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Traveling wave solutions of the Boussinesq
equation via the new approach of generalized
(G′/G)-expansion method
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Abstract

Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of
complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is
studied by using the new generalized (G′/G)-expansion method. Abundant traveling wave solutions with arbitrary
parameters are successfully obtained by this method and the wave solutions are expressed in terms of the
hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G′/G)-expansion
method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in
mathematical physics and engineering.
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Introduction
Large varieties of physical, chemical, and biological phe-
nomena are governed by nonlinear partial differential
equations. One of the most exciting advances of nonlinear
science and theoretical physics has been the development
of methods to look for exact solutions of nonlinear partial
differential equations. Exact solutions to nonlinear partial
differential equations play an important role in nonlinear
science, especially in nonlinear physical science since they
can provide much physical information and more insight
into the physical aspects of the problem and thus lead to
further applications. Nonlinear wave phenomena of
dispersion, dissipation, diffusion, reaction and convec-
tion are very important in nonlinear wave equations.
In recent years, quite a few methods for obtaining
explicit traveling and solitary wave solutions of non-
linear evolution equations have been proposed. A variety
of powerful methods, such as, the inverse scattering trans-
form method (Ablowitz and Clarkson 1991), the homo-
geneous balance method (Fan 2000a), the Exp-function
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method (He and Wu 2006; Akbar and Ali 2012), the
modified simple equation method (Jawad et al. 2010; Khan
et al. 2013), the novel (G′/G)-expansion method (Alam
et al. 2014; Alam and Akbar 2014), the improved (G′/G)-
expansion method (Zhang et al. 2010), the (G′/G)-expan-
sion method (Wang et al. 2008; Bekir 2008; Zayed
2009; Zhang et al. 2008; Akbar et al. 2012), the tanh-function
method (Wazwaz 2005), the extended tanh-function
method (Fan 2000b; El-Wakil and Abdou 2007), the
sine-cosine method (Wazwaz 2004), the modified
Exp-function method (Usman et al. 2013), the gener-
alized Riccati equation method (Yan and Zhang 2001),
the Jacobi elliptic function expansion method (Liu 2005;
Chen and Wang 2005), the Hirota’s bilinear method
(Wazwaz 2012), the Miura transformation method (Bock
and Kruskal 1979), the new generalized (G′/G)-expan-
sion method (Naher and Abdullah 2013; Alam et al.
2013a; Alam and Akbar 2013a; Alam and Akbar 2013b;
Alam et al. 2013b), the Cole-Hopf transformation
method (Salas and Gomez 2010), the Adomian decom-
position method (Adomain 1994; Wazwaz 2002), the
ansatz method (Hu 2001a; Hu 2001b), the exp(–Ф(η))-ex-
pansion method (Khan and Akbar 2013), the method of
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bifurcation of planar dynamical systems (Li and Liu 2000;
Liu and Qian 2001), and so on.
The objective of this article is to apply the new gener-

alized (G'/G) expansion method to construct the exact
traveling wave solutions of the Boussinesq equation.
The outline of this paper is organized as follows: In

Section Description of the new generalized (G'/G)-ex-
pansion method, we give the description of the new
generalized (G'/G) expansion method. In Section Ap-
plication of the method, we apply this method to the
Boussinesq equation, results and discussions and graphical
representation of solutions. Conclusions are given in the
last section.

Description of the new generalized (G′/G)-expansion
method
Let us consider a general nonlinear PDE in the form

Φ v; vt ; vx; vx x; vt t ; vt x;…ð Þ; ð1Þ
where v=v(x,t) is an unknown function, Ф is a polyno-
mial in v(x,t) and its derivatives in which highest order
derivatives and nonlinear terms are involved and the
subscripts stand for the partial derivatives.
Step 1: We combine the real variables x and t by a

complex variable η

v x; tð Þ ¼ v ηð Þ; η ¼ x� V t; ð2Þ
where V is the speed of the traveling wave. The traveling
wave transformation (2) converts Eq. (1) into an ordin-
ary differential equation (ODE) for v=v(η):

ψ v; v
0
; v″; v ‴;⋯

� �
; ð3Þ

where ψ is a polynomial of v and its derivatives and the
superscripts indicate the ordinary derivatives with respect
to η.
Step 2: According to possibility, Eq. (3) can be inte-

grated term by term one or more times, yields constant
(s) of integration. The integral constant may be zero, for
simplicity.
Step 3. Suppose the traveling wave solution of Eq. (3)

can be expressed as follows:

v ηð Þ ¼
XN
i¼0

αi d þMð Þi þ
XN
i¼1

βi d þMð Þ−i; ð4Þ

where either αN or βN may be zero, but could be zero
simultaneously, αi (i=0,1,2…,N) and βi (i=1,2,…,N) and d
are arbitrary constants to be determined and M(η) is

M ηð Þ ¼ G0=Gð Þ ð5Þ
where G=G(η) satisfies the following auxiliary nonlinear
ordinary differential equation:
AGG″−BGG
0
−EG2−C G

0 ¼ 0; ð6Þ

where the prime stands for derivative with respect to η;
A, B, C and E are real parameters.
Step 4: To determine the positive integer N, taking the

homogeneous balance between the highest order non-
linear terms and the derivatives of the highest order
appearing in Eq. (3).
Step 5: Substitute Eq. (4) and Eq. (6) including Eq. (5)

into Eq. (3) with the value of N obtained in Step 4, we
obtain polynomials in (d+M)N (N=0,1,2,…) and (d+M)-N

(N=0,1,2,…). Subsequently, we collect each coefficient of
the resulted polynomials to zero, yields a set of algebraic
equations for αi (i=0,1,2,…,N) and βi (i=1,2,…,N), d
and V.
Step 6: Suppose that the value of the constants αi

(i=0,1,2,…,N), βi (i=1,2,…,N), d and V can be found by
solving the algebraic equations obtained in Step 5. Since
the general solutions of Eq. (6) are known to us, insert-
ing the values of αi (i=0,1,2,…,N), βi (i=1,2,…,N), d and
V into Eq. (4), we obtain more general type and new
exact traveling wave solutions of the nonlinear partial
differential Equation (1).
Step 7: Using the general solution of Eq. (6), we have

the following solutions of Eq. (5):
Family 1: When B ≠ 0, ω=A-C and Ω =B2 + 4E(A-C) > 0,

M ηð Þ ¼ G
0

G

 !
¼ B

2ω
þ

ffiffiffiffi
Ω

p

2ω

C1 sinh
ffiffiffi
Ω

p
2A η
� �

þ C2 cosh
ffiffiffi
Ω

p
2A η
� �

C1 cosh
ffiffiffi
Ω

p
2A η
� �

þ C2 sinh
ffiffiffi
Ω

p
2A η
� �

ð7Þ

Family 2: When B ≠ 0, ω=A-C and Ω =B2 + 4E(A-C) < 0,

M ηð Þ ¼ G
0

G

 !
¼ B

2ω
þ

ffiffiffiffiffiffiffi
−Ω

p

2ω

−C1 sin
ffiffiffiffiffi
−Ω

p
2A η

� �
þ C2 cos

ffiffiffiffiffi
−Ω

p
2A η

� �
C1 cos

ffiffiffiffiffi
−Ω

p
2A η

� �
þ C2 sin

ffiffiffiffiffi
−Ω

p
2A η

� �
ð8Þ

Family 3: When B≠ 0, ω=A-C andΩ =B2+4E(A-C) = 0,

M ηð Þ ¼ G
0

G

 !
¼ B

2ω
þ C2

C1 þ C2η
ð9Þ

Family 4: When B = 0, ω =A-C and Δ=ωE>0,

M ηð Þ ¼ G
0

G

 !
¼

ffiffiffiffi
Δ

p

ω

C1 sinh
ffiffiffi
Δ

p
A η

� �
þ C2 cosh

ffiffiffi
Δ

p
A η

� �
C1 cosh

ffiffiffi
Δ

p
A η

� �
þ C2 sinh

ffiffiffi
Δ

p
A η

� �
ð10Þ

Family 5: When B = 0, ω = A-C and Δ = ωE < 0,



Alam et al. SpringerPlus 2014, 3:43 Page 3 of 9
http://www.springerplus.com/content/3/1/43
M ηð Þ ¼ G
0

G

 !
¼

ffiffiffiffiffiffi
−Δ

p

ω

−C1 sin
ffiffiffiffiffi
−Δ

p
A η

� �
þ C2 cos

ffiffiffiffiffi
−Δ

p
A η

� �
C1 cos

ffiffiffiffiffi
−Δ

p
A η

� �
þ C2 sin

ffiffiffiffiffi
−Δ

p
A η

� �
ð11Þ

Application of the method
In this section, we will put forth the new generalized
(G'/G) expansion method to construct many new and
more general traveling wave solutions of the Boussinesq
equation. Let us consider the Boussinesq equation,

vtt−vxx−vxxxx−3 v2
� �

xx ¼ 0: ð12Þ

Now, we will use the traveling wave transformation
Eq. (2) into the Eq. (12), which yields:

V 2−1
� �

v′−v ‴−3 v2
� �′ ¼ 0: ð13Þ

Eq. (13) is integrable, therefore, integrating with respect
to η once yields:

V 2−1
� �

v−v″−3v2 þ K ¼ 0; ð14Þ
where K is an integration constant which is to be
determined.
Taking the homogeneous balance between highest

order nonlinear term v2 and linear term of the highest
order v″ in Eq. (14), we obtain N=2. Therefore, the solu-
tion of Eq. (14) is of the form:

v ηð Þ ¼ α0 þ α1 d þMð Þ þ α2 d þMð Þ2 þ β1 d þMð Þ−1
þ β2 d þMð Þ−2;

ð15Þ
where α0, α1, α2, β1, β2 and d are constants to be
determined.
Substituting Eq. (15) together with Eqs. (5) and (6)

into Eq. (14), the left-hand side is converted into polyno-
mials in (d+M)N (N=0,1,2,.......) and (d+M)-N (N=1,2,…).
We collect each coefficient of these resulted polynomials
to zero yields a set of simultaneous algebraic equations
(for simplicity, the equations are not presented) for α0,
α1, α2, β1, β2 d, K and V. Solving these algebraic
equations with the help of computer algebra, we obtain
following:
Set 1:

K ¼ n4
12A4 ; α0 ¼

n1
6A2 ; α1 ¼ 0; α2 ¼ 0; β1 ¼

2n2
A2 ;

β2 ¼
2n3
A2 ;V ¼ V ; d ¼ d:

ð16Þ
where n1 = ( −A2 +V2A2 − 12d2ω2 + 8Eω − 12Bdω − B2),
n2 = (− 2Edω+3Bd2ω+2d3ω2−EB+B2d),n3 =− (− 2Ed

2ω +
d4ω2 + 2Bd3ω+ E2 +B2d2− 2BdE), n4 =− (− 8EB2ω+V4A4−
2V2A4 − 16E2ω2 +A4 −B4),ω =A −C,V, d, A,B,C, E are free
parameters.
Set 2: K ¼ − 1

12A4 −8EB2ωþ V 4A4−2V 2A4−16E2ω2 þ A4−B4
� �

;

α0 ¼ 1

6A2 −A2 þ V 2A2−12 d2ω2 þ 8Eω−12Bdω−B2
� �

;V ¼ V ;

ð17Þ

α1 ¼ 2
A2 2 dω2 þ Bωð Þ; α2 ¼ − 2ω2

A2 ; β1 ¼ 0; β2 ¼ 0: Where
ω = A-C, V, d, A, B, C, E are free parameters.
Set 3: K ¼ − n7

12A4,V=V, d ¼ − B
2ω, α0 ¼ n5

6A2, α1=0,

α2 ¼ −
2ω2

A2 ; β1 ¼ 0; β2 ¼
n6

8A2ω2
: ð18Þ

where n5 = ((V2 − 1)A2 + 8Eω + 2B2), n6 = − (16E2ω2 +
8EB2ω + B 4), n7 = ((V2 − 1)2A4 − 256E2ω2 − 128B2Eω −
16B4), ω = A − C,V, A, B,C, E are free parameters.
For set 1, substituting Eq. (16) into Eq. (15), along with

Eq. (7) and simplifying, yields following traveling wave so-
lutions, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v11 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ B

2ω
þ

ffiffiffiffi
Ω

p

2ω
coth

ffiffiffiffi
Ω

p

2A
η

� �� �−1

þ12n3 d þ B
2ω

þ
ffiffiffiffi
Ω

p

2ω
coth

ffiffiffiffi
Ω

p

2A
η

� �� �−2)
:

v12 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ B

2ω
þ

ffiffiffiffi
Ω

p

2ω
tanh

ffiffiffiffi
Ω

p

2A
η

� �� �−1

þ12n3 d þ B
2ω

þ
ffiffiffiffi
Ω

p

2ω
tanh

ffiffiffiffi
Ω

p

2A
η

� �� �−2)
:

Substituting Eq. (16) into Eq. (15), along with Eq. (8)
and simplifying, our exact solutions become, if C1 = 0
but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v13 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ B

2ω
þ

ffiffiffiffiffiffiffi
−Ω

p

2ω
cot

ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �� �−1

þ12n3 d þ B
2ω

þ
ffiffiffiffiffiffiffi
−Ω

p

2ω
cot

ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �� �−2)
:

v14 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ B

2ω
−

ffiffiffiffiffiffiffi
−Ω

p

2ω
tan

ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �� �−1

þ12n3 d þ B
2ω

−

ffiffiffiffiffiffiffi
−Ω

p

2ω
tan

ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �� �−2)
:

Substituting Eq. (16) into Eq. (15), together with
Eq. (9) and simplifying, our obtained solution becomes:



( � �

Table 1 Comparison between Neyrame et al. (2010) solutions and our solutions

Neyrame et al. (2010) solutions Obtained solutions

i. If C1 = 0 and u(ξ) = 4v21(η), Case 1 becomes:

v21 Φð Þ ¼ −2 λ2−4μ
� �

coth2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4 μ

q
ξ

2

0
@

1
A þ 3λ

2
þ α0:

i. If A = 1, C = 0, Ω = λ2-4μ, B = 1, E = 1, V = 1, 203 −
3λ
2 ¼ α0 then the solution is

v21 Φð Þ ¼ −2 λ2−4 μ
� �

coth2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
ξ

2

0
@

1
A þ 3λ

2
þ α0:

ii. If C1 = 0 and u(ξ) = 4v23(η), Case 2 becomes:

v23 Φð Þ ¼ −2 4 μ−λ2
� �

cot2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 μ−λ2

q
ξ

2

0
@

1
A þ 3λ

2
þ α0:

ii. If A = 1, C = 0, Ω = λ2-4 μ, B = 1, E = 1, V = 1, 203 −
3λ
2 ¼ α0 then the solution is

v23 Φð Þ ¼ −2 4 μ−λ2
� �

cot2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 μ−λ2

q
ξ

2

0
@

1
A þ 3λ

2
þ α0:

iii. If u(ξ) = 4v25(η), Case 3 becomes:

v25 Φð Þ ¼ −2 C2
C1þC2η

� �2
þ 3λ

2 þ α0:

iii. If A = 1, C = 0, B = 1, E = 1, V = 1, 203 −
3λ
2 ¼ α0 then the solution is

v25 Φð Þ ¼ −2 C2
C1þC2η

� �2
þ 3λ

2 þ α0:
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v15 ηð Þ ¼ 1

6A2 n1 þ 12n2 d þ B
2ω

þ C2

C1 þ C2η

−1

þ12n3 d þ B
2ω

þ C2

C1 þ C2η

� �−2
)
:

Substituting Eq. (16) into Eq. (15), along with Eq.
(10) and simplifying, we obtain following traveling
wave solutions, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0
respectively:
Figure 1 Modulus plot singular soliton solution, shape of v16 (η) when
v16 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ

ffiffiffiffi
Δ

p

ω
coth

ffiffiffiffi
Δ

p

A
η

 ! !−1

þ12n3 d þ
ffiffiffiffi
Δ

p

ω
coth

ffiffiffiffi
Δ

p

A
η

 ! !−2)
:

v17 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ

ffiffiffiffi
Δ

p

ω
tanh

ffiffiffiffi
Δ

p

A
η

 ! !−1

þ12n3 d þ
ffiffiffiffi
Δ

p

ω
tanh

ffiffiffiffi
Δ

p

A
η

 ! !−2)
:

A = 4, B = 0, C = 1, E = 1, V = 1, d = 0 and -10 ≤ x, t ≤ 10.
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Substituting Eq. (16) into Eq. (15), together with
Eq. (11) and simplifying, our obtained exact solutions
become, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v18 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d þ

ffiffiffiffiffiffi
−Δ

p

ω
cot

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−1

þ12n3 d þ
ffiffiffiffiffiffi
−Δ

p

ω
cot

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−2)
:

v19 ηð Þ ¼ 1

6A2

(
n1 þ 12n2 d−

ffiffiffiffiffiffi
−Δ

p

ω
tan

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−1

þ12n3 d−
ffiffiffi
−

p
Δ

ω
tan

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−2)
:

where η = x-Vt.
Again for set 2, substituting Eq. (17) into Eq. (15),

along with Eq. (7) and simplifying, our traveling wave
solutions become, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0
respectively:
Figure 2 Bell-shaph sec h2 solitary traveling wave solution, shape of v
v21 ηð Þ ¼ 1

6A2 A2 V 2−1
� �þ 2 4Eωþ B2

� �
−3Ω coth2

Ω

2A
η ;

v22 ηð Þ ¼ 1

6A2

(
A2 V 2−1
� �þ 2 4Eωþ B2

� �
−3Ω tanh2

ffiffiffiffi
Ω

p

2A
η

� �)
;

Substituting Eq. (17) into Eq. (15), along with Eq. (8)
and simplifying yields exact solutions, if C1 = 0 but C2 ≠ 0;
C2 = 0 but C1 ≠ 0 respectively:

v23 ηð Þ ¼ 1

6A2 A2 V 2−1
� �þ 2 4Eωþ B2

� �þ 3Ω cot2
ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �	 

;

v24 ηð Þ ¼ 1

6A2 A2 V 2−1
� �þ 2 4Eωþ B2

� �
−3Ω tan2

ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �	 

;

Substituting Eq. (17) into Eq. (15), along with Eq. (9)
and simplifying, our obtained solution becomes:
27 (η) when A = 2, B = 0, C = 1, E = 1, V = 1 and -10 ≤ x, t ≤ 10.
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v25 ηð Þ ¼ 1

6A2 A2 V 2−1
� �þ 2 B2 þ 4Eω

� �
−12ω2 C2

C1 þ C2η

� �2

;

Substituting Eq. (17) into Eq. (15), together with Eq.
(10) and simplifying, yields following traveling wave solu-
tions, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v26 ηð Þ ¼ 1

6A2

 
A2 V 2−1
� �þ −B2 þ 8Eω

� �þ 12
ffiffiffiffi
Δ

p

� B coth

ffiffiffiffi
Δ

p

A
η

 !
−
ffiffiffiffi
Δ

p
coth2

ffiffiffiffi
Δ

p

A
η

 ! !!
:

v27 ηð Þ ¼ 1

6A2

 
A2 V 2−1
� �þ −B2 þ 8Eω

� �þ 12
ffiffiffiffi
Δ

p

� B tanh

� ffiffiffiffi
Δ

p

A
η

�
−
ffiffiffiffi
Δ

p
tanh2

� ffiffiffiffi
Δ

p

A
η

� !!
:

Substituting Eq. (17) into Eq. (15), along with Eq. (11)
and simplifying, our exact solutions become, if C1 = 0
but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:
Figure 3 Modulus plot of periodic wave solutions, shape of v29 (η) wh
v28 ηð Þ ¼ 1

6A2 A2 V 2−1
� �þ −B2 þ 8Eω

� �þ 12
ffiffiffiffi
Δ

p

� iB cot

� ffiffiffiffiffiffi
−Δ

p

A
η

�
þ

ffiffiffiffi
Δ

p
cot2

� ffiffiffiffiffiffi
−Δ

p

A
η

� !!
:

v29 ηð Þ ¼ 1

6A2

 
A2 V 2−1
� �þ −B2 þ 8Eω

� �
−12

ffiffiffiffi
Δ

p

� iB tan

� ffiffiffiffiffiffi
−Δ

p

A
η

�
−
ffiffiffiffi
Δ

p
tan2

� ffiffiffiffiffiffi
−Δ

p

A
η

� !!
;

where η = x-Vt.
Similarly, for set 3, substituting Eq. (18) into Eq. (15),

together with Eq. (7) and simplifying, yields following
traveling wave solutions, if C1 = 0 but C2 ≠ 0; C2 = 0 but
C1 ≠ 0 respectively:

v31 ηð Þ ¼ 1

6A2 n5−3Ω coth2
ffiffiffiffi
Ω

p

2A
η

� �
þ 3n6

Ω
tanh2

ffiffiffiffi
Ω

p

2A
η

� �	 

:

en A = 1, B = 0, C = 2, E = 2, V = 1 and -10 ≤ x, t ≤ 10.
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v32 ηð Þ ¼ 1

6A2 n5−3Ω tanh2
Ω

2A
η þ 3n6

Ω
coth2

Ω

2A
η :

Substituting Eq. (18) into Eq. (15), along with Eq. (8)
and simplifying, we obtain following solutions, if C1 = 0
but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v33 ηð Þ ¼ 1

6A2 n5 þ 3Ω cot2
ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �
−
3n6
Ω

tan2
ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �	 

:

v34 ηð Þ ¼ 1

6A2 n5 þ 3Ω tan2
ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �
−
3n6
Ω

cot2
ffiffiffiffiffiffiffi
−Ω

p

2A
η

� �	 

:

Substituting Eq. (18) into Eq. (15), along with Eq. (9)
and simplifying, our obtained solution becomes:

v35 ηð Þ ¼ 1

6A2 n5−12ω2 C2

C1 þ C2η

� �2

þ 3n6
4ω2

C2

C1 þ C2η

� �−2
( )

:

Substituting Eq. (18) into Eq. (15), along with Eq. (10)
and simplifying, yields following exact traveling wave solu-
tions, if C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:
Figure 4 Modulus plot of soliton wave solutions, shape of v17 (η) whe
v36 ηð Þ ¼ 1

6A2 n5−12ω2 −B
2ω

þ Δ

ω
coth

Δ

A
η

þ 3n6
8ω2

−B
2ω

þ
ffiffiffiffi
Δ

p

ω
coth

ffiffiffiffi
Δ

p

A
η

 ! !−2)
:

v37 ηð Þ ¼ 1

6A2

(
n5−12ω2 −B

2ω
þ

ffiffiffiffi
Δ

p

ω
tanh

ffiffiffiffi
Δ

p

A
η

 ! !2

þ 3n6
8ω2

−B
2ω

þ
ffiffiffiffi
Δ

p

ω
tanh

ffiffiffiffi
Δ

p

A
η

 ! !−2)
:

Substituting Eq. (18) into Eq. (15), along with Eq. (11)
and simplifying, our obtained exact solutions become, if
C1 = 0 but C2 ≠ 0; C2 = 0 but C1 ≠ 0 respectively:

v38 ηð Þ ¼ 1

6A2

(
n5−12ω2 −B

2ω
þ

ffiffiffiffiffiffi
−Δ

p

ω
cot

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !2

þ 3n6
8ω2

−B
2ω

þ
ffiffiffiffiffiffi
−Δ

p

ω
cot

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−2)
:

n A = 4, B = 0, C = 1, E = 1, V = 3, d = 1 and -10 ≤ x, t ≤ 10.



( ffiffiffiffiffiffip ffiffiffiffiffiffip ! !2

Figure 5 Modulus plot of singular periodic wave solutions, shape of v18 (η) when A = 1, B = 0, C = 2, E = 2, V = 1, d = 1 and -10 ≤ x, t ≤ 10.

Alam et al. SpringerPlus 2014, 3:43 Page 8 of 9
http://www.springerplus.com/content/3/1/43
v39 ηð Þ ¼ 1

6A2 n5−12ω2 −B
2ω

þ −Δ
ω

tan
−Δ
A

η

þ 3n6
8ω2

−B
2ω

þ
ffiffiffiffiffiffi
−Δ

p

ω
tan

ffiffiffiffiffiffi
−Δ

p

A
η

 ! !−2)
:

where η = x-Vt.

Results and discussions
It is worth declaring that some of our obtained solu-
tions are in good agreement with already published
results which are presented in the following tables
(Table 1).
Beside this table, we obtain further new exact traveling

wave solutions v22 ηð Þ, v24 ηð Þ, v26 ηð Þ−v29 ηð Þ, v11 ηð Þ−v19 ηð Þ,
v31 ηð Þ−v39 ηð Þ in this article, which have not been reported
in the previous literature.

Graphical representation of the solutions
The graphical illustrations of the solutions are given
below in the figures with the aid of Maple (Figures 1, 2,
3, 4 and 5).
The solutions corresponding to v11 ηð Þ; v13 ηð Þ; v15 ηð Þ;

v16 ηð Þ; v21 ηð Þ, v25 ηð Þ, v26 ηð Þ; v31 ηð Þ; v32 ηð Þ; v35 ηð Þ−v37 ηð Þ
is identical to the solution v16 ηð Þ , the solution corre-
sponding to v12 ηð Þ is identical to the solution v27 ηð Þ, the
solution corresponding to v22 ηð Þ is identical to the solu-
tion v17 ηð Þ, the solution corresponding to v28 ηð Þ, v33 ηð Þ;
v34 ηð Þ; v38 ηð Þ v39 ηð Þ is identical to the solution v38 ηð Þ
and the solution corresponding to v14 ηð Þ; v18 ηð Þ; v19 ηð Þ;
v23 ηð Þ, v24 ηð Þ is identical to the solution v29 ηð Þ.

Conclusion
In this paper, we obtain the traveling wave solutions
of the Boussinesq equation by using the new ap-
proach of generalized (G'/G) -expansion method. We
apply the new approach of generalized (G'/G)-expan-
sion method for the exact solution of this equation
and constructed some new solutions which are not
found in the previous literature. This study shows
that the new generalized (G'/G)-expansion method is
quite efficient and practically well suited to be used
in finding exact solutions of NLEEs. Also, we observe that
the new generalized (G'/G)-expansion method is straight-
forward and can be applied to many other nonlinear
evolution equations.
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