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Abstract

Precise localization of QRS complexes is an essential step in the analysis of small transient changes in instant heart
rate and before signal averaging in QRS morphological analysis. Most localization algorithms reported in literature
are either not robust to artifacts, depend on the sampling rate of the ECG recordings or are too computationally
expensive for real-time applications, especially in low-power embedded devices. This paper proposes a localization
algorithm based on the intersection of tangents fitted to the slopes of R waves detected by any QRS detector.
Despite having a lower complexity, this algorithm achieves comparable trigger jitter to more complex localization
methods without requiring the data to first be upsampled. It also achieves high localization precision regardless of
which QRS detector is used as input. It is robust to clipping artifacts and to noise, achieving an average localization
error below 2 ms and a trigger jitter below 1 ms on recordings where no additional artifacts were added, and
below 8 ms for recordings where the signal was severely degraded. Finally, it increases the accuracy of template-based
false positive rejection, allowing nearly all mock false positives added to a set of QRS detections to be removed at
the cost of a very small decrease in sensitivity. The localization algorithm proposed is particularly well-suited for
implementation in embedded, low-power devices for real-time applications.
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Introduction

Automatic QRS detection is a basic and widely used
technique in the analysis of electrocardiographic (ECG)
recordings and a significant amount of research effort
has gone into developing automatic algorithms with high
sensitivity and positive predictive value (PPV) (Kohler
et al. 2002). However, despite being able to correctly de-
tect the presence of QRS complexes, most algorithms
fail to provide their precise location. In fact, standards
for evaluating the performance of QRS detectors are
often not strict enough. For example the ANSI/AAMI
EC57 norm (EC57:1998/(R)2008 AS (1998)) recommends
a margin of 150 ms when evaluating QRS detections. In a
recording where the subject has an average heart rate of
60 beats per minute (bpm), this margin corresponds to
15% of the average length of a beat. This criterion is
clearly meant as a guideline for evaluating the detection
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performance. Although it may suffice in applications
where the correct detection of QRS complexes is more
important than their localization, there are many areas in
which the detection of small transient changes in heart
rate is crucial.

For example, in the field of sleep research, Catcheside
et al. (Catcheside et al. 2001) reported how the heart rate
increases by approximately 14% within two seconds of
the onset of arousal-inducing tones during sleep. This
was further confirmed by Bangash et al. (Bangash et al.
2008) who observed an increase of 10% (during REM
sleep) and 15% (during non-REM) three seconds after
an arousal-inducing tone, followed by a decrease of 15%
(REM) and 25% (NREM) five seconds after the tone
onset.

Another example comes from the area of QRS mor-
phology analysis in high-resolution ECG. If the localiza-
tion of QRS complexes before signal averaging” is not
precise enough, the resulting signal will suffer from a
low-pass filtering effect which may hide relevant high-
frequency low-level potentials (Breithardt et al. 1991;
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Jané et al. 1991). Since these potentials can help, for in-
stance, in the analysis of ventricular late potentials in pa-
tients recovering from myocardial infarction, guidelines
have been proposed describing the desired precision of
QRS localization in terms of trigger jitter (standard devi-
ation of the localization error), which should be below
1 ms (Breithardt et al. 1991).

A third area in which the precise localization of QRS
complexes is of paramount importance is in heart rate
variability (HRV) analysis. HRV analysis is a widely used
technique to assess different aspects of the autonomic
nervous system (ANS) and has been shown to be cli-
nically relevant for many different applications, such
as a predictor of cardiovascular disease and mortality
(Thayer et al. 2010), to assess possible ANS dysfunc-
tions in patients with chronic obstructive pulmonary
disease (Volterrani 1994), and for screening of sleep
disorders and evaluation of sleep quality (Stein and
Pu 2012). HRV time series are usually computed from
the intervals between consecutive QRS complexes and
it is recommended that the ECG is sampled at high
enough sampling rates (250-500 Hz or higher) to guaran-
tee a small trigger jitter in the localization of the R wave
fiducial point, needed for the accurate estimation of
HRV parameters (Task Force of the European Society
of Cardiology and the North American Society of Pacing
and Electrophysiology 1996).

Several localization methods have been proposed to
address the issue of precise QRS localization. However,
most either depend on the sampling rate of the original
ECG (such as cross-correlation- and normalized integrals-
based methods (Jané et al. 1991)), are too sensitive to
noise or to signal clipping (such as threshold-based me-
thods (Jané et al. 1991)) or are computationally complex
and not adequate to real-time applications (such as inter-
polation and curve fitting (Bragge et al. 2005)). Other
techniques such as vectorcardiographic loop alignment,
depend on the recording of multiple ECG leads (S6rnmo
1998). The increase in the computational power of mod-
ern computers allows techniques such as cross-correlation
localization to overcome limitations in regard to the
sampling rate by simply upsampling the ECG signal.
However, this step renders these algorithms unsuitable
for low-power, embedded processors for wearable or even
implantable devices. Furthermore, template-based locali-
zation algorithms such as cross-correlation are not
adequate for real-time processing since they require
a template to first be built from QRS complexes be-
fore localization can finally take place.

The objective of this paper is to propose and evaluate
a post-processing method for precise localization of QRS
complexes in single-lead ECG recordings. The proposed
method, henceforth referred to as the slope algorithm,
should address the following requirements:
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e Complexity - the algorithm should have low
complexity, O(n), to enable real-time processing
with modest hardware requirements and integration
in low-power embedded devices.

o Trigger jitter - the algorithm should yield at least
the same trigger jitter as the more computationally
complex cross-correlation-based method in high
resolution ECG, and better trigger jitter at lower
sampling frequencies, to enable a high localization
precision in ECG recorded with lower sampling
frequencies.

e Localization error - the algorithm should have
low average localization error, below 10 ms (1% of
the average length of a beat for a recording where the
average heart rate is 60 bpm), to enable applications
(such as sleep arousal detection) which depend on
the detection of small transient changes in interbeat
interval length.

e Robustness - the algorithm should be robust to
the presence of noise and movement artifacts, to
enable its application in recordings performed in
uncontrolled (non-laboratory) conditions; in
addition, the algorithm should handle signal
clipping, a common occurrence in recordings during
sleep (Redmond and Heneghan 2006).

e Agnostic - the algorithm should be agnostic to the
QRS detection algorithm used, and perform equally
well regardless of the method.

Additionally, it will be shown how template matching
can be used to reduce the number of false positive de-
tections and that the localization step performed by this
post-processing algorithm is essential for that purpose.
Template matching can be used, for instance, to exclude
false positive detections which lead to erroneously short
estimates of interbeat intervals, or to exclude beats with
aberrant QRS morphology before averaged complexes
are analyzed (Sérnmo 1998).

Methods

One of the main problems of most QRS detectors is that
in the presence of noise, movement artifacts or signal
clipping, they do not provide precise estimates of the
location of the peaks. Consequently, a post-processing
localization step is usually performed to obtain a more

precise location of detected complexes (Kohler et al.
2002).

QRS Detection

The localization algorithm described in this paper can
be used after any of the vast number of QRS detectors
reported in literature (Ferreira et al. 2013; Friesen et al.
1990; Kohler et al. 2002). For the purpose of evaluat-
ing its performance, three popular detectors described
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in literature were used: the Hamilton-Tompkins (HT)
detector (Hamilton 2002; Hamilton and Tompkins 1986),
an envelope-based detector by Nygards and S6rnmo
(NS) (Nygards and Sornmo 1983) and a filter bank-
based detector by Afonso, Tompkins et al. (AT) (Afonso
et al. 1999).

Filtering

Before the signal is processed, baseline wander is first re-
moved with a linear phase high-pass filter using a Kaiser
window of 1.016 sec, with a cut-off frequency of 0.8 Hz
and a side-lobe attenuation of 30 dB (van Alsté et al.
1986). The coefficients of the impulse response were deter-
mined by computer-aided filter design with the software
Matlab R2012b (The MathWorks Inc., Massachusetts).

Localization

The level of noise, the amount of artifacts and the pos-
sible presence of signal clipping, common in recordings
during sleep, all have a significant impact in the localiza-
tion performance of most QRS detectors. Consider the
example of a QRS complex with a motion artifact which
distorts the R peak, as illustrated in Figure la (high-
lighted with a circle). Although most QRS detectors will
correctly identify the presence of this complex, they
will usually yield an incorrect location, usually the local
maximum.

This common type of problems is first addressed by
observing that the Q-to-R and R-to-S amplitudes of a
QRS complex are normally much larger than the ampli-
tude of measurement noise. They are usually also larger
than the amplitude of artifacts which do not distort the
shape of the complex beyond the point that the R wave
is no longer distinguishable (Friesen et al. 1990). Note
that this might not hold in the presence of intense body
movements. However, it is arguable whether the QRS
detectors used before post-processing would be able to
detect the presence of such peaks anyway.
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Because the R waves are very steep, signal differenti-
ation usually gives the ascending and descending slopes
as local maxima and minima, respectively. This simple
approach has been widely used (Kohler et al. 2002), and
remains the basis of some of the most popular algo-
rithms to date (Hamilton and Tompkins 1986; Pan and
Tompkins 1985). However, it suffers from some draw-
backs, notably in the presence of artifacts which cause
sudden, drastic changes in the signal amplitude. In such
cases it often occurs that the local maxima of the differ-
entiated signal for these artifacts is larger than the max-
ima which correspond to the actual slopes of the R wave
(Figure 1la). This problem can be solved simply by ob-
serving that QRS complexes have a predictable length:
in the absence of a medical (cardiac) condition, they last
in average about 0.08 seconds (Rangayyan 2001). Instead
of differentiating the ECG signal on a sample-to-sample
basis, a larger step can be used to more accurately calcu-
late the slope of the tangent to the signal (Figure 1b).
Local maxima and minima will indicate the beginning of
the slopes which are simultaneously steep and have at
least a given duration. The intersection of the tangents
to these slopes yields the location of the R wave peak
(Figure 1c). The slope algorithm is formally described as
follows:

1. Differentiate the filtered ECG signal with a step size
A to obtain s’

¢y =+ 1t 8

2. For each base peak location p; estimated by a QRS
detector:
a. Find the location of the local maximum p; in a
window centered around p; ,

p = argmaxs[n] (2)

neb;
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.
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Figure 1 Estimating the location of the R wave peak for a QRS complex with an artifact: (a) signal s with a motion artifact (indicated
with a circle) and differentiated signal with a step size of 1 sample, s’; (in bold) with maximum and minimum derivative values
indicated by up- and down-pointing triangles, respectively; (b) differentiated signal with a step size A of 10 samples, s’ (in bold); (c)
tangents to the ascending and descending slopes of the QRS complex, y, and yp, with the peak localized by their intersection.
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with

w-1 w-1
Pi=p-——bit——| (3)
where W corresponds to the expected length
(in samples) of the QRS complex (0.08 sec).

b. Find the location of the local maximum and the
local minimum of s' in a window respectively
before and after p,,

M; = arg maxs' [#] (4)
nelp~Wpj

m; = arg mins’ [n] (5)
nelp;,pi+Wl

c. Compute the slope and the y-intercept of the
tangent to the ascending slope, y4

yaln] =aa- n+ba (6)
with

as = S/[Mi] (7)

bA = S[Mi]—ﬂA . Ml‘ (8)

and to the descending slope, yp

Ypln] =ap- n+bp 9)
with

ap = s'[m;] (10)

bp = s[mj]-ap - m; (11)

d. Compute the location of the intersection #;

between the two tangents,

py = 2070, (12)

as-ap
Yy =aa- np+ ba. (13)

Note that the tangent intersection #; does not neces-
sarily correspond to the exact (integer) location of a
sample in the discretized ECG. This means that the loca-
tion of the peak can be computed with sub-sample pre-
cision and has as an important consequence, as will be
shown, that the localization error is to a certain extent
independent of the sampling rate of the ECG signal.

The differentiation step A is an important parameter
in the algorithm. As explained in Appendix A, this factor
should be as large as possible to minimize the localiza-
tion error. However, it should not be larger than the
length of the slope. In order to increase the robustness
of the algorithm to clipping artifacts which cause the
slopes to be shortened not only in amplitude but also in
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duration, a step size corresponding to approximately half
of the expected length of each slope was chosen. Consid-
ering that each QRS complex lasts about 80 ms, and that
each slope lasts around 40 ms, a step size of 20 ms was
chosen and experimentally found to be adequate. Note
that when analyzing unclipped signals this parameter
can be increased in order to further reduce the trigger
jitter, as explained in Appendix A; lowering the param-
eter increases the trigger jitter in the presence of noise.
Figure 1la illustrates (in bold) the signal obtained after
single-sample differentiation. The artifact at the center
of the R wave introduces additional local minima which
do not correspond to the descending slope of the QRS
complex. Figure 1b illustrates the signal obtained after
differentiating the ECG with a A factor of 10 samples
(20 ms at a sampling frequency of 500 Hz). The maximum
and minimum values now correspond to the beginning of
the steepest parts of the slopes. After identifying the pa-
rameters of the tangent to the ascending and descending
slopes, their intersection yields the location of the R wave
peak (Figure 1c).

As explained in Appendix B, this algorithm has a com-
plexity of O(n), lower than that of cross-correlation-
based methods.

Template matching

Template matching can be used to reduce the number
of false positive detections in a recording. The template
should be chosen such that it represents the morphology
of the QRS complexes in an ECG recording and can be
obtained by averaging the signal around the location of
each peak in a window with a length equal to the me-
dian duration of the beats in each recording.

After the template is estimated, the correlation bet-
ween each detected complex and the template can be
computed. Under the assumption of monomorphic QRS
complexes, false positive locations should have a lower
correlation value (Figure 2a) than undistorted com-
plexes. Complexes slightly distorted by noise should also
yield a lower correlation value, but as long as they retain
some of their characteristics the correlation should still
be higher than of false positives (Figure 2b). As an ex-
ample of the impact of body movement artifacts, Figure 2¢
illustrates the correlation obtained with complexes de-
tected and localized in an ECG recorded simultaneously
with actigraphy (Actiwatch Spectrum, Philips Electronics)
during a full night. As it can be easily seen, the correlation
is inversely proportional to the amplitude of the actigra-
phy peaks.

Evaluation

Data sets

The slope algorithm was tested in two publicly avail-
able data sets. The first comprises 18 long-term ECG
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Figure 2 Template matching after QRS detection (with the Hamilton-Tompkins detector): (a) in the presence of a false positive
(indicated with a downward arrow); (b) in the presence of complexes heavily distorted by noise; (c) compared with actigraphy for a full

recordings (lead II) of subjects with no significant ar-
rhythmias from the MIT-BIH Normal Sinus Rhythm
Database (MIT-BIH) (Goldberger et al. 2000; Moody
and Mark 2001). Each recording has a sampling rate
of 128 Hz and an average length of 24.3 + 0.83 hour.
This data set was chosen since it comprises full day
recordings, including periods with intense motion ar-
tifacts, naturally occurring in this type of monitoring
scenarios.

The second data set comprises 79 high-resolution ECG
recordings (lead II) of subjects annotated as healthy
controls in the PTB Diagnostic ECG Database (PTBD)
(Bousseljot et al. 1995; Goldberger et al. 2000). Each
recording has a sampling rate of 1000 Hz and an average
length of 118.9 + 3.4 sec.

Cross-correlation localization
As discussed, localization has been traditionally per-
formed for the purpose of signal averaging in the area of
QRS morphology analysis where it is crucial to have a
low trigger jitter. One of the most successful methods
uses cross-correlation between a template (built by aver-
aging QRS complexes detected with a QRS detector)
and each complex to improve the estimated location.
Since this is one of the most successful localization algo-
rithms reported in literature, especially when used on
high-resolution (or upsampled) ECG signals, it will be
used to establish the ground-truth locations of QRS
complexes in our database and as reference to evaluate
the slope algorithm.

An implementation of this method, henceforth re-
ferred to as the xcorr algorithm, is described as follows:

e Remove baseline wandering using the filtering
procedure described in an earlier section.

e Compute a template of the QRS complexes based
on the initial locations, using the template algorithm
described in a later section.

e For each complex, find the location which
maximizes the cross-correlation between the

template and the ECG signal around the original
location.

e Build a new template based on the adjusted
locations.

e For each complex, store as the final location of its R
wave peak the location that maximizes the cross-
correlation between the new template and the ECG
signal around the adjusted location.

Ground-truth

The MIT-BIH data set includes annotated QRS locations
per recording. Unfortunately these only indicate the lo-
cation of the QRS complex, and not always the precise
location of the R wave peak. On the other hand, the
PTB data set does not include annotations with the loca-
tion of QRS complexes, so these were first estimated using
the HT detector. In order to obtain a ground-truth for
both datasets, each recording was first upsampled to
10000 Hz, after which the xcorr algorithm was used to ob-
tain precise locations. A similar procedure was previously
used by Shaw and Savard (Shaw and Savard 1995) to ob-
tain precise ground-truth locations in their data set.

Trigger jitter

To compare the trigger jitter obtained with the slope al-
gorithm with the more computationally complex xcorr
algorithm, both were tested on high-resolution ECG re-
cordings from the PTB database, after downsampling”
them to different sampling rates (500, 200, 100, and
50 Hz). To illustrate that the localization precision is
not only bound by the time resolution of the signal, but
also by its bandwidth which is in turn limited by the
sampling rate, both algorithms were also tested after
upsampling each (downsampled) recording to the ori-
ginal sampling rate of 1000 Hz. Note that this proce-
dure increases the time resolution but does not change
the spectral content of the signal. For each algorithm
and sampling rate, the pooled trigger jitter o was com-
puted as
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S (m-1)-?
Sne1)

where k is the number of recordings in the data set
and o, is the standard deviation of the localization error
(trigger jitter) for all n; peaks localized within 40 ms of
any ground-truth location® for recording i.

of = (16)

Localization

In order to evaluate the robustness of the slope algorithm
in the presence of artifacts and noise, the ECG signals in
the MIT-BIH data set were degraded with clipping arti-
facts and Gaussian noise. Clipping artifacts were intro-
duced to simulate saturation artifacts (Venkatachalam
et al. 2011) and digital clipping. The following procedure
was used:

e Remove baseline wandering using the filtering
procedure described in an earlier section.

e Compute the median, p,,, and the 99.9th percentile
par of the amplitude of the ECG.

e Determine the clipping threshold ct for a given
clipping factor c¢f

e Clip the ECG signal,
_f et ifs[n)zct
] = {s[n] otherwise’ (18)

In order to simulate a wide range of clipping and satur-
ation artifacts, the following clipping factors were used: 1
(no clipping), 0.6, and 0.3. The last factor is meant as a
lower bound for this type of artifacts, as it is unlikely that
a segment of a recording where the ECG is distorted to
that degree can still allow any useful analysis.

In addition to clipping, the localization precision was
tested in the presence of Gaussian noise added to the
ECG signal to obtain specific signal-to-noise-ratios (SNR):
20 dB, 10 dB, and 5 dB. For simplicity, the noise power in
the original signal was considered negligible in compari-
son with the added noise.

The localization precision of the slope post-processing
algorithm was evaluated with each of the three QRS de-
tectors listed earlier on the ECG recordings of the MIT-
BIH data set degraded with the conditions described
above. For each recording, the mean and standard devi-
ation of the localization error (distance between detected/
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localized peaks and the ground-truth locations) before
and after post-processing were computed.

Template matching

The impact of localization on template matching was
evaluated by comparing its effectiveness in rejecting false
positive detections before and after the slope algorithm
was used. Mock “false positive detections” were added to
the list of base QRS detections, after which template mat-
ching was applied. Complexes with a correlation below
certain thresholds were rejected, and the resulting positive
predictive value (PPV) and sensitivity were computed.
The following procedure was used:

e Use the HT detector to detect the base locations in
each ECG recording of the MIT-BIH data set.

e Add a percentage f; of randomly located false
positives (‘mock false positives’) to the base list of
locations. For example, a ‘mock false positive
percentage’ f; of 100% means that a number of mock
false positives equal to the number of original
locations will be added.

e Compute the median length B; between consecutive
localized QRS complexes for each ECG recording ;.

e Compute a template as the signal average of all
windows of length B; for each recording ;.

e Compute the correlation between the template of
each recording and the ECG signal for each location
on that recording.

e Determine the threshold T such that the sensitivity
obtained after removing locations with a correlation
lower than 7 remains above a specified limit.
Compute the corresponding PPV (postyone)-

e Use the slope algorithm to obtain a list of adjusted
locations.

e Compute a new template and the corresponding
correlations with the adjusted locations.

e Determine the thresholds 7 such that the sensitivity
obtained after removing locations with a correlation
lower than 7 remains above a specified limit.
Compute the corresponding PPV (postgiope)-

The choice of using a varying threshold instead of a
fixed one serves the purpose of simultaneously evaluating
the effect on the sensitivity and PPV of the algorithm. In
turn, this allows an assessment of its performance for dif-
ferent scenarios where for example, sensitivity is more im-
portant than PPV, or vice-versa.

Results

Trigger jitter

Figure 3 illustrates the pooled trigger jitter obtained with
the slope and with the xcorr algorithms with and without
upsampling, after having downsampled the original high-
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Figure 3 Comparison of trigger jitter obtained using the slope algorithm with and without upsampling (‘slope’ and ‘slope,;') and
using the xcorr algorithm with and without upsampling ("xcorr’ and ‘xcorr,’).
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resolution ECG signal to different sampling rates. As it
can be observed, the trigger jitter obtained with the slope
algorithm for (down)sampling frequencies above 50 Hz
was always lower than 1 ms, even without upsampling the
signal, which means that the algorithm meets the strict re-
quirement of 1 ms specified by the guidelines for QRS
localization (Breithardt et al. 1991). In contrast, the trigger
jitter obtained with the xcorr algorithm increased beyond
1 ms unless the signal was first upsampled. The loca-
lization error obtained with xcorr at 1000 Hz is not zero
since the ground-truth was obtained after upsampling the
original recordings at 10000 Hz.

The reason why the trigger jitter increased when the
signal was downsampled to 50 Hz is related to the spec-
tral properties of the QRS complexes. As reported by
Thakor et al. (Thakor et al. 1984), QRS complexes have
spectral components up to 40 Hz. When the signal is
downsampled below 80 Hz, these components are af-
fected, changing the morphology of the signal and caus-
ing a decrease in localization precision.

Localization
The localization error and the trigger jitter were com-
puted for all clipping artifact and noise conditions. The
results, illustrated in Figure 4, show that the average
localization error obtained after post-processing is, over-
all, lower than that obtained with the original locations
output by the three QRS detectors, and always below
2 ms. In addition, the trigger jitter is also lower than
8 ms and lower than of the original locations with the
exception of the AT detector. However, it should be
noted that the sensitivity of this detector in these condi-
tions was very low. After post-processing, sensitivity in-
creased substantially, reflecting the increased precision
in the localization of the complex.

To emphasize the improvement over the base HT per-
formance, Figure 5 illustrates the trigger jitter obtained

with and without slope localization after HT detection
and after template matching. Varying the clipping factor
for a fixed SNR of 20 dB (Figure 5, above) shows that
the trigger jitter after localization (black-filled markers)
is always lower than without localization (white-filled
markers), highlighting the robustness of the algorithm
to clipping artifacts. This is true for the whole range
of sensitivities obtained using different thresholds with
template matching. Varying the SNR without clipping
(Figure 5, below) shows that with the exception of SNR =
5 dB, the trigger jitter is also always lower with slope lo-
calization, highlighting the robustness of the algorithm to
noise, especially in moderate conditions. Regarding the
condition SNR =5 dB and if the analysis is restricted to
complexes that are less distorted by noise (at the cost of a
lower sensitivity), it is clear that below a sensitivity of 0.8
the trigger jitter with localization is also lower. Applica-
tions with strict requirements in terms of trigger jitter re-
quire this template matching step anyway to minimize the
localization error. For such applications, the template
matching procedure, with a complexity of O(n), does not
increase the overall complexity of the slope algorithm.

These results are in line with the theoretical locali-
zation error derived in Appendix A.

Template matching

Figure 6 illustrates the sensitivity and PPV obtained after
rejecting locations with a correlation value below a varying
threshold for mock false positive percentages, f;=100%
and f; = 200%. In both cases, increasing the threshold leads
to the rejection of an increasing number of locations and
to a consequent decrease in sensitivity, since besides false
positives, a few true positives are also rejected. However,
despite the fact that the sensitivity decrease is extremely
small, the corresponding increase in PPV is substantial. Al-
though this is true for both postg,pe and post,one, it is more
pronounced for the case where post-processing is applied.
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and template matching, for different clipping factors (above), and SNRs (below).
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Figure 7 illustrates the PPV obtained for different f; after
rejecting peaks with correlations lower than thresholds
chosen such that the sensitivity was higher than specific
values. Note that even before locations are rejected, the
PPV already increases after post-processing (7'=0). This
happens because some false positive locations which are
close to actual peaks in the ECG are merged to the same lo-
cation on the first step of the localization algorithm (equation
(2)). With a sensitivity of 0.992 the PPV approaches 1 even
for f, =200%. With a sensitivity decrease of 0.005 (0.5%)
and 0.008 (0.8%) the PPV increases by nearly 50% and 70%
for f; = 100% and f;, = 200% respectively, effectively reject-
ing almost all false positives added to the base locations.

Discussion and conclusions

Among the localization algorithms reported in litera-
ture, cross-correlation-based methods were found to be
among the best performing. However, the localization pre-
cision of these algorithms is intrinsically linked to the
sampling rate of the recording, which is not an issue for
high-resolution ECG recordings, but is for recordings
performed at lower sampling rates. In addition, these al-
gorithms are computationally very expensive (OGP, see
Appendix B), which makes them less suited for low-power
embedded devices; furthermore, since they typically re-
quire templates built from the entire recording, their ap-
plicability for real-time, online applications is limited. The
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Figure 7 PPV per false positive fraction f; after template matching with different thresholds; ‘base’ indicates the PPV without localization or
template matching, T=0 indicates the PPV after localization, without template matching, and each s > X curve indicates the PPV after
localization and template matching such that after rejecting locations with low correlation the resulting sensitivity is greater or equal than X.
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algorithm proposed in this paper was developed with
these requirements in mind. Despite its lower complexity
(O(n)) it achieves comparable trigger jitter without requir-
ing the data to first be upsampled. It also achieves high
localization precision regardless of which QRS detector is
used as input. Although it relies on the detection of just a
few points in the ECG, it is extremely robust to noise, clip-
ping and movement artifacts. In fact, post-processing with
the slope algorithm was able to correct the original QRS
locations of three different detectors under almost all
noise conditions, yielding an average localization error
below 2 ms, and a trigger jitter below 8 ms, even for re-
cordings where the signal was severely degraded. Further-
more the increased localization precision improved
template matching. After rejecting locations based on
their (lower) correlation coefficient, it allowed the correct
rejection of nearly all mock false positives added to a
base list of detected QRS locations, with only a marginal
decrease in sensitivity (0.5% for f;=100% and 0.8% for
[=200%).

These results have important consequences for appli-
cations which require real-time ECG analysis. Given its
low complexity, low localization error and robustness to
signal clipping, which is common in sleep recordings, it
can enable real-time detection of arousals during sleep.
On the other hand, given its robustness to noise and
artifacts, it can also enable real-time ECG morphology
analysis even under challenging conditions such as dur-
ing physical exercise. Finally, and as a byproduct of the
detection process, the slopes and tangents actually have
clinical value, for example in detecting and characte-
rizing myocardial ischemia (Pueyo et al. 2008; Romero
et al. 2013).

Endnotes

“Signal averaging is a technique used in QRS morpho-
logical analysis whereby a number of QRS complexes in
an ECG recording are first aligned in the time domain
and then averaged to improve the signal-to-noise ratio
of the resulting signal.

A low-pass filter with a cutoff frequency of 0.8*(fs/2),
with fs as the desired frequency, was used before down-
sampling to prevent aliasing.

“This is the same margin as that indicated in the
guidelines for analysis of ventricular late potentials using
signal-averaging technique (Breithardt et al. 1991) and
corresponds to half of the average length of QRS com-
plexes (Rangayyan 2001).

dUsing the slope estimates given by the localization
algorithm, the minimum and maximum slope ratios found
in the PTBD dataset were 0.68 and 1.84 respectively,
confirming the expected asymmetry of QRS complexes
described in literature (Pueyo et al. 2008; Romero et al.
2013).
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Appendix A - Theoretical localization error
This appendix derives the theoretical localization error
obtained using the slope algorithm on an ECG signal
contaminated with white Gaussian noise.

Consider the ascending and descending slopes of y,4
and yp as defined by (6) and (9) and assume that the
ratio 8 between them is given by

as = S (19)

aD:—S-ﬁ.

Now consider that the ECG signal has been perturbed
by a noise signal with amplitude E. This means that in
case both the QRS complex and the noise component
have a zero mean, the amplitude of each sample in the
QRS complex may change by a maximum of + e =E/2.
The worst possible localization error in this situation is
illustrated in Figure 8.

The resulting tangents, y’4 and y’p, are defined by

(20)

Yaln] = ay -n+ b (21)
Ipln] = ap -n+ b, (22)
with
,_ (sa+e)—(s1-e) 2.e
=K =St 23
“a A + A (23)
,_ (sate)—(s3-e) 2.e
= =SB 24
“p A B+ A (24)
2.
b:‘\:(sl_e)_ﬂ;\'”l251—6—S~n1—Te.nl
(25)
! ! 2.e
bD:(S4+e>—LZD~}’l4,:S4+6+S.ﬁ.n4_f'n4’
(26)
and intersect at a new location n’,
b b
= (27)
ay—ap

Using (13) and (26), the maximum localization error,
e’ is given by

bp-bsy bl -b,

= -n, = . 28
e = as-ap da,-ap (28)
Noting that
2.e 2-e
a;—ﬂlD:S—FT—(—S‘ﬁ‘FX):(1+ﬁ)‘57
(29)

we have that
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Figure 8 QRS complex with tangents to the slopes of the signal (solid lines) and on noisy signal in the worst case scenario (dashed
lines) yielding the maximum localization error for a noise component with an amplitude of 2e.

ay-ap=as-ap=(1+p)-S. (30)
Similarly,
2.e 2-e
(bD—bA)— (le—blA) = —e+j Ny —€— X ‘ny.
(31)
Using the relation n,=n; + L we have
2. 2.
(bD—bA)—(b/D—b;‘) = —6+76 '(}’ll +L)—6— Te 751
L
—2ee. (Z _1).
(32)
Using (31) and (29) in (27), we finally have
, e (L 2
=—.l=-1). —. 33
T <A > 148 (33)

As it can be seen, the localization error depends on
the maximum amplitude of the noise component of the
signal, the slopes of the QRS complex, the distance be-
tween the first and the last sample and the distance be-
tween each pair of samples (differentiation step) used to
compute the tangents. For simplicity consider that the
ascending slope S of the QRS complex is constant and
defined by the ratio between the amplitude of the ECG

signal A and half of the length of the QRS complex, Q/2.
The localization error is then given by

0B QL ) 2
I A 4\A 1+8

Assuming that the noise component is mainly caused
by electromyographic (EMG) noise, it can be considered
to follow a zero-mean Gaussian distribution with a stan-
dard deviation of 10% of the amplitude of the ECG
signal (Friesen et al. 1990). Taking as slope ratio  the
median value experimentally found in the recordings of
the PTBD dataset (1.13 9), an average QRS duration of
0.08 sec (Rangayyan 2001), using a differentiation step A
of 0.02 sec and choosing as L the length of the QRS
complex Q (the largest possible value such that 7; and
ny are still part of the QRS), we can estimate the bounds
of the standard deviation of the localization error (or
trigger jitter),

0.08s (0.08s 2
td(e;) = 0.1- 1)
st (¢}) 4 <0.02$ ) 1+1.13

(34)

~5.63ms.

(35)

Appendix B - Computational Complexity

This appendix derives the computational complexity of
the xcorr and slope algorithms and compares their per-
formance using a computer simulation. Since for both
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algorithms peak localization takes place for every QRS
complex, let #n represent the average number of samples
analyzed per complex. The xcorr algorithm performs the
following steps:

1. Search for the local maximum, complexity O(n).

2. Add the contribution of each sample to the
template (consider that the template has the same
number of samples n), O(n) .

3. Perform cross-correlation with the template for
2n + 1 positions around the center of the peak,

O (n-2n+1)) = 0(n?) .

4. Find the position that yields the maximum cross-
correlation, O(n) .

5. Repeat steps 2 to 4.

The overall complexity of the xcorr algorithm is O(1°).
Note that the complexity of the upsampling step, neces-
sary to guarantee a high localization performance with
this algorithm for recordings with lower sampling rates
was not included. Although that does not influence the
overall complexity, it is an important factor to take into
account when comparing the performance of both algo-
rithms since it introduces an additional factor in the
number of samples that need to be analyzed.

The slope algorithm performs the following steps:

1. Find the local maximum, O(n).

2. Differentiate the signal, O(n).

3. Find the maximum of the derivative before the local
maximum, O(n/2) = O(n).

4. Find the minimum of the derivative after the local
maximum, O(n/2) = O(n).

The overall complexity of the slope algorithm is O(n).

Both algorithms were also compared in terms of run-
ning time, using a non-optimized implementation in
Matlab R2012b (The MathWorks Inc., Massachusetts)
running on a computer with an Intel Core i5-2540 M at
a clock speed of 2.60 GHz. Each algorithm was used to
localize peaks detected with the Hamilton-Tompkins de-
tector on the 18 recordings of the MIT-BIH data set. In
the case of the xcorr algorithm, the signal was first up-
sampled to 1000 Hz to guarantee a comparable localiza-
tion performance, but the running time for this operation
was not included. The average running time (per recording)
of the xcorr algorithm was 210.63 + 55.31 sec and of the
slope algorithm, 23.08 + 6.26 sec, nearly ten times faster.
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