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Abstract

In this paper we have coupled feature selection problem with semi-supervised clustering. Semi-supervised clustering
utilizes the information of unsupervised and supervised learning in order to overcome the problems related to them.
But in general all the features present in the data set may not be important for clustering purpose. Thus appropriate
selection of features from the set of all features is very much relevant from clustering point of view. In this paper we
have solved the problem of automatic feature selection and semi-supervised clustering using multiobjective
optimization. A recently created simulated annealing based multiobjective optimization technique titled archived
multiobjective simulated annealing (AMOSA) is used as the underlying optimization technique. Here features and
cluster centers are encoded in the form of a string. We assume that for each data set for 10% data points class level
information are known to us. Two internal cluster validity indices reflecting different data properties, an external cluster
validity index measuring the similarity between the obtained partitioning and the true labelling for 10% data points
and a measure counting the number of features present in a particular string are optimized using the search capability
of AMOSA. AMOSA is utilized to detect the appropriate subset of features, appropriate number of clusters as well as the
appropriate partitioning from any given data set. The effectiveness of the proposed semi-supervised feature selection
technique as compared to the existing techniques is shown for seven real-life data sets of varying complexities.

Keywords: Clustering; Multiobjective optimization (MOO); Symmetry; Cluster validity indices; Semi-supervised
clustering; Feature selection; Multi-center; Automatic determination of number of clusters

1 Introduction
Clustering, also termed as unsupervised learning, is the
method of grouping the data items into different parti-
tions or clusters in such a way so that points which belong
to same cluster should be similar in some manner and
points which belong to different clusters should be dis-
similar in the same manner (Saha and Bandyopadhyay
2010). In supervised learning some training set needs to
be available which captures the prior knowledge about
class labels of some points. A classifier can be trained
using this training set. After this step, a classifier can easily
detect the class labels of unlabelled data depending on the
model built. But in unsupervised classification, no prior
knowledge about data points are available. Unsupervised
learning classifies the data based on actual distribution
of the data items and well quantified intrinsic property.
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In real-life it is easy to generate plenty of unlabeled data
but it is hard to determine actual annotations of these
data. Some human annotators are required to annotate
the data. Thus training set generation is very much cost
expensive and requires more time. Because of this situa-
tion unsupervised learning methods are widely used than
supervised learning but the accuracies obtained by unsu-
pervised clustering techniques are lower than supervised
classification techniques. Thus it is required to develop
some new classification techniques which can combine
the fruitfulness of both supervised and unsupervised clas-
sification techniques. This new classification technique is
named as semi-supervised classification and it is devel-
oped to solve the problems associated with unsupervised
and supervised classification methods. Both supervised
and unsupervised classification information are used in
semi-supervised classification. Because of the above men-
tioned property, semi-supervised classification is more
demanding and showing good results. This has a large
number of applications in natural Language processing,
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information retrieval, data mining, gene function classi-
fication, protein classification and bioinformatics (Handl
and Knowles 2006; Li et al. 2003). In this paper we have
solved some problems related to semi-supervised cluster-
ing techniques.
Feature selection, or subset selection, is the method of

reducing dimensionality in machine learning. It is impor-
tant for different reasons: first total computation can be
reduced if we can reduce the dimensionality. Secondly all
the features may not be helpful to classify the data; some
may be redundant and irrelevant from the classification
point of view. Thus it is needed to determine automati-
cally relevant subset of features. In order to address the
above mentioned problems, feature selection is needed
both for unsupervised as well as supervised classification
problems. There are many works to address the feature
selection problem in supervised domain (Aha and Bankert
1996; Bermejo et al. 2012; Blum and Langley 1997; Liu and
Yu 2005). But there are a very few works for solving the
feature selection problems from unsupervised domain. In
case of unsupervised classification it is very difficult to
measure the goodness of a particular feature. In recent
years some works have been reported to solve the unsu-
pervised feature selection problem (Dash and Liu 1999;
Dy and Brodley 2004; Kim et al. 2002; Mitra et al. 2002;
Peña et al. 2001; Talavera 1999). But most of these tech-
niques pose the feature selection problem as a single
objective optimization technique. They have mostly opti-
mized a single cluster quality measure. In recent years
there are some approaches which use multiobjective opti-
mization to solve the unsupervised feature selection prob-
lem. A multiobjective wrapper based approach to solve
the unsupervised feature selection problem is developed
by Morita et al. (2003). K-means clustering technique
is utilized as the underlying partitioning method and
authors have varied the number of clusters in a range.
They have utilized a multiobjective evolutionary algo-
rithm (the Non-dominated Sorting GA-II, NSGA-II, (Deb
et al. 2002)) as the underlying optimization tool. Two
objective functions related to clustering are deployed for
the clustering task namely the number of features and
the Davies-Bouldin-Index (DB-Index, Davies and Bouldin
(1979)). In 2002, Kim et al. (2002) presented a multiob-
jective approach for wrapper based unsupervised feature
selection. A multiobjective algorithm ELSA (Evolutionary
Local Selection Algorithm (Menczer et al. 2000)) is uti-
lized as the underlying optimization technique. Authors
have used K-means algorithm as the underlying parti-
tioning tool to partition the given data set based on a
feature combination. Both good feature subsets and the
corresponding numbers of clusters are determined by
ELSA. Authors have considered four different clustering
objectives for optimization: a count on number of fea-
tures, the number of clusters present in a chromosome,

intra-cluster compactness of the partitioning encoded in
a chromosome and inter-cluster separation of the par-
titioning encoded in a chromosome. The problem of
feature selection coupled with clustering is also treated
as a multiobjective optimization problem in (Julia and
Knowles 2006). There a multiobjective evolutionary algo-
rithm named Pareto envelope-based selection algorithm
version 2 (PESA-II) is used to develop a multiobjective
feature selection technique. But this technique utilizes
Euclidean distance for assigning points to different clus-
ters. This technique utilizes K-means as the underlying
clustering technique. Thus it can only be able to deter-
mine hyperspherical shaped equal sized clusters. In this
paper we have posed the problem of feature selection
for semi-supervised classification as a multiobjective opti-
mization problem. A recently created simulated annealing
based multiobjective optimization technique, AMOSA
(Bandyopadhyay et al. 2007), is utilized as the underly-
ing optimization tool. Instead of using Euclidean distance,
Point symmetry based distance (Bandyopadhyay and Saha
2007) is utilized for assigning points to different clusters.
The proposed multiobjective semi-supervised cluster-

ing as well as feature selection technique called Semi-
FeaClusMOO technique encodes number of features and
number of cluster centers in the form of a string. Then
points are assigned based on the features present in
the string to different clusters using a recently intro-
duced point symmetry based distance (Bandyopadhyay
and Saha 2007). As supervised information, we assumed
that class labels of 10% data points are available to us.
Four different objective functions are used for optimiza-
tion. These are a symmetry based cluster validity index,
Sym-index (Bandyopadhyay and Saha 2007), Euclidean
distance based cluster validity index, XB-index (Xie and
Beni 1991), an external cluster validity index, Adjusted
Rand Index (Yeung and Ruzzo 2001) which measures the
similarity of the obtained partitioning on labeled data
points with their original class labels, and number of
features. The third objective function captures the super-
vised information. The fourth objective function is used
to balance the bias of the first two objective functions
on dimensionality. Some distance computations have to
be performed in order to determine the values of inter-
nal cluster validity indices. As value of distance func-
tion decreases with the decrease of number of features,
internal cluster validity indices are biased towards lower
dimensions (Julia and Knowles 2006). In order to bal-
ance these bias we have used the fourth objective which
will try to increase the number of features present in a
data set. The final Pareto optimal front contains a set of
solutions representing different feature combinations and
cluster centers. The algorithm will automatically identify
the appropriate number of clusters, appropriate partition-
ing and automatic feature combinations from a data set.
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Results are shown for several higher dimensional real-
life data sets. The performance of Semi-FeaClusMOO
technique is compared with a) Semi-FeaClusMOO tech-
nique using Euclidean distance in place of point symmetry
based distance for assigning points to different clusters
b) a multiobjective based simultaneous feature selection
and unsupervised clustering technique where only three
objective functions are used: Sym-index, XB-index and
number of features. Same architectures of AMOSA based
clustering technique proposed in this paper are followed;
(c) a multiobjective based automatic clustering technique
where all the features are utilized for distance computa-
tion and point symmetry based distance is used for assign-
ing points to different clusters, (d) a single objective based
automatic clustering technique where all the features are
used for distance computation and point symmetry based
distance is used for assigning points to different clus-
ters and e) K-means clustering technique with all feature
combinations and known number of clusters.

2 The SA based MOO algorithm: AMOSA
Archived multiobjective simulated annealing (AMOSA)
(Bandyopadhyay et al. 2007) is a newly developed sim-
ulated annealing (SA) based multiobjective optimiza-
tion technique. MOO is utilized for solving different
real-world problems having multiple objective functions
to be optimized simultaneously. Simulated annealing
(SA), based on the principles of statistical mechanics
(Kirkpatrik et al. 1983), is a search tool in order to
solve difficult problems related to optimization theory. SA
dominates over exhaustive search procedures because of
its time and resource efficiencies. SAs are widely used to
solve single objective optimization problems. But there
are very few attempts in solving multiple objective opti-
mization problems using SAs. This is because of search-
from-a-point nature of SA which helps it to determine a
single solution after a single run. In case of multi-objective
optimization, there are a set of trade-off solutions. In
order to generate all the solutions, we need to run SA
multiple times. In recent years, Bandyopadhyay et al.
developed an efficient multiobjective version of SA called
AMOSA (Bandyopadhyay et al. 2007) which overcomes all
the above stated limitations.
Several new concepts have been introduced in AMOSA

(archived multiobjective simulated annealing) (Bandy-
opadhyay et al. 2007) which is an multiobjective version of
SA. The concept of an archive is utilized in AMOSAwhich
is used to store all the non-dominated solutions seen so
far. This archive is associated with two limits: a hard or
strict limit denoted by HL, and a larger, soft limit denoted
by SL, where SL > HL. During the SA process several non-
dominated solutions are generated which all are stored in
the archive. In the mean while if a newly generated solu-
tion dominates some members of the archive, then those

solutions are removed from the archive. During the pro-
cess, if the size of the archive exceeds the specified soft
limit, SL, clustering procedure is invoked to reduce the
size to HL.
The AMOSA algorithm starts its execution with the

initialization of a number (γ × SL, γ > 1) of solu-
tions in the archive, each of which represents a state in
the search space. For each solution, multiple objective
functions are computed. Each of these newly generated
solutions is then fine-tuned by using simple hill-climbing
and domination relation for a number of iterations. There-
after non-domination sorting is applied and all the non-
dominated solutions are stored in the archive until the size
of the archive crosses the soft limit SL. If archive crosses
HL after this initialization process, single linkage clus-
tering procedure is called in order to reduce the size of
the archive to HL. A point from the archive is randomly
picked up. At temperature, T = Tmax, this is considered
as the current-pt, or the initial solution. The current-pt
is mutated to produce a new solution called the new-pt.
The objective functional values of new-pt are calculated.
new-pt is now compared with current-pt and points in
the archive. A new term called amount of domination,
�dom(a, b) between two solutions a and b is introduced
in AMOSA and it is defined as follows:�dom(a, b) =∏M

i=1,fi(a)�=fi(b)
fi(a)−fi(b)

Ri , where fi(a) and fi(b) are the ith
objective values of the two solutions and Ri is the corre-
sponding range of the objective function. After compar-
ing the domination status of the new-pt, current-pt and
points in the archive, different cases may arise viz., accept
the (i) new-pt, (ii) current-pt, or, (iii) a solution from the
archive. During the process if archive size crosses SL, clus-
tering is again invoked to reduce the size toHL. The above
mentioned steps are executed iter times for each temper-
ature which is annealed with a particular cooling rate of
α(< 1) until the minimum temperature Tmin is attained.
Finally the procedure is completed with the final archive
containing the final non-dominated solutions.
Results show that performance of AMOSA is better

than some other well-known MOO algorithms especially
for 3 or more objectives (Bandyopadhyay et al. 2007).
Inspired by these results AMOSA is utilized in the current
paper as the underlying MOO technique.

3 Proposedmethod ofmultiobjective feature
selection and semi-supervised clustering
technique

This section describes the newly proposed multiobjective
feature selection and semi-supervised clustering tech-
nique, Semi-FeaClusMOO, in detail.

3.1 String representation and population initialization
In Semi-FeaClusMOO, a state of AMOSA is comprising of
two items: a) a set of real numbers which represents the
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coordinates of the centers of the clusters hence the associ-
ated partitioning of the data and b) a set of binary numbers
which represents different feature combinations. AMOSA
tries to determine an appropriate set of cluster centers
and the appropriate set of feature combinations. Suppose
a particular string encodes the centers of K number of
clusters and total number of available features is denoted
by F . Then the length of the string will be F + K × F .
The K number of cluster centers are randomly chosen K
points from the data set. Here feature combinations are
some randomly chosen binary numbers. An example of
a string is given below as well as in Figure 1 where K=3
and F=5: < c11, c

2
1, c

3
1 . . . , c51, c

1
2, . . . , c

5
2, c

1
3, c

2
3, . . . , c

5
3, 11010.

This represents a partitioning having three cluster
centers < c11, c

2
1, c

3
1 . . . , c51 >, <c12, . . . , c

5
2 >, and

<c13, c
2
3, . . . , c

5
3 > and we have to only consider the features:

first, second and fourth. These features are considered for
cluster assignments and objective function calculations.
Initially Ki number of clusters are encoded in each

string, such that Ki = (rand()mod(Kmax − 1)) + 2. Here,
rand() is a random number generator returning an inte-
ger, and Kmax is the soft estimate of upper limit of number
of clusters. For a particular string number of clusters
encoded in it can vary between 2 to Kmax.
For the initialization purpose, we have followed a ran-

dom procedure. For a particular string i total number
of cluster centers encoded in it is Ki. These Ki number
of cluster centers are selected randomly from the entire
data set. Thereafter these cluster centers are encoded in
that particular string. Initial paritioning is generated ran-
domly using minimum center distance based criterion.
The feature part of each string is also initialized randomly.
Suppose in the data set there are F number of features;
then each position of the feature set is randomly initial-
ized to either 0 or 1. Here value of 0 at the ith position
represents that this feature will not take part in further
processing and value of 1 denotes that ith feature will

participate in further processing like cluster assignment,
objective value computations etc.

3.2 Assignment of points
For assignment of points to different clusters, the
newly developed point symmetry based distance
(Bandyopadhyay and Saha 2007), dps(a, z), is utilized. This
distance is developed in (Bandyopadhyay and Saha 2007).
The below description is taken from (Bandyopadhyay and
Saha 2007). This distance is computed as follows. Suppose
a point is denoted by a. The symmetrical (reflected) point
of a with respect to a particular center z is 2× z− a. Let us
denote this by a∗. Let knear unique nearest neighbors of a∗
be at Euclidean distances of dis, i = 1, 2, . . . knear. Then

dps(a, z) = dsym(a, z) × de(a, z), (1)

=
∑knear

i=1 di
knear

× de(a, z), (2)

where de(a, z) is the Euclidean distance between the point
a and z, and dsym(a, z) is a symmetry measure of a with

respect to z and is defined as
∑knear

i=1 di
knear . Here knear is cho-

sen equal to 2. The properties of dps(a, z) are thoroughly
described in (Bandyopadhyay and Saha 2008).
In order to assign points to different clusters, each

center encoded in a string is considered as a separate
cluster. Suppose K number of clusters and f number of
features are encoded in a particular string. Here clus-
ter k is selected for assignment of point ai, 1 ≤ i ≤
n, iff dps(ai, zk) ≤ dps(ai, zj), j = 1, . . . ,K , j �=
k , and dsym(ai, zk) = (dps(ai, zk)/de(ai, zk)) ≤ θ . For
(dps(ai, zk)/de(ai, zk)) > θ , point ai is assigned to some
cluster m iff de(ai, zm) ≤ de(ai, zj), j = 1, 2 . . .K , j �= m.
In other words, point ai is assigned to that particular
cluster with respect to whose center its point symmetry
based distance, dps (Bandyopadhyay and Saha 2007), is
minimum, provided the corresponding dsym value is less

Figure 1 Example of representing cluster centers and features in the form of a string.
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than some threshold θ . Otherwise, cluster assignment is
based on minimum Euclidean distance criterion as nor-
mally done in (Bandyopadhyay and Maulik 2002) or the
K-means algorithm. The possible reasons for assignment
of points to different clusters using the above mentioned
way are as follows: In the intermediate stages of the algo-
rithm, when the centers are not set to the proper values,
the minimum dps value for a point is expected to be very
large as the point might not be symmetric with respect
to any center. In such cases, we have used Euclidean
distance for cluster assignment. In contrast, when clus-
ter centers are set to the appropriate values, dps values
become reasonably small and cluster assignment based
on point symmetry based distance is more meaningful.
For the point symmetry based distance computation, dps
(Bandyopadhyay and Saha 2007) and Euclidean distance
computation we have considered only those features
which are present in that particular string.
As explained in Ref (Bandyopadhyay and Saha 2007), the

value of θ is set equal to the maximum nearest neighbor
distance among all the points in the data set.

3.3 Objective functions used
For the purpose of optimization, three different cluster
validity indices and another objective function counting
the number of features present in the data set are con-
sidered. The first two objective functions are two internal
cluster validity indices which reflect different proper-
ties of good clustering solutions. The first measures the
amount of symmetry present in a particular partitioning.
The second one measures the goodness of the clusters in
terms of the Euclidean distance. The third cluster validity
index is an external cluster validity index named Adjusted
Rand Index (Yeung and Ruzzo 2001). The fourth objec-
tive function measures the number of features present in
a particular string.
The first objective function is the point symme-

try distance based cluster validity index, Sym-index
(Bandyopadhyay and Saha 2008). This validity index quan-
tifies the goodness of a partitioning in terms of sym-
metricity. It is able to identify symmetrical shaped well
separated clusters. Second cluster validity index, XB-
index (Xie and Beni 1991), is based on Euclidean distance.
It is able to identify compact well-separated clusters. Here
compactness is measured in terms of Euclidean distance.
In order to compute the Sym-index and XB-index values
corresponding to a particular string we have utilized those
features which are present in that particular string.
In order to compute the similarity between the obtained

partitioning and true class labels of the 10% data points
for which original class label information are known, we
have used an external cluster validity index as the third
objective function. The use of this index provides a way of
incorporating the labeled information in the unsupervised

clustering. As the external cluster validity index, we have
used Adjusted rand index (ARI) (Yeung and Ruzzo 2001).
This is the third objective function which captures the
matching between observed solution and prior knowledge
based true solution for the 10% data points. ARI is com-
puted over only these 10% data points for which class
information are known. When two partitions agree com-
pletely then adjusted rand index value is 1. Thus higher
values of adjusted rand index are better.
The fourth objective function is the number of fea-

tures encoded in a particular string. We have to cal-
culate the number of features present in a particu-
lar string and have to maximize the value of num-
ber of features. f3 = maximize‖f ‖ where ‖f ‖ =
number of features present in that particular string.
The above four cluster validity indices are computed for

each string. For Sym-index and XB-index computations
we have to consider only those features which are present
in that particular string. ARI index value is calculated only
for 10% data for which labeled information are known.
Thus the objective functions for a particular string are as
follows:

obj = {Sym(K , f ), 1/XB(K , f ),Adj(K), ‖f ‖}
where Sym(K , f ), XB(K , f ), Adj(K), and ‖f ‖ denote
respectively, the calculated Sym-index value, XB-index
value, Adjusted Rand Index value and number of features
present in that particular string. Here number of clusters
present in a particular string is denoted by K and f is the
number of features present in that particular string. The
search capability of newly developed simulated annealing
based MOO algorithm, AMOSA is utilized to maximize
simultaneously above mentioned four objective functions.

3.4 Mutation operation
Here mutation operations are applied on a particular
string to generate a new string. In order to change the
cluster centers encoded in a particular string three dif-
ferent types of mutation operations are applied. Binary
mutation is applied to change the feature combinations
present in a particular string. Here each bit position of the
feature vector is flipped with some probability (if initially
there was 1- it is now replaced by 0; if initially there was
0- it is now replaced by 1).

1. In order to mutate each individual cluster center, we
have used Laplacian distribution, p(ε) ∝ e−

|ε−μ|
δ ,

where the scaling factor δ is used to set the
magnitude of mutation to generate a new value for
that particular position. Here μ represents the value
at the position which is to be mutated. We have kept
scaling factor δ equals to 1.0. The newly generated
value is used to replace the old value. This
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perturbation operation is applied to all dimensions
independently. In order to change the feature
combinations binary mutation is applied.

2. In order to reduce the number of clusters encoded in
a string by 1, a cluster center is removed from the
string. In this case again to change the feature
combinations binary mutation is used.

3. In order to increase the number of clusters encoded
in a string by 1, we have to add an arbitrarily chosen
data point in the string. Here the cluster center to be
added is a randomly chosen data point from the
entire data set. In this case again to change the
feature combinations binary mutation is used.

For a particular string, if it is chosen for mutation, any of
the above defined types of mutation operation is applied
with uniform probability.

3.5 Selection of the best solution
After application of any MOO based technique we used
to get a set of non-dominated solutions (Deb 2001) on
the final Pareto optimal front. Each of these solutions
provides some feature combinations and cluster centers.
Based on these information using the point symmetry
based distance (Bandyopadhyay and Saha 2007) we can
get the partitioning associated with this solution. All the
solutions are equally important from execution point of
view. But sometimes depending on user requirement we
may need to select a single solution. In this paper we
have used a semi-supervised approach to select a single
solution.
In the proposed semi-supervised feature selection algo-

rithmwe have assumed that class labels of 10% data points
are known to us. The proposed Semi-FeaClustMOO gen-
erates a set of Pareto optimal solutions on the final archive.
Based on the cluster centers and feature combinations
present in these solutions we used to assign the cluster
labels of these 10% labeled points using the nearest cen-
ter criterion. The similarity score of these assigned class
labels and the original class labels is measured using an
external cluster validity index, named Minkowski Score
(Jiang et al. 2004). Minkowski Score quantifies the qual-
ity of a solution provided the true clustering (Jiang et al.
2004). Suppose T denotes the “true” clustering solution
and S denotes the partitioning result which we wish to
measure. Let the number of pairs of elements that are in
the same cluster in both S and T is denoted by n11, the
number of pairs that are in the same cluster only in S is
denoted by n01, and the number of pairs that are in the
same cluster in T but in different clusters in S is denoted
by n10.Minkowski Score is then calculated as below:

DM(T , S) =
√
n01 + n10
n11 + n10

(3)

Here optimum value is 0. Lower values of MS are
preferred.
The solution which attains the minimum Minkowski

Score value calculated over the labeled points is selected
as the best solution.

4 Experimental results
In this section we have discussed about the results
obtained after application of Semi-FeaClusMOO tech-
nique on some real-life data sets.

4.1 Data sets used
Seven real-life data sets obtained from www.ics.uci.edu/~
mlearn/MLRepository.html are used for the experiments.
The detailed description of the real-life data sets in terms
of the total number of points present, dimension of the
data set and the number of clusters are presented in
Table 1.

1. Iris: This data set is having 150 data points
distributed over 3 clusters. Here each cluster is
having 50 points. This data set corresponds to
different types of irises having four feature
values (Fisher 1936). There are three classes in the
data set. These are Setosa, Versicolor and Virginica.
Among these three classes, two classes (Versicolor
and Virginica) are overlapping to each other, while
the third one is linearly separable from the other two.

2. Cancer: This data set represents Wisconsin Breast
Cancer data set. There are total 683 sample points,
each having nine features. The features correspond
to clump thickness, cell size uniformity, cell shape
uniformity, marginal adhesion, single epithelial cell
size, bare nuclei, bland chromatin, normal nucleoli
and mitoses. The data set is having two classes :
malignant and benign. These two classes are known
to be well separated from each other.

3. Newthyroid : This data set corresponds to Thyroid
gland data. There are total three classes present in the
data. These are: euthyroidism, hypothyroidism and
hyperthyroidism. Each sample represents values of

Table 1 Description of data sets

Data set # points Dimension (d) Actual number
of clusters (K)

Iris 150 4 3

Cancer 683 9 2

Newthy. 215 5 3

Wine 178 13 3

LiverDis. 345 6 2

LungCan. 33 56 2

Glass 214 9 6

www.ics.uci.edu/~mlearn/MLRepository.html
www.ics.uci.edu/~mlearn/MLRepository.html
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five laboratory tests which are conducted to predict
whether a patient’s thyroid belongs to any of the three
classes. This data set is having total 215 samples.

4. Wine: This data set corresponds to Wine recognition
data. It is having total 178 instances, each is having
13 features. These features correspond to different
chemical analysis of wines. The samples are grown in
the same region in Italy but derived from three
different families. There are three classes present in
the data set. The Chemical analysis determines the
magnitudes of 13 constituents found in each of the
three types of wines.

5. LiverDisorder: This data set corresponds to liver
disorder data. There are total 345 instances in the
data set. Each instance is having 6 features. There are
two output classes for this data set.

6. LungCancer: This data is having 32 samples; each
having 56 features. This data represents different
samples of pathological lung cancers where there are
three different categories.

7. Glass: This data corresponds to glass identification
data. It is consisting of 214 samples where each
sample is having 9 features (an Id# feature has been
removed). From the criminological investigation
point of view, this study of the classification of the
types of glass is important. At the scene of the crime,
the broken glasses can be utilized as some evidences
if these are identified correctly. The data set is having
total 6 classes present.

5 Discussion of results
In Semi-FeaClusMOO, the newly developed simulated
annealing based MOO technique, AMOSA, is used as the
underlying optimization technique for simultaneous fea-
ture selection and semi-supervised clustering. The param-
eters of the proposed Semi-FeaClusMOO clustering tech-
nique are as follows: SL = 100HL= 50, iter = 50, Tmax =
100, Tmin = 0.00001 and cooling rate, α = 0.9. The per-
formance of Semi-FeaClusMOO technique is compared
with a) Semi-FeaClusMOO using Euclidean distance in
place of point symmetry based distance for assignment of
points to different clusters b) FeaClusMOO: a multiobjec-
tive based simultaneous feature selection and clustering
technique which uses AMOSA as the underlying opti-
mization strategy. Here three objective functions are opti-
mized: Sym-index, XB-index and number of features. No
external cluster validity index is considered. (c) VAMOSA
(Saha and Bandyopadhyay 2010): a point symmetry based
multiobjective automatic clustering technique which can
tackle only the clustering problem using multiobjective
optimization. Here two cluster validity indices are con-
sidered for optimization: Sym-index and XB-index. Here
all the features are utilized for distance computation and
point symmetry based distance is used for assignment of

points to different clusters. (d) a point symmetry based
automatic clustering technique utilizing the search capa-
bility of GAs, VGAPS-clustering (Bandyopadhyay and
Saha 2008) where all the features are utilized for distance
computation and point symmetry based distance is uti-
lized for assignment of points to different clusters c) tradi-
tional K-means clustering technique with all the features
utilized for distance computation. Table 2 reports the
number of clusters and the number of features automat-
ically determined by the proposed Semi-FeaClusMOO
technique using point symmetry based distance, Semi-
FeaClusMOO technique using Euclidean distance in place
of point symmetry based distance, FeaClusMOO tech-
nique for feature selection and unsupervised clustering,
VAMOSA technique for only unsupervised clustering,
and VGAPS clustering technique (Bandyopadhyay and
Saha 2008) for all the above mentioned data sets. The
Minkowski Score values of the final clusterings identi-
fied by these six algorithms are also shown in Table 2.
Minkowski Score is an external cluster validity index which
measures the goodness of an obtained partitioning. Com-
parison of our proposed technique is also carried out with
a traditional clustering technique, K-means. This algo-
rithm is executed on all data sets with actual number
of clusters and with all the available features. The final
Minkowski Score values are reported in Table 2.
In Semi-FeaClusMOOSym, Semi-FeaClusMOOEuc, Fea-

ClusMOO technique, VAMOSA technique, AMOSA is
used as the base optimization tool. Thus same parameter
setting is utilized in each of these cases. The parameters
are as follows: SL = 100 HL = 50, iter = 50, Tmax = 100,
Tmin = 0.00001 and cooling rate, α = 0.9.
The parameter values of VGAPS clustering are kept as

follows: population size is set to 100, number of genera-
tions is set to 60 (if the algorithm is executed for more
number of generations, no performance improvement is
observed). Adaptive mutation and crossover probabili-
ties are used in case of VGAPS. Note that we have set
the parameters in such a way that all the algorithms
are executed for equal number of function evaluations.
Total function evaluations computed by AMOSA based
approaches are equal to the total function evaluations
computed by VGAPS and K-means clustering techniques.
Here each of the above mentioned algorithms are applied
ten times on each data set and Table 2 reports the best
results out of these ten different runs.
In order show the efficacy of the proposed feature

selection and clustering technique, Semi-FeaClusMOO
clustering, we have used several real-life data sets. These
real-life data sets are higher dimensional in nature; thus
these are suitable for the application of some feature
selection technique. For these real-life data sets, we can
not demonstrate the results visually as these are higher
dimensional data sets. Here we have reported the best
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Table 2 Results on different data sets by different algorithms

Data set Semi-FeaClusMOO Semi-FeaClusMOOEuc FeaClusMOO VAMOSA VGAPS KM

Fea OC MS Fea OC MS Fea OC MS OC MS OC MS MS

Iris 4 3 0.39 2,3,4 4 0.40 3,4 3 0.44 2 0.80 3 0.62 0.68

Cancer 1,2,3,5,6 2 0.31 1,2,5,6,7 2 0.37 1,2,3,5,6 2 0.31 2 0.32 2 0.37 0.37

Newthy. 2,4 3 0.46 2-4 3 0.47 1,2,4,5 3 0.54 5 0.57 3 0.58 0.94

Wine 1,3,6,8,9,12 3 0.62 1,6,7,10,12 6 0.64 1,6,7 3 0.67 3 0.97 3 1.12 1.40

LiverDis. 1,6,7,10,12 2 0.64 1,2,3,6 3 0.98 1,2,5 2 0.98 2 0.98 2 0.98 0.98

LungCan. 1-4, 2 0.70 2-4 4 0.71 1-4, 2 0.70 3 0.85 3 1.24 1.45

7-8,10, 6-9 7-8,10,

11,13,16 11-14 11,13,16

19-23, 16,22 19-23,

25-27 27-32 25-27

29-31 34,36-38 29-31

32-39 41,43-46 32-39

42-45 48,49 42-45

47-49 51-56 47-49

51-53 51-53

55-56 55-56

Glass 1-4,7-9 6 1.03 4,9 10 1.05 1,2,3,4,5 6 1.05 6 1.08 6 1.10 1.69

Here d, K , Fea, OC,MS denote respectively the original dimension, the number of features selected by the algorithm, the number of clusters originally present,
obtained number of clusters andMinkowski Score, respectively. Each algorithm is executed ten times and the best results among these ten runs are reported.

Minkowski Scores obtained by all the algorithms over 10
different executions for all data sets. For Iris data set Semi-
FeaClusMOO clustering technique selects only a single
feature out of total four features. It is able to identify
the appropriate partitioning (K = 3) with this single
feature. The Minkowski Score value of this partitioning
is the lowest compared to other five techniques (refer
to Table 2). Semi-FeaClusMOO with Euclidean distance
selects three features out of total four features on its final
solution. It is not also able to correctly identify appro-
priate number of clusters. The corresponding MS value
is larger than that obtained by Semi-FeaClusMOO with
point symmetry based distance. This shows the utility of
point symmetry based distance for assigning points to
different clusters. FeaClusMOO technique is also able to
determine the appropriate number of clusters. It identifies
two features out of total 4 features. But the correspond-
ing MS value is higher compared to the proposed feature
selection as well as semi-supervised clustering technique.
VAMOSA and VGAPS-clustering are applied with all fea-
tures on the given data set. They attain the MS values
of 0.80 and 0.62, respectively. While VGAPS is able to
identify appropriate number of clusters from this data
set automatically, VAMOSA fails to do so. The MS val-
ues obtained by VAMOSA and VGAPS clustering tech-
niques are, respectively, 0.23 and 0.41 points higher than
that attained by the proposed Semi-FeaClusMOO clus-
tering technique. As minimum MS value means better

partitioning, it proves the utility of feature selection. K-
means performs poorly for this data set. It attains MS
value of 0.68. Cancer data set is having total nine features.
Out of these nine features, Semi-FeaClusMOO technique
selects total 5 features on the optimal solution. The corre-
sponding partitioning is having two clusters with the min-
imum MS value (refer to Table 2). Semi-FeaClusMOOEuc
technique again selects 5 features on its optimal solution.
It is able to identify the correct number of clusters from
this data set. But the MS value obtained by this algorithm
is higher than MS value obtained by Semi-FeaClusMOO
technique. This again proves the utility of assigning points
to different clusters based on the point symmetry based
distance. FeaClusMOO technique performs similarly as
Semi-FeaClusMOO. It also attains a minimum MS value
of 0.31. It selects total five features and two clusters on the
optimal partitioning. This result proves that for this data
set no improvement is observed after utilizing the labeled
information (refer to Table 2). VAMOSA and VGAPS
clustering techniques are applied on this data set with all
the features. Both the algorithms identify correct number
of clusters from this data set. VAMOSA attains MS value
of 0.32 which is slightly higher than theMS value obtained
by Semi-FeaClusMOO technique (refer to Table 2). The
MS values obtained by VGAPS clustering and K-means
clustering are the same (refer to Table 2).
For Newthyroid data, proposed Semi-FeaClusMOO

clustering technique selects 2 features out of total 5
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features on its final solution. It is able to identify the
appropriate number of clusters from this data set. The
MS value attained by this clustering technique is also
the minimum (refer to Table 2). Semi-FeaClusMOOEuc
identifies three features on its final solution. It is also
able to identify the correct number of clusters. The MS
value attained by this algorithm is slightly higher than
the MS value obtained by Semi-FeaClusMOO clustering
technique. FeaClusMOO clustering technique selects 4
features out of total 5 features. But it is also able to iden-
tify the appropriate number of clusters from this data
set. The corresponding MS value is higher compared to
that obtained by the proposed Semi-FeaClusMOO clus-
tering technique (refer to Table 2). This proves the utility
of using semi-supervised clustering technique. VAMOSA
clustering technique selects total 5 clusters from this
data set when applied with all the available features. The
corresponding MS score is 0.57 which is 0.11 points
higher than that obtained by Semi-FeaClusMOO tech-
nique. VGAPS clustering technique with all the features
again also identifies the correct number of clusters for
this data set. But the MS value obtained by this clus-
tering technique is higher compared to that obtained by
Semi-FeaClusMOO clustering technique. K-means clus-
tering technique performs poorly for this data set. Results
on this data set again proves the utilization of feature
selection.
For wine data, proposed Semi-FeaClusMOO cluster-

ing technique is able to detect proper number of clusters
(K = 3). It selects total 6 features out of 13 features.
The corresponding MS value is also the lowest among
all the clustering techniques (refer to Table 2). Semi-
FeaClusMOOEuc clustering technique with Euclidean dis-
tance is not able to detect the appropriate number of
clusters from this data set. It identifies total 5 clus-
ters from this data set. The MS value attained by this
technique is slightly higher than that obtained by Semi-
FeaClusMOO technique. This again proves the utility
of using point symmetry based distance. FeaClusMOO
technique identifies three features on the final solution.
It is able to correctly detect the number of clusters
from this data set. But the MS score obtained by this
algorithm is slightly higher than that obtained by Semi-
FeaClusMOO clustering technique. This again shows the
utility of using semi-supervised information. VAMOSA
clustering technique when applied with all the features
is able to detect the correct number of clusters but it
attains a very high MS value. VGAPS clustering tech-
nique when applied with all the features is able to identify
appropriate number of clusters. The corresponding MS
value is 1.12 which is 0.50 points higher than MS score
obtained by the proposed Semi-FeaClusMOO clustering
technique. This shows the utility of feature selection. K-
means clustering technique performs poorly for this data

set. Results on this data set reveal that Euclidean distance
based clustering techniques are not suitable for this
data set.
For LiverDisorder data set, Semi-FeaClusMOO tech-

nique performs the best as compared to other techniques
(refer to Table 2). It selects five features out of total six fea-
tures and identifies appropriate number of clusters from
this data set. The MS value obtained by this technique
is the lowest among all. Semi-FeaClusMOOEuc cluster-
ing technique selects four features on its final solution.
It determines three clusters from the data set. The MS
score attained by this technique is 0.34 times higher than
MS value obtained by Semi-FeaClusMOO technique. This
again proves the utility of using point symmetry based
distance. FeaClusMOO also determines three features on
the final solution. The final partitioning identified by this
algorithm has K = 2 number of clusters. The MS value
attained by this technique is also much higher than that
obtained by Semi-FeaClusMOO technique. This proves
that the use of labeled information helps to improve the
performance of the proposed semi-supervised technique.
VAMOSA and VGAPS perform similarly for this data
set. They have applied with all the available feature sets
and identified similar MS scores. K-means also performs
similarly.
For LungCancer data set, again the proposed clustering

technique Semi-FeaClusMOO attains the minimum MS
value (refer to Table 2). Appropriate number of clusters is
also detected by this algorithm from this data set. FeaClus-
MOO technique performs similar to Semi-FeaClusMOO.
Semi-FeaClusMOO clustering technique with Euclidean
distance fails to identify appropriate number of clusters.
VAMOSA, VGAPS and K-means clustering techniques
fail for this particular data set. Results on this data set
again reveal the utility of feature selection.
For Glass data set, proposed Semi-FeaClusMOO attains

the minimum MS value (refer to Table 2). It is also
able to identify appropriate number of clusters from this
data set. It selects 7 features out of total 9 features.
Semi-FeaClusMOO clustering technique with Euclidean
distance fails to identify appropriate number of clus-
ters. It identifies only two features out of total 9 fea-
tures on the final solution. The MS value attained by
Semi-FeaClusMOO clustering technique with Euclidean
distance is slightly higher than that obtained by FeaClus-
MOO clustering technique with point symmetry based
distance (refer to Table 2). FeaClusMOO technique iden-
tifies five features on the final solution. It correctly iden-
tifies appropriate number of clusters from the data set.
But it attains some slightly higher values of MS score
as compared to Semi-FeaClusMOO clustering technique.
VAMOSA clustering technique when applied with all the
available features on this data set attains MS value of
1.08 which is 0.05 points higher than Semi-FeaClusMOO
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clustering technique. It is able to identify correct number
of clusters from this data set. VGAPS clustering technique
when applied with all the available features on this data set
is able to identify appropriate number of clusters. It also
attains slightly higher values of MS score as compared to
Semi-FeaClusMOO clustering technique. K-means clus-
tering technique performs poorly for this data set. Results
on this data set again reveal the utility of point symmetry
based distance for data clustering.

5.1 Summary of results
Results on a wide variety of data sets show that the pro-
posed feature selection and semi-supervised clustering
technique Semi-FeaClusMOO is able to detect the appro-
priate feature combination, appropriate number of clus-
ters and the appropriate partitioning from data sets having
many different types of clusters. Use of point symmetry
based distance enables the proposed algorithm to iden-
tify various symmetrical shaped clusters (hyperspheres,
linear, ellipsoidal, ring shaped, etc.) having overlaps. Use
of 10% labeled information helps Semi-FeaClusMOO to
improve the performance of clustering. The proposed
technique provides a way of incorporating some super-
vised knowledge in the unsupervised clustering prob-
lem. It combines two problems : feature selection and
semi-supervised clustering. Results on real-life data sets
show that Semi-FeaClusMOO is capable to detect par-
titioning from real-life data sets of varying character-
istics. The results on seven real-life data sets establish
the fact that Semi-FeaClusMOO is well-suited to detect
clusters of widely varying characteristics. Results show
that while Semi-FeaClusMOO with Euclidean distance is
only able to detect hyperspherical shaped clusters well,
VAMOSA and VGAPS are capable of doing so for sym-
metrical shaped clusters. FeaClusMOO technique does
clustering and feature selection simultaneously. It is not
capable of handling any supervised information. The pro-
posed Semi-FeaClusMOO clustering technique is able to
find out the proper clustering automatically where Semi-
FeaClusMOO with Euclidean distance succeeds while

FeaClusMOO/VAMOSA/VGAPS fails as well as where
FeaClusMOO/VAMOSA/VGAPS succeeds while Semi-
FeaClusMOO with Euclidean distance fails. Results also
reveal the effectiveness of feature selection from the
real-life data sets. The feature selection step of Semi-
FeaClusMOO often helps it to perform better than
VAMOSA/VGAPS clustering techniques which are also
based on point symmetry based distance. Similarly use
of labeled information helps Semi-FeaClusMOO to per-
form better than FeaClusMOO technique. Results show
K-means in general fails to detect proper partitioning
from real-life data sets.
The improved performance of Semi-FeaClusMOO can

be attributed to the following facts. Use of labeled
information helps to improve the clustering result. Use of
point symmetry based distance helps it to detect clusters
having symmetrical shapes. The symmetry based clus-
ter validity index measures the total symmetry present
in the obtained partitioning. The proposed algorithm is
also capable of identifying the appropriate feature com-
binations. Finally, AMOSA, the underlying optimization
technique makes it capable of optimizing four objective
functions simultaneously.

5.2 Statistical test
We have executed some statistical tests guided by Demšar
(2006) to prove the superiority of the proposed clus-
tering technique, Semi-FeaClusMOO. Friedman statisti-
cal test (Friedman 1937) is conducted to check whether
the six clustering techniques, Semi-FeaClusMOO, Semi-
FeaClusMOO with Euclidean distance, FeaClusMOO,
VAMOSA, VGAPS and K-means used here for experi-
ment perform similarly or not. Some ranks are assigned
by this test to each algorithm for each data set. It checks
whether the calculated average ranks are significantly dif-
ferent from the average/mean rank. Friedman test on the
above mentioned algorithms concludes that calculated
average ranks and mean rank are different with a p value
of 0.0166. The rankings of different algorithms are shown
in Table 3. Thereafter we have conducted Nemenyi’s test

Table 3 Computation of the rankings for the six algorithms considered in the study over 7 data sets, based on the
Minkowski Score values obtained

Data set Semi-FeaClusMOO Semi-FeaClusMOOEuc FeaClusMOO VAMOSA VGAPS KM

Iris 0.39(1) 0.39(1) 0.44(2) 0.80(5) 0.62(3) 0.68(4)

Cancer 0.31(1) 0.37(3) 0.31(1) 0.32(2) 0.37(3) 0.37(3)

Newthyroid 0.46(1) 0.47(2) 0.54(3) 0.57(4) 0.58(5) 0.94(6)

Wine 0.62(1) 0.64(2) 0.67(3) 0.97(4) 1.12(5) 1.40(6)

LiverDisorder 0.64(1) 0.98(2) 0.98(2) 0.98(2) 0.98(2) 0.98(2)

LungCancer 0.70(1) 0.71(2) 0.70(1) 0.85(3) 1.24(4) 1.45(5)

Glass 1.03(1) 1.05(2) 1.05(2) 1.08(3) 1.10(4) 1.69(5)

Average rank 1 2 2 3.28 3.71 6.2
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(Nemenyi 1963) to compare the clustering techniques
pairwise. For each of the cases, α = 0.05 is kept. Results
reveal that for all the cases, we have to reject the null
hypotheses (the pairing algorithms perform similarly) as
the corresponding p values are smaller than the α.

6 Conclusion
In this paper the problem of simultaneous feature selec-
tion and semi-supervised clustering is formulated as
a multiobjective optimization problem. Semi-supervised
clustering is a new domain where concepts of super-
vised classification and unsupervised classification have
been combined. It utilizes few amount of labeled data
and a large amount of unlabeled data. In this paper we
have solved the problem of semi-supervised clustering
using multiobjective optimization. We have proposed a
new way of utilizing the labeled information for solv-
ing the unsupervised classification problem. For cluster-
ing all the features of a data set may not be important.
Thus we have firstly selected some features and then
performed semi-supervised clustering based on these fea-
tures. A new multiobjective (MO) clustering technique
Semi-FeaClusMOO is proposed which can automatically
(a) identify appropriate set of features from the data set,
(b) partition the data into an appropriate number of clus-
ters and (c) utilize the labeled information. Here cluster
centers and feature combinations are encoded in the form
of a string. Assignment of points to different clusters
is done with the use of available set of features based
on the point symmetry based distance. Four objective
functions, one measuring the total compactness of the
partitioning based on the Euclidean distance, the second
one measuring the total symmetry of the clusters, third
onemeasuring the similarity between the available labeled
information and obtained partitioning, and the last one
counting the number of features, are considered here.
These objective functions are optimized simultaneously
using the search capability of AMOSA, a newly developed
simulated annealing based multiobjective optimization
method, in order to determine the appropriate feature
combinations, appropriate number of clusters as well as
the appropriate partitioning. The performance of the pro-
posed algorithm named Semi-FeaClusMOO is compared
with the Euclidean distance based version of the same
algorithm, FeaClusMOO technique which tackles fea-
ture selection problem under unsupervised classification
framework, a multiobjective based automatic clustering
technique, VAMOSA, a single objective clustering tech-
nique, VGAPS, and one traditional clustering technique,
K-means clustering, for several data sets having different
characteristics. Results reveal that the proposed semi-
supervised feature selection technique is capable to detect
the appropriate feature combinations and appropriate

partitioning from data sets having the point symmetric
clusters.
In future we would like to explore some more objective

functions.We would like to test our approachmore exten-
sively. In order to select a single solution from the final
Pareto optimal front we have developed a semi-supervised
approach. In future we would like to develop some more
techniques for this purpose.
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