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Abstract

An equation for bending of a weighable rod with variable transversal stiffness was proposed. On the basis of this
analyses the conclusions were drawn about the influence of parameters of construction on values of maximum sag
and maximum bending moment. The recommendations for the usage of the simplified model were done. The
example of the construction with given parameters for calculation of stiffness and strength according to the
represented mathematical models was considered.
Different models of rods are used for investigation of
building constructions which are under the influence of
longitudinal and transversal loads (Editor Madugula
2002). For example, such models in stability and dyna-
mics problems were used in the works (Yoo 2011;
Strommen Einar 2014; Yang 2005). For the first time the
differential equation of longitudinal bend of rods of
variable section under the influence of point load was
considered in the paper (Ostwald 1889). Stability under
the influence of distributed longitudinal load for pointed
rods was investigated by L. Bairstow (Bairstow L, Jones
BM, Thompson BA 1913). Analytical solution of the
common problem for the constructions, which are
under the influence of longitudinal point and distri-
buted loads, is not found in literature. In practice,
when the model of equivalent rod is used, the influence
of longitudinal loads on the value of transversal
deformation and bending moment is not taken into
account or calculated methods are used (Editor
Madugula 2002). The accurate definition of the
model, taking into account longitudinal and transver-
sal loads, is a new problem.
The purpose of this paper is:

– getting formulas for investigation of strained
deformed condition of a rod which is a model of a
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construction of a lattice tower under the influence
of longitudinal and transversal loads;

– valuation of the influence of longitudinal loads on
the value of transversal deformation and bending
moment.

Mathematical model of elastic weighable rod with vari-
able bending stiffness and length l is considered for the
study. The axis force N0 acts on the rod, p(x) - horizon-
tal distributed load (Figure 1). As an example We take a
linear distributed load p xð Þ ¼ p1 1− x

l

� �þ p0. Here h = ax +
h1 is a radius of rigidity of a variable section, h1, h2 are radii
rigidity of upper and lower sections, a a ¼ h2−h1

l , A is cross
sectional area, E is elastic modulus.
We work out the equation of an element balance of

the construction

AE axþ h1ð Þ2 d
2y

dx2
¼ M xð Þ; ð1Þ

dM
dx

¼ Q xð Þ− N0 þ qxð Þ dy
dx

; ð2Þ

dQ
dx

¼ p xð Þ: ð3Þ
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Figure 1 The calculated scheme of the construction of lattice tower.
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Defining from the equations (1-3) moments M(x) and
transversal forces Q(x) we arrive at the equation in y(x) –
horizontal (y-axis) displacement y(x) -

AE axþ h1ð Þ2 d
4y

dx4
þ 4AEa axþ h1ð Þ d

3y
dx3

þ

þ 2AEa2 þ N0 þ qxð Þ d
2y

dx2
þ q

dy
dx

¼ p1
h2− axþ h1ð Þ

h2−h1
þ p0:

ð4Þ

We introduce the equation (4) as
AE
d
dx

axþ h1ð Þ2 d
2y

dx2

� �
þ N0 þ qxð Þ dy

dx

� �=

x

¼ p1
h2− axþ h1ð Þ

h2−h1
þ p0: ð5Þ

We have after integration (5)

AE axþ h1ð Þ2 d
3y

dx3
þ 2AEa axþ h1ð Þ d

2y
dx2

þ N0 þ qxð Þ dy
dx

¼

¼ p1
2h2 axþ h1ð Þ− axþ h1ð Þ2

2a h2−h1ð Þ þ p0
axþ h1

a
þ C3

AEa2

4
;

ð6Þ
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We make the substitution variables for equation (6)

z ¼ λ
ffiffiffiffiffiffiffiffiffiffi
axþh1
al

q
; where λ ¼ 2

ffiffiffiffiffiffiffiffi
ql

AEa2

q
and u zð Þ ¼ y′x zð Þ. Then

it looks like

d2u
dz2

þ 3
z
du
dz

þ 1þ 1−ν2

z2

� �
u ¼ 2p1l

AEa2λ4
2 1þ kð Þλ2−z2� �

þ 4p0l

AEa2λ2
þ C3

z2
;

ð7Þ

where ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4N0

AEa2 þ 4ql
AEa2 k

q
, k ¼ h1

al or
h1
h2
¼ k

kþ1.

The inhomogeneous equation (7) corresponds to the
homogeneous one

d2u
dz2

þ 3
z
du
dz

þ 1þ 1−ν2

z2

� �
u ¼ 0: ð8Þ

Its solution is known (Kamke 1942)

u zð Þ ¼ C1J ν zð Þ
z

þ C2J−ν zð Þ
z

: ð9Þ

We find common solution of inhomogeneous equation
(7) by the method of arbitrary constants variation.
The Wronskian of the fundamental system of func-

tions φ1 zð Þ ¼ Jν zð Þ
z , φ2 zð Þ ¼ J−ν zð Þ

z W J ν; J−νð Þ ¼ − 2 sinνπ
πz

(Ostwald 1910), then W φ1;φ2ð Þ ¼ − 2 sinνπ
πz3 , W ≠ 0 because

v is not an integer figure.
After using the arbitrary constants variation method

the common solution of the equation (5) looks like

u zð Þ ¼ C1Jν zð Þ
z

þ C2J−ν zð Þ
z

þ C3S0;ν zð Þ
z

þ 4p0l

AEa2λ2
S2;ν zð Þ

z
þ;

þ 4p1l

AEa2λ2
1þ kð Þ S2;ν zð Þ

z
−

2p1l

AEa2λ4
S4;ν zð Þ

z

ð10Þ

where Sμ,ν(z) - Lommel functions (Watson 1922).
Lommel functions for problems of stability were used in

the papers (Ulitin 2002; Elishakoff and Pellegrini 1988).

Taking into account that z ¼ λ
ffiffiffiffiffiffiffiffiffiffi
axþh1
al

q
and integrating

the formula (10), we get the equation of the bend rod axis

y zð Þ ¼ 2l

λ2
C1�J ν zð Þ þ 2l

λ2
C2�J −ν zð Þ þ 2l

λ2
C3�S0;ν zð Þ þ 2l

λ2
C4þ

þ 8p0l
2

AEa2λ4
�S2;ν zð Þ þ 8p1l

2

AEa2λ4
1þ kð Þ�S2;ν zð Þ− 4p1l

2

AEa2λ6
�S4;ν zð Þ;

ð11Þ

where �J�ν zð Þ ¼
Zz
0

J�ν zð Þdz; �Sμ;ν zð Þ ¼
Zz
0

Sμ;ν zð Þdz.
It is possible to define derivatives y″xx zð Þ and y‴xxx zð Þ from
the formula (11) by using recurrent formulae for Bessel and
Lommel functions:

y″xx zð Þ ¼ λ2

2l

 
C1

ν−1
z3

Jν−
J νþ1

z2

� �
þC2 −

νþ 1
z3

J−ν−
J−νþ1

z2

� �
þ

þC3
ν−1
z3

S0;ν−
νþ 1
z2

S−1;νþ1

� �

þ 4p0l

AEa2λ2
ν−1
z3

S2;ν−
ν−1
z2

S1;νþ1

� �
þ

þ 4p1l

AEa2λ2
1þ kð Þ ν−1

z3
S2;ν−

ν−1
z2

S1;νþ1

� �

−
2p1l

AEa2λ4
ν−1
z3

S4;ν−
ν−3
z2

S3;νþ1

� �!
;

ð12Þ

y‴xxx zð Þ ¼ λ4

4l2

 
C1

ν2−4νþ 3
z5

−
1
z3

� �
Jν þ 4

z4
Jνþ1

� �
þ

þC2
ν2 þ 4νþ 3

z5
−
1
z3

� �
J−ν þ 4

z4
J−νþ1

� �
þ

þC3
ν2−4νþ 3

z5
S0;ν þ 4 νþ 1ð Þ

z4
S−1;νþ1 þ 1−ν2

z3
S−2;ν

� �
þ

þ 4p0l

AEa2λ2
ν2−4νþ 3

z5
S2;ν þ 4 ν−1ð Þ

z4
S1;νþ1 þ 1−ν2

z3
S0;ν

� �
þ

þ 4p1l

AEa2λ2
1þ kð Þ ν2−4νþ 3

z5
S2;ν þ 4 ν−1ð Þ

z4
S1;νþ1 þ 1−ν2

z3
S0;ν

� �
−

−
2p1l

AEa2λ4
ν2−4νþ 3

z5
S4;ν þ 4 ν−3ð Þ

z4
S3;νþ1 þ 9−ν2

z3
S2;ν

� �!
:

ð13Þ
After their definition we get the expressions for the moments

M zð Þ ¼ C1
AEla2

2λ2
z ν−1ð ÞJν−z2Jνþ1

� �þ
C2

AEla2

2λ2
−z νþ 1ð ÞJ−ν−z2J−νþ1

� �þ
þC3

AEla2

2λ2
z ν−1ð ÞS0;ν−z2 νþ 1ð ÞS−1;νþ1
� �

þ 2p0l
2

λ4
z ν−1ð ÞS2;ν−z2 ν−1ð ÞS1;νþ1
� �þ

þ 2p0l
2z4

λ4
1þ kð Þ z ν−1ð ÞS2;ν−z2 ν−1ð ÞS1;νþ1

� �

−
p1l

2

λ6
z ν−1ð ÞS4;ν−z2 ν−3ð ÞS3;νþ1
� �

ð14Þ
and transversal forces

Q zð Þ ¼ p1lz
2

2λ4
2 1þ kð Þλ2−z2� �þ p0lz

2

λ2
þ C3

AEa2

4
:

ð15Þ
Using the formulas (10-13) it is possible to calculate

stiffness and strength, where constant integrations С1 − 4 are
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Figure 2 The calculated models of a construction of a lattice tower: 1 – the model without taking into account longitudinal load;
2 – the model which takes into account longitudinal load.
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defined from bordering conditions for fastening or joint of
construction parts.
We consider two models (Figure 2) for valuation of the

influence of longitudinal loads on the value of transversal
deformation and bending moment. We bring in values
non-dimensions for these models: ~Mmax ¼ 2

pl2
Mmax – a

moment non-dimension in the base of a rod; ~ymax ¼ 8EAa2

pl2

ymax – sag non-dimension of a rod apex; ~q ¼ ql
EAa2 – weight

non-dimension of a construction; ~N ¼ N0
EAa2 – transversal

force non-dimension.
We get from formulas (1-3) for the model (1):
q~

k 
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2, xam

y

y
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Figure 3 The ratios of sags and bending moments for models for ~N ¼
~M1;max ¼ 1; ~y1;max ¼
2−12k2−6k

k þ 1
þ 12k2 ln

k þ 1
k

We get expressions ~M2;max and ~y2;max for the model (2)
from formulas (11-12) taking into account p0 = p, p1 = 0.
Constant integrations are defined from bordering conditions

y λ
ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p� �jx¼l ¼ 0
y′ λ

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p� �jx¼l ¼ 0
M λ

ffiffiffi
k

p� �jx¼0 ¼ 0
Q λ

ffiffiffi
k

p� �jx¼0 ¼ 0

:

8>>><
>>>:

ð16Þ
q~

k 

1, xam

2, xam

M

M

0,1 0,2 0,3 0,4

2

4

6

8

0.
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Figure 4 The ratios of sags and bending moments for models for q̃¼10−3.
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Corresponding calculated results of the investigation
are represented in Figures 3, 4 and 5.
On the bases of the received results we can make the

following conclusions:

1. The influence of longitudinal loads on value of
sags and bending moments considerably
diminish with increasing parameter k (Figure 3;
Figure 4);

2. We get maximum values of loads for using the
model (1) exactness of which is up to 5% for pointed
rod (k = 001), it is represented in graphics of
Figure 5,
Fig
– ~q < 0; 1 and ~N < 0; 02 for maximum sag
definition;

– ~q < 0; 25 and ~N < 0; 1 for maximum moment
definition.
For example, a boring rig, which represents a rod
construction in the form of a square truncated pyra-
mid, has the following parameters: rig height is
53,3 m, width of the low base is10 m, of the upper one
N
~

q~

1, xam

2, xam

y

y

0,2 0,4

0,1

0,2

0,

0,

ure 5 The ratios of sags and bending moments for models for k =
is 2 m (h1 = 1 м; h2 = 5 м; k = 0,25; a = 0,075), trans-
versal section area is 351,4 ⋅ 10− 4 m2, rig weight is 4 ⋅
105 N ( ~q ¼ 101⋅10−2 ), equipment weight 3,2 ⋅ 106 N
( ~N ¼ 809⋅10−2). The ratios of sags and moments form,
y2,max/y1,max = 1045; M2,max/M1,max = 1022 for it, so the
error of the model (1) use for the definition of sag is
4,5% and of moment in the base is 2,2%.
The graphs in Figures 3, 4 and 5, show that in the

common case the longitudinal load influences the
calculated parameter values. So, when investigating a
strained deformed condition of a structure presented
above, it is necessary to use this suggested model or
on its base to ground established tolerances in calcu-
lated schemes.
The problem, which is under consideration in this

paper, is a tower type constructions model under the
influence of point load and distributed loads. This
model can be used for the investigation of strained de-
formed condition of constructions, for solving prob-
lems of stability and for mathematical description of
elements in program modeling complexes on the base
of finite elements method.
N
~

q~

1, xam

2, xam

M

M

0,2 0,4

1

2
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