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Abstract

This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a
diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and
analysing special purpose finite differences for the approximation of second order partial derivatives, we employed
them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments
reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by
employing a general purpose solver.
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Introduction
Many systems of interest in biology and chemistry
have successfully been modelled by partial differential
equations (PDEs) exhibiting an oscillatory or periodic
solution. As an example, we mention oscillatory reaction-
diffusion equations, which have periodic waves as funda-
mental solutions. One particular situation in which the
generation of periodic waves has a specific application is
intracellular calcium signalling (Atri et al. 1993), described
in (Sherratt 1996) and references therein. In this paper, we
are particularly aiming to the numerical solution of PDEs
with oscillatory solution, by considering in a first analysis
the following PDE

∂u
∂t

= δ
∂2u
∂x2

, (1)

usually denoted in the literature as diffusion equation
(compare, for instance, (Hamdi et al. 2007; Isaacson and
Keller 1994) and references therein). Such an equation
is also called Fourier Second Law when applied to heat
transfer; in this case, the function u(x, t) represents the
temperature (evolving both in space and in time), while
the constant δ is the thermal diffusivity of the material.
Eq. 1 is also employed, for instance, to model mass diffu-
sion: in this case, it is better known as Fick Second Law,
u(x, t) represents themass concentration and δ is the mass
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diffusivity. We observe that diffusion also plays an impor-
tant role in magnetic resonance imaging, since it allows to
study structural properties of tissues (as in (Ziener et al.
2009), where finite difference methods have been applied
to compute numerical solutions).
Classical finite difference numerical methods for PDEs

may not be well-suited to follow a prominent periodic
or oscillatory behaviour because, in order to accurately
follow the oscillations, a very small stepsize would be
required with corresponding deterioration of the numer-
ical performances, especially in terms of efficiency. For
this reason, many classical numerical methods have been
adapted in order to efficiently approach oscillatory prob-
lems. One of the possible ways to proceed in this direc-
tion is obtained by imposing that a numerical method
exactly integrates (within the round-off error) problems
whose solution can be expressed as linear combination
of functions other than polynomials: this is the spirit
of the exponential fitting technique (EF, see (Ixaru and
Vanden Berghe 2004; Paternoster 2012) and references
therein; also compare (D’Ambrosio et al. 2012a; 2012b;
2011a; D’Ambrosio et al. 2011b; D’Ambrosio et al. 2011c;
D’Ambrosio et al. 2013; Ixaru 2012; Vanden Berghe et al.
2003; Vanden Berghe et al. 2001) and references therein
for specific aspects of EF-based methods for ordinary
differential equations and (Conte et al. 2014; Cardone
et al. 2012a, 2012b; Cardone et al. 2010a, 2010b, Ixaru and
Paternoster 2001; Kim et al. 2003) for EF numerical inte-
gration and its application to integral equations), where
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the adapted numerical method is developed in order to
be exact on problems whose solution is linear combina-
tion of the elements of a certain finite dimensional space
of functions, usually denoted as fitting space. The specific
path we aim to follow in order to numerically solve a diffu-
sion PDE by exponentially fitted methods is essentially the
following: we first introduce and analyze exponentially fit-
ted numerical differentiation formulae which approximate
the second derivative ∂2u/∂x2, as described in Section
“An exponentially fitted second order finite difference”;
we next consider diffusion PDEs with mixed boundary
conditions and provide a spatial semi-discretization of the
problem in Section “A test problem: diffusion equation
with mixed boundary conditions”; we finally provide
numerical experiments in Section “Numerical results on
the semi-discrete model”, where the proposed approach is
tested and compared with others known from the existing
literature.

An exponentially fitted second order finite
difference
We consider a given function u(x, t) defined on the rect-
angular domain

D =[x0,X]×[t0,T]⊂ R
2,

and aim to provide a numerical approximation of the
second derivative with respect to x by the three-point
finite difference formula

∂2u
∂x2

(x, t) ≈ 1
h2

(a0u(x + hx, t) + a1u(x, t)

+ a2u(x − hx, t)) ,
(2)

where hx is a given increment of the x variable. The
numerical differentiation formula (2) employs, for any
given point x, its next neighbors x − hx, x + hx. Other
possibilities might be taken into account, e.g. over-next
neighbors (as Eq. (25.3.24) in (Abramowitz and Stegun
1964), or Eq. (2.81) in (Gultsch 2004)).
The formula (2) we are going to derive is based on

exponential fitting on the fitting space

F = {1, exp(μx + ωt), exp(−μx + ωt)} , (3)

with μ,ω ∈ R. To this purpose, following (Ixaru and
Vanden Berghe 2004), we introduce the linear operator

L[h, a]u(x, t) = ∂2u
∂x2

(x, t) − 1
h2

(a0u(x + h, t)

+ a1u(x, t) + a2u(x − h, t)) ,
(4)

and, in order to derive the unknown coefficients a0, a1 and
a2, we annihilate it on the chosen space (3), i.e.

L[h, a] 1 = − 1
h2

(a0 + a1 + a2) = 0,

L[h, a] exp(μx + ωt)
∣∣∣
x=0, t=0

= μ2 − 1
h2

(a0 exp(μh) + a1

+ a2 exp(−μh)) = 0,

L[h, a] exp(−μx + ωt)
∣∣∣
x=0, t=0

= μ2 − 1
h2

(a0 exp(−μh) + a1

+ a2 exp(μh)) = 0.

We observe that each evaluation is always referred to the
point (x, t) = (0, 0), due to the invariance in translation
of linear operators (compare (Ixaru and Vanden Berghe
2004)). Thus, we obtain the following linear system

⎧⎨
⎩

a0 + a1 + a2 = 0,
z2 − a0 exp(z) − a1 − a2 exp(−z) = 0,
z2 − a0 exp(−z) − a1 − a2 exp(z) = 0,

(5)

where z = μh, in the unknowns a0, a1 and a2, whose
solution is

a0(z) = z2 exp(z)
(exp(z) − 1)2

, a1(z) = − 2z2 exp(z)
(exp(z) − 1)2

,

a2(z) = z2 exp(z)
(exp(z) − 1)2

.

(6)

Thus, as usual for exponentially fitted formulae, the
coefficients are actually functions of z = μh, hence they
are non-constant values and explicitly depend only on the
parameter μ related to the spatial evolution. The parame-
ter ω, which dictates the time oscillations, does not
influence the expression of the coefficients of the finite
difference and is not directly involved in the spatial dis-
cretization. Such a value will next be employed in the time
integration of a semi-discrete problem based on (1).

Order of accuracy
We now analyze the error associated to a generic three-
point formula

∂2u
∂x2

(x, t) ≈ 1
h2

(α0(z)u(x + hx, t) + α1(z)u(x, t)

+ α2(z)u(x − hx, t)) ,
(7)

and next specialize the result to the exponentially fitted
case considered in the previous section.

Theorem 1. Suppose that u ∈ C4(�), where � =[x −
hx, x + hx]×[0,T], being hx > 0. If

α0(z) + α1(z) + α2(z) = 0, α0(z) − α2(z) = 0,
α0(z) + α2(z) − 2 = 0,

(8)
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then there exists a constant C > 0 such that, for any h ∈
(0, hx), we have∣∣∣∣α0(z)u(x + h, t) + α1(z)u(x, t) + α2(z)u(x − h, t)

h2

−∂2u
∂x2

(x, t)
∣∣∣∣ ≤ Ch2.

Proof. In the remainder of the proof, we will use the
notation with subscripts to denote partial derivation of the
function u(x, t).
We apply the Taylor formula up to the fourth order to

the terms u(x + h, t) and u(x − h, t), obtaining

u(x + h, t) = u(x, t) + hux(x, t) + h2

2
uxx(x, t)

+ h3

6
uxxx(x, t) + h4

24
uxxxx(ξ+, t),

u(x − h, t) = u(x, t) − hux(x, t) + h2

2
uxx(x, t)

− h3

6
uxxx(x, t) + h4

24
uxxxx(ξ+, t),

with ξ+ ∈ (x, x + h) and ξ− ∈ (x − h, x). Hence, by
intermediate value theorem, we obtain

α0(z)u(x + h, t) + α1(z)u(x, t) + α2(z)u(x − h, t)
h2

=

= α0(z) + α1(z) + α2(z)
h2

u(x, t) + α0(z) − α2(z)
h

ux(x, t)

+ α0(z) + α2(z)
2

uxx(x, t) + (α0(z) − α2(z))
h
6
uxxx(x, t)

+ (α0(z) + α2(z))
h2

12
uxxxx(ξ , t),

with ξ ∈ (x − h, x + h). The hypothesis (8) leads to

α0(z)u(x + h, t) + α1(z)u(x, t) + α2(z)u(x − h, t)
h2

= uxx(x, t) + h2

6
uxxxx(ξ , t).

The thesis holds true with

C = sup
ξ∈[x−hx,x+hx]

|uxxxx(ξ , t)|
6

.

Roughly speaking, this theorem proves that formula (7)
has second order of accuracy provided that its coefficients
satisfy (8). This is certainly the case of exponentially fitted
formula, depending on the coefficients (6). Thus, we can
state the following corollary.

Corollary 1. Suppose that u ∈ C4(�), where � =[x −
hx, x + hx]×[0,T], being hx > 0. Then, the exponentially
fitted finite difference formula (2), whose coefficients are
given by (6), has second order of accuracy.

Trigonometrical case
We now derive a trigonometrically fitted finite difference
(2) (which will next be employed in Section “Numerical
results on the semi-discrete model”), by annihilating the
operator (4) in correspondence of the basis functions

F = {1, sin(μx + ωy), cos(μx + ωy)},
which leads to the linear system⎧⎨

⎩
a0 + a1 + a2 = 0,

−a0 sin(z) − a2 sin(−z) = 0,
z2 − a0 cos(z) − a1 − a2 cos(−z) = 0,

(9)

whose solution is

a0(z) = − z2

2(cos(z) − 1)
, a1(z) = z2

cos(z) − 1
,

a2(z) = − z2

2(cos(z) − 1)
.

(10)

By similar arguments to those provided in the previous
section, we obtain the following result.

Corollary 2. Suppose that u ∈ C4(�), where � =[x −
hx, x + hx]×[0,T], being hx > 0. Then, the trigonometri-
cally fitted finite difference formula (2), whose coefficients
are given by (10), has second order of accuracy.

Recovering the classical first order finite difference
We finally recover the classical first order finite difference
for the numerical approximation of uxx, by annihilating
the evaluations of the linear operator (4) on the monomial
basis

{
1, x, x2

}
, i.e.

L[h, a] 1 = − 1
h2

(a0 + a1 + a2) = 0,

L[h, a] x
∣∣∣
x=0, y=0

= −1
h

(a0 − a2) = 0,

L[h, a] x2
∣∣∣
x=0, y=0

= 2 − a0 − a2 = 0.

This leads to the following linear system of equations⎧⎨
⎩
a0 + a1 + a2 = 0,

a0 − a2 = 0,
2 − a0 − a2 = 0,

(11)

whose solution is

a0 = 1, a1 = −2, a2 = 1, (12)
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and leads to the well-known classical finite difference

∂2u
∂x2

(xi, yj) ≈ 1
h2

(
u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)

)
,

(13)

which is known to have second order of accuracy. We
observe that the coefficients (6) of the finite difference
(2), when z tends to 0, tend to the classical coefficients
(12): this confirms that the exponentially fitted finite dif-
ference has second order of accuracy. Analogously, we also
recover the second order of accuracy of the trigonometri-
cally fitted finite difference (2), with coefficients (10).

A test problem: diffusion equation withmixed
boundary conditions
We now consider the following diffusion problem with
mixed boundary conditions (Hamdi et al. 2007; Schiesser
1991; Schiesser and Griffiths 2009)

∂u
∂t

= δ
∂2u
∂x2

, (14)

u(x, t0) = u0(x), (15)
u(x0, t) = w0(t), (16)

∂u
∂x

(X, t) = 0, (17)

in the rectangular domain [x0,X]×[t0,T].We aim to solve
this problem by exponentially fitted methods taking into
account the behaviour of the solution in time and space, by
suitably applying the method of lines (compare (Isaacson

and Keller 1994; Schiesser 1991; Schiesser and Griffiths
2009) and references therein). Hence, we now present
the semi-discretized problem with respect to the spatial
variable.

Spatial semi-discretization of the operator
As announced, we now aim to provide a spatial semi-
discretization of the operator. Thus, we consider N
equidistant points in the spatial interval [x0,X] and
denote by hx the distance between two consecutive points.
The semi-discretized domain, denoted byDh, results to be

Dh =
{
(xj, t) : xj = x0 + jhx, j = 0, . . . ,N − 1, hx = X − x0

N − 1

}
.

We next denote by uj(t) = u(xj, t), 0 ≤ j ≤ N − 1.
As a consequence, the original problem (14)-(17) is
transformed in the following system of N first order ordi-
nary differential equations

u′
0(t) = w0(t), (18)

u′
i(t) = δ

a0ui+1(t) + a1ui(t) + a2ui−1(t)
h2x

,

1 ≤ i ≤ N − 2, (19)

u′
N−1 = δ

(a0 + a2)uN−2(t) + a1uN−1(t)
h2x

, (20)

with initial values uj(t0) = u0(xj), 0 ≤ j ≤ N − 1.
We observe (compare (Hamdi et al. 2007) and references
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Figure 1 Profile of the solution of problem (14)-(17), in the rectangular domain [0, 1]×[0, 2.5].
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Table 1 Norms of the global errors arisen in the
application of different spatial finite differences and time
solvers to the semi-discretemodel (18)-(20) withN = 21, in
the rectangular domain [0, 1]×[0, 2.5]

Time solver Classical finite difference Trigonometrical
finite difference

ode15s 3.17e-3 3.12e-10

EF-based explicit unstable unstable
RK method

EF-based Lobatto 3.22e-3 4.11e-12
IIIA method

therein) that Eq. 18 arises from the boundary condition
(16), while (20) is obtained by (17), by observing that

∂u
∂x

(X, t) ≈ uN (t) − uN−2(t)
2hx

= 0,

which implies that uN (t) = uN−2(t). Eq. 19 is simply
obtained through a replacement of the second derivative
with the finite difference. Of course, the nature of the
semi-discretization strongly depends on the type of cho-
sen finite difference (e.g. trigonometrical, exponential or
classical).

Numerical results on the semi-discrete model
We now aim to solve problem (14)-(17) with δ = 1 and

u0(x) = sin
(π

2
x
)
,

w0(t) = 0,

whose exact solution is

u(x, t) = exp
(

−π2

4
t
)
sin

(π

2
x
)
,

represented in Figure 1.
The solution is thus oscillatory in the space variable and

exhibits an exponential decay with respect to the time
variable. Due to this qualitative behaviour, we proceed as
follows:

• we consider the semi-discrete problem (18)-(20)
obtained by discretizing the spatial derivative with
both the classical finite difference (i.e. a0, a1 and a2

Table 2 Norms of the global errors arisen in the
application of different spatial finite differences and time
solvers to the semi-discretemodel (18)-(20) withN = 41, in
the rectangular domain [0, 1]×[0, 2.5]

Time solver Classical finite difference Trigonometrical
finite difference

ode15s 7.93e-4 3.09e-10

EF-based explicit unstable unstable
RK method

EF-based Lobatto 7.96e-4 2.26e-12
IIIA method

given by (12)) and the trigonometrically fitted one
(i.e. a0, a1 and a2 given by (10));

• we perform a time integration for both the
semi-discretized problems, i.e. those obtained by
approximating the second derivative with the
classical finite difference and the trigonometrical
finite difference. For each problem we consider both
classical constant coefficient numerical methods (i.e.
those implemented in the Matlab ode15s routine)
and by exponentially fitted methods (i.e. the EF-based
explicit Runge-Kutta method provided in (Vanden
Berghe et al. 1999) and the EF-based Lobatto IIIA
method introduced in (Vanden Berghe et al. 2003)).

It is worth observing that the application of numeri-
cal methods depending on non-constant coefficients is
strongly connected to the knowledge of a good approxi-
mation of the involved parameters (compare (D’Ambrosio
et al. 2012a; 2012b; Ixaru et al. 2002; Vanden Berghe et al.
2001) and references therein). In our test example, as a
preliminary analysis, we a-priori know the exact values of
the parameters, i.e. the frequency of the spatial oscillations
and the parameter dictating the exponential decay in time,
and exploit them in the integration, as often happens in
the exponential fitting approach.
Through the results reported in Tables 1 and 2, we can

observe what follows:

• the application of an explicit time integrator leads to
an unstable behaviour. This fact is not surprising,
because the semi-discretized problem results to be
stiff. In order to better understand this aspect, we
look at the semi-discrete problem (19)-(20) (Eq. 18 is
neglected because it is actually an independent
quadrature problem), which can be written in matrix
form as

u′(t) = Au(t),

with

u(t) =

⎡
⎢⎢⎢⎣

u1(t)
u2(t)
...

uN−1(t)

⎤
⎥⎥⎥⎦ , A = 1

h2x

⎡
⎢⎢⎢⎢⎢⎣

a1 a0
a2 a1 a0

. . . . . . . . .
a2 a1 a0

a0 + a2 a1

⎤
⎥⎥⎥⎥⎥⎦

∈ R
(N−1)×(N−1).

The stiffness ratio associated to the above system of
ordinary differential equations is depicted in Figure 2
for the classical semi-discretization, i.e. a0, a1, a2 are
given by (12). Similar values of stiffness ratio are
obtained also in the exponential and trigonometrical
cases, which are here omitted for brevity. One can
easily recognize that the more N is large, the more
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Figure 2 Stiffness ratio of the semi-discretized problem (19)-(20), with a0, a1, a2 given by (12).

the problem is stiff, thus it makes nonsense to solve it
by explicit numerical methods;

• the more the numerical method is adapted to the
nature of the solution, the more the result is accurate:
in fact, the exponentially fitted time-integration via
the adapted Lobatto IIIA method (derived in
(Vanden Berghe et al. 2003)) is more accurate than
the Matlab ode15s routine, when both are applied
to the spatially semi-discrete problem. This is due to
the fact that the solution exhibits an exponential
behaviour with respect to the time variable, thus the
exponentially fitted Lobatto IIIA method is more
adapated to the problem, with evident advantages in
the accuracy of the numerical solution. The most
accurate combination is that given by the
trigonometrically fitted finite difference and the
exponentially fitted Lobatto IIIA method: indeed, in
this way, the numerical procedure is strongly adapted
to the behaviour of the solution, which is
trigonometrical with respect to the spatial variable
and exponential with respect to time.

Conclusions
We have presented an alternative approach to numeri-
cally solve partial diffential equations. This approach is
based on the exponential fitting technique, which consists
in specializing a numerical method to the behaviour of
the solution. In our initial analysis, we have considered
a diffusion problem with mixed boundary conditions,

semi-discretized according to different finite differences
approximating the spatial derivative, and solved by
employing both general and special purpose numerical
methods. In applying special purpose methods, we have
supposed that the values of the parameters are a-priori
known: in further developments of this research, we will
remove this hypothesis, and consider suitable procedures
to accurately derive an approximation of the unknown
parameters, following the lines drawn in (D’Ambrosio
et al. 2012a; 2012b; Ixaru et al. 2002; Vanden Berghe et al.
2001). As highlighted by the numerical evidence, the more
the numerical method is adapted to the nature of the solu-
tion, the more the result is accurate. The achieved results
make us hope that such an approach might be successfully
employed to many other partial differential equations,
which represent our future perspective of prosecution
along the path drawn in this paper.
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