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Abstract

The exp(–Ф(η))-expansion method is an ascending method for obtaining exact and solitary wave solutions for
nonlinear evolution equations. In this article, we implement the exp(–Ф(η))-expansion method to build solitary
wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of
computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the
trigonometric functions and elementary functions. The results show that the exp(–Ф(η))-expansion method is
straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical
physics and engineering.
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Background
The world around us is inherently nonlinear (He 2009)
and nonlinear evolution equations (NLEEs) are widely
used as models to describe complex physical phenomena
in various fields of science and engineering, especially in
solid-state physics, plasma physics, fluid mechanics,
biology etc. One of the fundamental problems for these
models is to obtain their travelling wave solutions as
well as solitary wave solutions. In particular, various
methods have been utilized to explore different kinds of
solutions of physical problems described by nonlinear
evolution equations. In the numerical methods, stability
and convergence should be considered, so as to avoid
divergence or inappropriate results. However, in recent
times, a variety of analytical and semi-analytical methods
have been developed and use for solving NLEEs, for
instance, the inverse scattering transform (Ablowitz and
Clarkson 1991), the complex hyperbolic function method
(Chow 1995; Zayed et al. 2006), the rank analysis
method (Feng 2000), the ansatz method (Hu 2001a, b),
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the (G′/G)-expansion method (Wang et al. 2008; Bekir
2008; Neyrame et al. 2012; Akbar et al. 2012; Alam and
Akbar 2013; Alam et al. 2014), the Exp-functions
method (He and Wu 2006), the modified simple equa-
tion method (Jawad et al. 2010; Khan et al. 2013), the
Jacobi elliptic function method (Chen and Wang 2005;
Liu 2005), the Adomian decomposition method (Adomian
1994; Wazwaz 2002), the homogeneous balance method
(Wang 1995; Zayed et al. 2004), the F-expansion method
(Wang and Zhou 2003; Wang and Li 2005), the Backlund
transformation method (Miura 1978), the Darboux
transformation method (Matveev and Salle 1991), the
homotopy perturbation method (Mohyud-Din 2007;
Mohyud-Din and Noor 2009), the generalized Riccati
equation method (Yan and Zhang 2001), the tanh-function
method (Wazwaz 2005), the Hirota’s bilinear method
(Hirota 2004), the auxiliary equation method (Sirendaoreji
2007), the exp(–Ф(η))-expansion method (Khan and
Akbar 2013) etc.
The objective of this article is to implement the potential

exp(–Ф(η))-expansion method to search solitary wave
solutions for nonlinear evolution equations via the fourth
order Boussinesq equation. In former literature, the
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solitary wave solutions to the Boussinesq equation
have not been studied by this method.
The article is organized as follows: In Methodology

Section, we give the description of the exp(–Ф(η))-ex-
pansion method. We apply this method to the fourth
order Boussinesq equation in the Application Section. 2D
and 3D graphs are given in the Graphical Representations
of the Solutions Section. Finally, in Conclusion Section,
we draw our conclusions.

Methodology
Let us consider the nonlinear evolution equation in
the form

F u; ut ; ux; ux x; ut t ;ut x;…ð Þ; ð1Þ

where u = u(x, t) is an unknown function, F is a polyno-
mial in u(x, t) and its derivatives in which highest order
derivatives and nonlinear terms are involved and the
subscripts indicate partial derivatives. In order to in-
vestigate solitary wave solutions of (1) by using the exp
(–Ф(η))-expansion method, we have to perform the
following important steps:
Step 1. We combine the real variables x and t by a

compound variable η

u x; tð Þ ¼ u ηð Þ; η ¼ x� V t ; ð2Þ

where V is the celerity of the traveling wave. By means
of traveling wave transformation (2), Eq. (1) switch into
an ordinary differential equation (ODE) for u = u(η):

H u; u′;u″; u‴;⋯
� �

; ð3Þ

where H is a polynomial of u and its derivatives and
the superscripts refer to the ordinary derivatives with
respect to η.
Step 2. Assume the traveling wave solution of (3) can

be articulated as follows:
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Figure 1 Bell shaped 2D and 3D-plot of the solitary wave. The graphs ha
u ηð Þ ¼
XN
i¼0

Ai exp −Φ ηð Þð Þð Þ
i

; ð4Þ

Ai (0 ≤ i ≤ N) are constants to be determined, such
that AN ≠ 0 and Ф =Ф(η) satisfies the following auxiliary
equation:

Φ′ ηð Þ ¼ exp −Φ ηð Þð Þ þ μ exp Φ ηð Þð Þ þ λ; ð5Þ
Depending on the parameters involved, Eq. (5) has the

subsequent solutions:
When μ ≠ 0, and λ2 − 4μ > 0,

Φ ηð Þ ¼ ln
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ
� �q

tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μð Þp
2 ηþ Eð Þ

� �
−λ

2μ

0
BB@

1
CCA

ð6Þ
When μ ≠ 0, and λ2 − 4μ < 0,

Φ ηð Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2
� �q

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2ð Þp
2 ηþ Eð Þ

� �
−λ

2μ

0
BB@

1
CCA
ð7Þ

When μ = 0, λ ≠ 0, and λ2 − 4μ > 0,

Φ ηð Þ ¼ − ln
λ

exp λ ηþ Eð Þð Þ−1
� �

ð8Þ

When μ ≠ 0, λ ≠ 0, and λ2 − 4μ = 0,

Φ ηð Þ ¼ ln −
2 λ ηþ Eð Þ þ 2ð Þ

λ2 ηþ Eð Þ

� �
ð9Þ

When μ = 0, λ = 0, and λ2 − 4μ = 0,

Φ ηð Þ ¼ ln ηþ Eð Þ ð10Þ
Step 3. The positive integer N can be determined

by considering the balance between the highest order
ve been plotted from u1(η) when μ = 1, λ = 2.5, E = 0, t = 0 and A0 = 1.
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Figure 2 Sharp bell shaped 2D and 3D-plot of the solitary wave. The graphs have been plotted from u2(η) when μ = 2.5, λ = 1, E = 0, t = 0 and A0 = 1.
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derivatives and the nonlinear terms of the highest order
appearing in (3).
Step 4. We substitute Eq. (4) into Eq. (3) and then we

take into consideration the function exp(–Ф(η)). In con-
sequence of this substitution, we obtain a polynomial in
exp(–Ф(η)). We collect all the coefficients of identical
power of exp(–Ф(η)) and equalize to zero delivers a sys-
tem of algebraic equations whichever can be solved to
find AN,⋯⋯,V, λ, μ. The values of AN,⋯⋯,V, λ, μ along
with general solutions of Eq. (5) complete the determin-
ation of the solution of Eq. (1).

Application
In this section, we will use the exp(–Ф(η))-expansion
method to construct the exact solutions and then the
solitary wave solutions to the fourth order Boussinesq
equation. Let us consider the equation

ut t−uxx−ux x x x−3 u2
� �

x x ¼ 0: ð11Þ

The above model (11) was introduced by Boussinesq
to illustrate the propagation of long waves in shallow
water (Lai et al. 2008), where u(x, t) is the elevation of
the free surface of the fluid, where the subscripts denot-
ing partial derivatives. The equation also arises in many
other physical applications, such as, nonlinear lattice
waves, iron sound waves in plasma, and vibrations in a
nonlinear string. It was also applied to the study of the
percolation of water in porous subsurface strata.
Equation (11) possesses solitary waves, extract from

traveling wave solutions and Boussinesq was the first who
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Figure 3 Pointed 2D and 3D-plot of the solitary wave. The graphs hav
gave a scientific explanation of their existence. We utilize
the traveling wave variable u(η) = u(x, t), η = x −Vt and this
operation changes (11) to the following ODE:

V 2u″−u″−u 4ð Þ−3 u2
� �″ ¼ 0: ð12Þ

Integrating Eq. (12) twice with respect to η yields:

V 2−1
� �

u−u″−3u2 þ C ¼ 0; ð13Þ
where C is an integration constant to be determined.
Balancing the highest order nonlinear term u2 and linear

term of the highest order u′′ appearing in (13), yields N = 2.
Therefore, the solution of Eq. (13) takes the form

u ηð Þ ¼ A0 þ A1 exp −Φ ηð Þð Þ þ A2 exp −Φ ηð Þð Þ2;
ð14Þ

where A0, A1, A2 are arbitrary constants such that A2 ≠ 0.
We substitute Eq. (14) into Eq. (13) and taking consid-

eration Eq. (5), it generates a polynomial and then setting
the coefficients of exp(–Ф(η)) to zero, yields

−6A2−3A2
2 ¼ 0; ð17Þ

−2A1−10A2λ−6A1A2 ¼ 0; ð18Þ
−A2−4A2λ

2−3A1λ−3A1
2−6A0A2 þ V 2A2−8A2μ ¼ 0;

ð19Þ
C þ V 2A0−A0−2A2μ

2−3A0
2−3A1

2−A1λμ ¼ 0; ð20Þ
Solutions of Eqs. (17)-(20), yield
e been plotted from u3(η) when μ = 0, λ = 1, E = 1, t = 0 and A0 = 1.
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Figure 4 Sharp bell shaped 2D and 3D-plot of the solitary wave. The graphs have been plotted from u4(η) when μ = 0.25, λ = 1, E = 1, t = 0
and A0 = 1.
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C ¼ −4μ2−3A0
2−2λ2μ−λ2A 0−8A 0μ;

V ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1þ 8μþ 6A 0

q
;A1 ¼ −2λ;A1 ¼ −2:

where λ, μ and A0 are arbitrary constants.
Substituting the values of V, A0, A1, A2 into Eq. (14),

yields

u ηð Þ ¼ A0−2λ exp −Φ ηð Þð Þ−2 exp −Φ ηð Þð Þ2; ð21Þ

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 1þ 8μþ 6A0

q
t:

By using the solutions of Eq. (5) into Eq. (21), we obtain
the succeeding traveling wave solutions of the fourth order
Boussinesq equation:
Type 1: When μ ≠ 0, λ2 − 4μ > 0,

u1 ηð Þ ¼ A0 þ 4λμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
2

ηþ Eð Þ
0
@

1
Aþ λ

−
8μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2−4μ

q
2

ηþ Eð Þ
0
@

1
Aþ λ

8<
:

9=
;

2
;

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8μþ 6A0 þ 1

q
t and E is an arbitrary

constant.
Type 2: When μ ≠ 0, λ2 − 4μ < 0,
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Figure 5 2D and 3D-plot of the solitary wave. The graphs have been p
u2 ηð Þ ¼ A0−
4λμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
2

ηþ Eð Þ
0
@

1
A−λ

−
8μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ−λ2

q
2

ηþ Eð Þ
0
@

1
A−λ

8<
:

9=
;

2
;

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8μþ 6A0 þ 1

q
t and E is an arbitrary

constant.
Type 3: When μ = 0, λ ≠ 0, and λ2 − 4μ > 0,

u3 ηð Þ ¼ A0−
2λ2

exp λ ηþ Eð Þð Þ−1−
2λ2

exp λ ηþ Eð Þð Þ−1f g2 ;

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8μþ 6A0 þ 1

q
t and E is an arbitrary

constant.
Type 4: When μ ≠ 0, λ ≠ 0, and λ2 − 4μ = 0,

u4 ηð Þ ¼ A0 þ λ3 ηþ Eð Þ
λ ηþ Eð Þ þ 2

−
1
2

λ2 ηþ Eð Þ
λ ηþ Eð Þ þ 2

� �2

;

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8μþ 6A0 þ 1

q
t and E is an arbitrary

constant.
Type 5: When μ = 0, λ = 0, and λ2 − 4μ = 0,

u5 ηð Þ ¼ A0−
2

ηþ Eð Þ2 ;

where η ¼ x∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ 8μþ 6A0 þ 1

q
t and E is an arbitrary

constant.
lotted from u5(η) when μ = 0, λ = 0, E = 1, t = 0 and A0 = 1.
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Solitary wave solutions represent an important type
of solutions for nonlinear partial differential equations
(PDEs) as many nonlinear partial differential equations
have been found to have a variety of solitary wave solu-
tions. It is familiar that searching of exact solutions of
nonlinear partial differential equations plays a significant
role in the study of nonlinear physical phenomena. Exact
traveling wave solutions are useful for verifying the accur-
acy and stability of popular numerical schemes such as the
finite difference and finite element methods. The solitary
wave solutions obtained in this article are encouraging,
applicable, and could be helpful in analyzing long wave
propagation on the surface of a fluid layer under the ac-
tion of gravity, iron sound waves in plasma, and vibra-
tions in a nonlinear string.

Graphical representation of the solutions
Solitary waves can be obtained from each traveling wave
solution by setting particular values to its unknown pa-
rameters. By adjusting these parameters, one can get
an internal localized mode. In this section, we have
presented some graphs of solitary waves constructed
by taking suitable values of the involved unknown pa-
rameters to visualize the underlying mechanism to the
original physical phenomena. Using mathematical soft-
ware Mathematica, two and three-dimensional plots of
the obtained solutions have been shown in Figures 1, 2,
3, 4 and 5.
The obtained solutions of the fourth order Boussinesq

equation incorporate four types of explicit solutions
namely hyperbolic, trigonometric, exponential, and ra-
tional function solutions. From these explicit results we
observe that solutions u1(η) and u2(η) are soliton and
the rest of the three solutions are cuspon. The above
solitary wave solutions might be useful in analyzing the
propagation of long waves in shallow water, iron sound
waves in plasma, and vibrations in a nonlinear string.

Conclusions
In this article, we have successfully formulated solitary
waves solutions from the traveling wave solutions to
the fourth order Boussinesq equation through the exp
(–Ф(η))-expansion method. The procedure is simple,
direct and constructive with the help of a computer
algebra system. The method is quite efficient and prac-
tically well suited to be used in finding solitary wave
solutions of NLEEs and the attained solutions demon-
strated the competence of the exp(–Ф(η))-expansion
method. We also observed that the method is straight-
forward and can be applied to many other nonlinear
evolution equations.
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