; D<575) =1

fort=stoT
Q) = PGy
fori=1tom
Hii(s, t) = Qi* (S7 t) o1
end for
V(s,t) = Q(s,t)_Qs,t—l
Dis) = Diss)=His)
end for

(2)Given D) = Dy 5, solve for D(s, T)

fort=stoT
D) = Dy
fort=(s+1)tot
(D(s,t) = q)(s,t) + V(s,r).q)(s,t—r)
end for
end for

(3)Print the results, @, 1), Q(s, T)

In the above (¢) represent the usual row column
matrix product (*) stands for element by element
product and (1) is the m-component’s sum vector.

In predicting the survival probability of a patient, let
us first group the states of the process into two sets A
and B, where A contains all “living" states in which the
patient is alive and set B contains all “bad" states in
which the patient is not alive. Then the probability that
the patient will survive up to time ¢ given the entrance
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into degree of illness i at time s with an age of a +s is
given as:

“Silsit) =Y “oy(s.t)

JjEA
(2.11)

The algorithm is programmed in the R statistical soft-
ware version 2.6.2.

Results and discussion
Results of modelling is displayed in Figures 2, 3, 4, 5 and 6.

First, transitions within the “good” states are consid-
ered. The conditional probability that an HIV/AIDS pa-
tient to get “worse" state at age “t” if he/she entered
state i€ {SI, SII, SIII, SIV} at age 25, 40 and 60 are dis-
played in Figure 2(a), (b) and (c), respectively. Such pro-
gressions are from SI to SII, SII to SIII and SIII to SIV.
Each plot is parabolic curve with optimal/peak points in
the age-probability axis. The peaks may indicate there is
time when a patient will be at highest risk of being at
worse state. Moreover, the transition probability from
state one to state two is the lowest as compared to the
others for all ages. It is interesting to observe that,
within the good states, the transition probabilities are
different when the age changes.

Second, transitions to the “bad" or “death” states are
considered. The conditional probability that an HIV/
AIDS patient transitioned to “bad” or “death” state up to
the age “t” if he/she entered state i € {SI, SII, SIII, SIV} at
age 25, 40 and 60 are displayed in Figure 3(a), (b) and
(c), respectively. Such progressions are from SI to D, SII
to D, SIII to D and SIV to D. The probability of dying
up to age 80 is 0.09 for the patient who entered state I
at age 25, 0.11 for one who entered state one at age 40,
and 0.10 for one who entered state one at age 60. Simi-
larly, the probability of dying up to age 80 is 0.11 for the
patient who entered state two at age 25, 0.15 for one
who entered state two at age 40 and 0.15 for one who
entered state two at age 60. Each plot is an increasing
parabolic curve over time (age) with no optimal/peak
point. Moreover, a patient who is in the fourth state has
the highest probability of dying, while a patient who is
in the first state has the lowest probability of dying
throughout the time for all ages.

Third, the conditional probability of a patient making
changes in disease states given his/her current status is
computed and displayed in Figures 4 and 5. The results
show that the probability that an HIV/AIDS patient tran-
sitions j € {SI, SII, SIII, SIV, D} at age “t” if he/she entered
state i€ {SI, SII, SIII, SIV} at age 25 and 60, respectively.
The results plotted can be interpreted as follows. For an
HIV/AIDS patient in a specific state of the disease, the
probability of remaining in the same state decreases with
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increasing ages. With the good or alive states, the results
show that probability of being in a better state is non-
zero, but less than the probability of being in worst states
for all ages. That is, for a patient there is more likely to be
in worse state than to be in better one, relatively speaking.

Finally, the probabilities to survive up to age “t” given
that the patient entered state i€ {SI, SII, SIII, SIV} at age
25, 40 and 60 are displayed in Figure 6(a), (b) and (c), re-
spectively. The survival probability that a patient who
entered state one at age 25 will be alive until age 80 is
about 0.92, 0.89 for one who entered state one at age 40
and 0.91 for one who entered state one at age 60. Simi-
larly, the survival probability that a patient who entered
state two at age 25 will be alive until age 80 is about
0.88, 0.85 for one who entered state two at age 40 and
0.87 for one who entered state two at age 60. Thus pa-
tient in the first state have better chance of survival than
patients in other states for all ages. Other results in
Figure 6 also reveal that the survival probabilities are all
decreasing with increasing ages.

Markov models of the natural history of HIV, espe-
cially those based on CD4 cell counts, play a central role
in AIDS modelling. They have been used to describe the
natural history of HIV infection (Longini et al. 1991), to

predict the stage-specific course of the HIV epidemic in
the USA (Longini et al. 1992), and to evaluate the effect
of covariate such as therapy on stage-specific progres-
sion rate (Foucher et al. 2005). The non-homogeneous
semi- Markov model proposed by Hoem (1972), further
studied by Iosifescu-Manu (1972), and applied by
Janssen and De Dominics (1984) and De Dominicis
and Manca (1984) for studying the effect of disease
indicators on survival was used in this paper to
model the progression of HIV/AIDS with a focus on
patient’s age.

We applied non homogeneous semi-Markov processes
to assess the dynamic evolution of the Human Immuno-
deficiency Virus Infection, as defined by CD4+ level
The large number of results obtainable by the model in-
cluded the probabilities of an infected patient’s survival
taking into account the patient’s age. Indeed, by means
of the non-homogeneous model it is possible to study
the dynamic evolution of the infection differentiated
according to the patient’s age. Moreover the age of the
infected patients significantly diversifies the disease
evolution. This results presented above is similar to
the result obtained in previous studies (D'Amico et al.
2011; Jackson et al. 2003).
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Conclusions and recommendations

The semi-Markov process model is applied to capture
the AIDS dynamic progression of a patient. The model
considers the length of the period of the HIV patients,
the randomness in the different states in which the in-
fection can evolve, and patient's age according to the
starting time. The following can be concluded from this
study.

The probability that an HIV/AIDS patient with any
one of the good states will transition to the death state is
increasing with greater age, irrespective of the current
state and age of the patient. More generally, the prob-
ability of dying decreases with increasing CD4 counts
over time. For an HIV/AIDS patient in a specific state of
the disease, the probability of remaining in the same
state decreases with increasing age. Within the good
states, the results show that the probability of being in a
better state is non-zero, but less than the probability of
being in a worse state for all ages. At any time of the
process, there is more likely to be in worse state than to
be in better one. The reliability analysis indicates that
the survival probabilities are all decreasing with increas-
ing ages.

In general, the survival probability of an HIV/AIDS
patient depends on his/her current state of the disease
in such a way that lower CD4 counts are associated with
higher risk of transitioning to a worse health state or
death state. The dynamic nature of the AIDS progres-
sion is confirmed with particular findings that there is
more likely to be in worse state than better one unless
interventions are made. It is recommendable to keep up
the ongoing ART treatment services in most effective
ways with the careful considerations of recent disease
status of patients.
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