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Recently Holliday and Komatsu extended the results of Ohtsuka and Nakamura on reciprocal sums of Fibonacci
numbers to reciprocal sums of generalized Fibonacci numbers. The aim of this work is to give similar results for the
alternating sums of reciprocals of the generalized Fibonacci numbers with indices in arithmetic progression. Finally
we note our generalizations of some results of Holliday and Komatsu.
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Introduction
For a positive integer p, the generalized Fibonacci num-
bers U, are defined for n > 0 by

Uy=0,U; =1 and Uy4o =pU, , + U,

If p = 1,2, then U, are called the Fibonacci numbers F,
and Pell numbers Py, respectively. Also, if p is any variable
x, then U, are called Fibonacci polynomials F, (x).

(Ohtsuka and Nakamura 2008/2009) have found the

-1
formulas for the integer part of (Z,ﬁn Flk) and
-1
(Z,fin Flz) . (Holliday and Komatsu 2011) generalized
k
these identities to the generalized Fibonacci numbers as

follows

0 -1
Z 1 U= Uy, if m is even;
Uy |l u,—-U,_1—1, if nis odd,

k=n
(1)
o -1
Z 1 | pU,U,—1—1, ifnis even;
4 u]% T\ pU, U, if n is odd,
=n
()

where | -] is the floor function.
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Similar properties were investigated in several differ-
ent ways; see (Wu and Zhang 2012; Wu and Zhang
2013; Zhang 2011). Recently, (Kuhapatanakul 2013) gave
a similar formula (1) for alternating sums of reciprocal
generalized Fibonacci numbers.

In this paper we consider the alternating sums of recip-
rocals of the generalized Fibonacci numbers with indices
in arithmetic progression and evaluate the integer part to
the reciprocals of these sums. That is, we derive and prove
the formulas of the following forms

< kT © k)T
Z and Z u2 ’

k=n Uak—p n Hak—b

where a, b are non-negative integers with b < a. We also
extend two identities (1) and (2) by replacing Uj with
Uak—p-

Main results

We begin with some identities of the generalized
Fibonacci numbers whose will be used in the proofs of
main theorem.

Lemma 1. Let n, r be two integers withn > r > 0. Then

(i) urun+1 + U, un = un+r~
(ji) Uly—1 — Uy Uy, = (_l)rilun—r'
(iii) U2 — UpeyUpsr = (~1)" U,

Proof. Every proof is done by induction and omitted.
I
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Lemma 2. Let n, r be two integers withn > r > 0. Then

(j) U n+r —
(i) Uz, -

Lln,>L[2

|U4 n+r n r+u4|

Proof. By using three identities of Lemma 1, we have
un+r —Uy—r = urun+1 + U1 Uy
+ (=1 (UrUp—1 — Ur—1Uy)
= Uy(Up41 + (=1) Uy-1)
+ U Uy (1 = (=1)")
> L[r2
and
Uy = Uy = Unir = Uny) Unr + Un—r)
= (urun+1 + urunfl)(purun + 2Ur71un)
> U U?
= [2(-D)" U, -
= |(-D"Tureu; — (-1)"U) + Uy
= \(uz—unwu,q AUy +Up gy Uy )+ Uy |
= |ut-ul, uz, + U,

n+r n—r
as desired. I

uy + Uy

We are now ready to verify our results.

Theorem 1. Let a, b be two integers with 0 < b < a and
f(n) = an—b. Suppose f(n—1) > 0 for all positive integer
n. Then fort = 1,2 we have

(i (—1)”<>_1 iff (n— 1) + nis even;
t
k=n uf(k) (_l)n <u]5(n) + u;(rz—l)) -1,
iff(n—1)+ nisodd.
Proof. Since the proofs of both cases t = 1 and t = 2 are
quite similar, we only give a proof for ¢ = 2. We see that
f(n) > aforall n. By Lemma 2(ii),

Uiy = U1y > | Uy = Uinsny Upny + Ua |
we get
( 1)71 B ( 1)71+1
Uf oy + Ufipyy = (1" f(n+1) +Uf,) — (=D
(=" _ (=)™, +1
Uf(n) L[fz(n) (LIJ?(H) +L12(n y— (D" )
+ (- 1)"

Ufiry + Uiy + (1"
>0,
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Thus,
1
2
(=1)* ( iy T f(n—1)> -1
(=" 1
, .
G 41 (W + Uy ) =1

By applying the above inequality repeatedly, we obtain
o~ (D 1
0 (U + Uy ) =1
In a similar way, we have
( D"
Uy + Wy + (D" Uy +
_=D” _ (=" U1y — 1
U 12, (U2, + U2, + (D)

(= 1)”

(3)
2
uf(k)

(_1)n+1
f(n) + ( 1)n+1

+
Uiy + Uffy = (<D
<0,
SO
1
(_1)n( o + Ui 1)) +1
(=" 1

(=1 ( [y T f(n)) +1

Repeating the above inequality, we obtain

2
Uy

1 o (—DF
) <
=1* ( o+ Ui 1)) t1 ke
Using Lemma 1(iii), we have
(="
2
Ufn +

. @)
2
U )

(_1)n+1 B (_l)n

2
uf (n)

2 2 2
Uiy Upny Ui

4 2 2
(=D" (Uﬂn) - Uf(n—l) Uf<n+1)>
2 2 2 2 2
uf(n) (uf(n) + uf(n—l)) (uf(n+1) + uf(n))
VI (U Uy + Uy

Ui ) ( fon T+ uf2<n—1)> (uf2<n+1) + ufz(n)> '

The numerator of the right hand side of above equation
is positive if f(n — 1) + n is even. Also, the numerator is
negative if f(n — 1) + n is odd.
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Case L: If f(n — 1) + n is even, then

(- 1)” (—1)" (—p"*!
Uy + Uty Wy Wy + Uiy
so we obtain
(- 1)”

o0 k
(=D
E 2 < e, . (5)
k=n ~f(n) f(Vl) f(n 1))

Combining the (4) and (5), we get
1 o (—DF
< Z u2
)+1

(=1)* ( Ul + Uy fo
1

(_1)n( Fon + U 1>>,

<
it is equivalent to

-1
2
k=n uf(k)

where f(n — 1) + n is even.
CaseIL: If f(n — 1) + n is odd, then

2 2
= Up + Up1y

(— 1)” (-1)" (-1t
2 2 2 ‘
Uiy + Wy Uy Uiy +UR,
We obtain
0 k n
(=D (=D
P . 6)
Fro W+ Uiy

Combining the (3) and (6), we get
1 o (—DF
<

2
=1* (f(n)+ 5 1>> = Yia
1

(=D)" (f(n)Jr 'f(n— 1)) 1

<

’

it is equivalent to

[ee) ( l)k -1 )
(Z u]g(k)) =1 <uf(")+ ' (n— 1)) 1,

where f(n — 1) + n is odd.
This completes the proof. [
Remark 1.

e Iffn—1)+4+n=a(n—1)+ n—biseven, then we
have “both a and b are odd” or “a, b, n are even” or “a
is even and b, n are odd”.
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o Iffn—1)+n=a(m—1)+n—bisodd, then we
have “a is odd and b is even” or “a, b are even and n is
odd” or “a, n are even and b is odd”.

Now we present some examples of Theorem 1 in the
following corollary.

Corollary 1. For a positive integer n > 1, we have

0 -1
1k
(i) (Z i ) = (1" Uy + Uy1) — 1.
k=n
o -1
TV
(ii) (Z (ulz) ) = (D" (U + Uy ;) -1
k=n
-1
_1\k
(iii) > <u2 = Uy + Uzp—.
|\
-1
® ok
(iv) Z 212/21 = U1+ Uyy—3— 1.
|\

Some examples for the Fibonacci numbers.

Example 1. For a positive integer n > 1, we have

-1
(M) (kgn (Flk)k> =(CD"F — 1
-1
(i1 (Z (;z’k> = (—1)"Fyy1 — 1.
k=n "k

Sums of reciprocals

We will obtain generalizations of the result of (Holliday
and Komatsu 2011) on the reciprocal sums of Uy to the
reciprocal sums of U x_p,.

Theorem 2. Let a, b be two integers with 0 < b < a and
f(n) = an—b. Suppose f(n — 1) > 0 for all positive integer
n. Then fort = 1,2 we have

f(n) f(n 1)’
(i 1 >_1 iff(n —1) isodd,
t
k=n uf (k) f(n) f(n 1) - L

iff(n—1) iseven.

Proof. We only give a proof for t = 1 as that of £ = 2 is
similar. Since f (1) > a for all n, we get

Urnr1) — Urn—-1) > Uz.
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Using Lemma 1(i) and above inequality, we have
1 1 1

Uty Uy = Unety + 1 Upguir) — Upny + 1

B 1= Ur-vyUrsn) + Uf(n) + Urnrny — Urn-1)
Usiny (Uson = Urn-y + 1) Urosny — Urn + 1)

_ (1Y =Dy 4 Uy — Upn-1) +1
Uiy (Uron — Upe—1y + 1) (Upeerry — Upn +1)

> 0.

Thus, we obtain

ee]

1 1
E > . (7)
o Uty Upoy —Upe-n +1

Similarly, we can show that

o0

3 1 1 @

< .
o Urwo Urewy — Upe-1) — 1
On the other hand, we have

1 1 1
Uty = Urn—1y  Ury — Upey  Ur

Upn-nUronsry — UF
Urny (U — Upn-1)) (Ur iy — Upon)
(_l)f(n—l)—l uz
Uy (Uny = Usn-)) (Us sty — Upm)

The numerator of the right hand side of above equation
is positive if f (n—1) is odd. Also, the numerator is negative
iff(n—1) is even.

If f(n — 1) is odd, then we can verify that

o0

3 1 1 ©)

< ’
o Urwo Uron — Upen-n)

and if f(n — 1) is even, then we get
oo

Z 1 1

> . (10)
i Urwy Uroy = Uree-)

Combining the (7) and (9), we obtain

o0

1 5 1 1
< < ,
Uty = Urn-n +1 = Uray  Urm — Urm-)

it is equivalent to

00 1 -1
<kz: uakb) = Uagn—-b — uu(n—l)—b;
=n

wherea(n — 1) — b is odd.
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Combining the (8) and (10), we obtain

e o]

1 <Zl 1

< )
Uron = Ur-v (= Urdo — Upon — Upe-1) — 1

it is equivalent to

00 1 -1
(Z U ) = Uan—b - Ua(n—l)—b -1,

ken ak—b

where a(n — 1) — b is even. I

Remark 2.

e I[ff(n—1)=a(m — 1) — b is odd, then we have “a is
even and b is odd” or “a, b, n are odd” or “a is odd and
b, n are even”.

e I[ff(n—1) =a(m — 1) — b is even, then we have
“both a and b are even” or “a, b are odd and n is even”
or “a,n are odd and b is even”.

Since Ug —L[ﬁi1 =pU, U,_1—(—1)", ifwetakea = 1in
Theorem 2, we obtain the identities (1) and (2). Also, if we
take b = 0, then we get the same results given in (Wu and
Zhang 2013). In addition we have more results for ¢ = 1,2
such as

k=n 2

-1
o0
(i) (Z ulu) = Uy, — Uy, , — 1.

.y S 1 - t t
(i) kZ u, = Uy, — Uy, 5.
=n -

t t
u?;n—l - u?;n—4’

(i 020: ) - if n is odd;
iii -
k=n Usjy u?tm—l - u?tm—lk - L

if n is even.

t t
u3n72 - u3n75’

of: . -1 if m is even;

@@v) =

k=n U§k72 uén—Z - uén—S -1
if n is odd.
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