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Abstract

We examined the effects of habitual exercise plus nutritional intervention through consumption of milk fat globule
membrane (MFGM), a milk component, on aging-related deficits in muscle mass and function in senescence-accelerated
P1 mice. Combining wheel-running and MFGM (MFGMEx) intake significantly attenuated age-related declines in
quadriceps muscle mass (control: 318 ± 6 mg; MFGMEx: 356 ± 9 mg; P < 0.05) and in contractile force (1.4-fold and
1.5-fold higher in the soleus and extensor digitorum longus muscles, respectively). Microarray analysis of genes in
the quadriceps muscle revealed that MFGMEx stimulated neuromuscular development; this was supported by
significantly increased docking protein-7 (Dok-7) and myogenin mRNA expression. Treatment of differentiating
myoblasts with MFGM-derived phospholipid or sphingolipid fractions plus mechanical stretching also significantly
increased Dok-7 mRNA expression. These findings suggest that habitual exercise plus dietary MFGM improves
muscle function deficits through neuromuscular development, and that phospholipid and sphingolipid in MFGM
contribute to its physiological actions.
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Background
Aging skeletal muscle is characterized by progressive loss
of muscle mass and function (Breen and Phillips 2011).
This age-related deficit, known as sarcopenia, has a pro-
found effect on quality of life in the elderly and increases
the risk of morbidity, disability, and death (Janssen et al.
2004). Despite the high prevalence and clinical relevance
of sarcopenia, the exact biochemical and molecular mech-
anisms of muscle wasting during aging are not fully
understood. The etiology of sarcopenia is multi-factorial
and involves both intrinsic and extrinsic factors (Sinha-
Hikim et al. 2013; Tan et al. 2012).
Accumulated evidence from both animal and human

studies suggests that skeletal muscle aging is strongly as-
sociated with degeneration of motor neurons, followed
by changes in the structural and functional integrity of
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the neuromuscular junction (NMJ), along with functional
denervation, and loss of motor units (Chai et al. 2011;
Manini and Clark 2012; Valdez et al. 2010). Aging muscle
fibers undergo denervation and reinnervation cycles that
lead to remodeling of the motor units (Larsson 1995).
Preferential denervation of the fast-twitch fibers and rein-
nervation by axonal sprouting from slow motor neurons
result in the conversion of type II fast fibers to type I slow
fibers (Balice-Gordon 1997; Kadhiresan et al. 1996). When
denervation outpaces reinnervation, some of the muscle
fibers degenerate and atrophy occurs in the remaining
fibers (Rowan et al. 2012). Functional loss of NMJs and
muscle mass ultimately contributes to compromised
contractile function.
Milk is the main source of nutrition in newborn mam-

mals. Recent findings in young adults have demonstrated
that consumption of whole milk after resistance training
can promote muscle protein synthesis and inhibit pro-
tein breakdown, leading to improved net muscle protein
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balance (Elliot et al. 2006; Josse et al. 2010; Wilkinson
et al. 2007). In addition, milk protein has beneficial ef-
fects including suppressing postprandial glycemia and
promoting changes in body composition for metabolic
health (McGregor and Poppitt 2013). Milk contains ap-
proximately 3% to 5% fat, which is distributed in the
form of tiny, spherical droplets or globules stabilized in
the form of an emulsion. The diameter of the fat globule
ranges from 0.2 to 15 μm, with an average of about
4 μm. The triglyceride core of the fat globules in milk is
surrounded by a thin membrane called the milk fat glob-
ule membrane (MFGM). This membrane, which is about
10 to 20 nm in cross-section, acts as an emulsifier and
protects the globules from coalescence and enzymatic
degradation. The MFGM contains unique polar lipids
and membrane-specific proteins (Cavaletto et al. 2008).
The polar lipids in milk, which consist of phospholipids
and sphingolipids, are located mainly (60% to 70%) in
the MFGM. Sphingolipids (highly bioactive molecules
present mainly in polar lipids of animal origin) account
for up to one third of the MFGM polar lipid fraction.
Oshida et al. have shown that dietary sphingomyelin
contributes to myelination in the central nervous system
of developing rats (Oshida et al. 2003). Loss of myelinated
nerve fibers, along with several abnormalities involving
myelinated fibers, such as demyelination and myelin bal-
loon figures, has been observed in elderly subjects. Deteri-
oration of the myelin sheaths during aging may affect the
functional properties of the peripheral nervous system; it
may cause a decline in the conduction velocity of motor
neurons and thereby in muscle strength and mass. Even
though scientific evidence on the nutritional benefits
of MFGM proteins and sphingolipids is accumulating
(Vesper et al. 1999), the nutritional aspects and physio-
logical functions of MFGM have not been fully investigated.
The senescence-accelerated mouse (SAM) exhibits sev-

eral accelerated aging characteristics and is widely used in
research on aging (Takeda et al. 1981). The SAM consists
of two types of strain, namely the senescence-accelerated
prone mouse (SAMP) and the senescence-accelerated re-
sistant mouse (SAMR). Compared with SAMR strains,
which are used as controls that age normally, SAMP
strains show rapid progression of senescence, higher oxi-
dative stress, decreased behavioral activity, and a shorter
median life span (Takeda et al. 1991, 1997; Takeda 1999;
Hosokawa 2002). These characteristics observed in SAMP
strains are similar to those observed in humans with nor-
mal aging; therefore, SAMP strains are useful models of
human aging. SAMP strains might also be useful for
studying muscle aging. Sakakima et al. (2004) demon-
strated that sarcopenia and age-associated morphologic
changes in the leg muscles occur earlier in SAMP1 mice
than in normal ICR mice. Derave et al. (2005) reported re-
duced muscle mass, selective type-II fiber atrophy, and
reduced contraction speed in the soleus muscle of SAMP8
mice. There is, thus, support for using this model to study
skeletal muscle aging.
Our previous studies have shown that dietary green

tea extract (GTE) plus habitual exercise improves skel-
etal muscle function and metabolism in mice, including
in SAMP1 mice (Murase et al. 2005, 2006a, b, 2008;
Shimotoyodome et al. 2005). These findings led us to inves-
tigate whether, and how, habitual exercise plus nutritional
intervention improves skeletal muscular physiology.
Here, we investigated whether long-term consumption

of MFGM proteins and lipids combined with habitual
exercise could prevent age-related deficits in muscle
mass and function. In light of our finding that a com-
bination of dietary supplementation with MFGM and
voluntary wheel-running prevented age-related declines
in skeletal muscle mass and strength in SAMP1, we also
attempted to elucidate the mechanisms underlying these
improvements after long-term MFGM consumption.

Methods
Materials
MFGM was purchased from MEGGLE Japan Co. Ltd
(Tokyo, Japan). The composition of the MFGM was 43.8%
protein, 37.1% fat, 10.3% carbohydrate, 13.6% lactose, 16.6%
phospholipids (4.71% phosphatidylcholine, 5.2% phosphati-
dylethanolamine, 1.32% phosphatidylinositol, 1.74% phos-
phatidylserine, 3.0% sphingomyelin, and others), 4.3% ash,
2.4% minerals, 4.5% moisture, and 1.9% others. The com-
position of the fatty acids was 31.6% C18:1, 23.8% C16:0,
12.9% C18:0, 7.5% C14:0, 4.3% C18:2(n-6), 2.1% C12:0, 1.6%
C4:0, 1.6% C10:0, 1.5% C16:1, 1.2% C6:0, and <1.0% others.
The content (all in g/100 g) of glutamic acid was 8.44,
of leucine 4.46, aspartic acid 3.82, lysine 3.69, proline
3.49, serine 2.83, valine 2.54, threonine 2.33, isoleucine
2.26, phenylalanine 2.1, tyrosine 1.86, arginine1.85, alanine
1.66, histidine 1.35, methionine 1.16, glycine 1.04, trypto-
phan 0.71, and cysteine 0.57. Milk-derived sphingomyelin
was purchased from NOF Corporation (Tokyo, Japan).
Phospholipid and sphingolipid fractions were also pre-
pared from MFGM. In brief, the MFGM was homoge-
nized in an ice-cold chloroform–methanol mixture (2:1) by
using a homogenizer (TK autohomomixer; Tokusyukika
Kogyo Co. Ltd., Osaka, Japan). The soluble fraction ob-
tained was subjected to acetone precipitation to separate
the polar lipids. The phospholipid fraction (PLF) was then
purified by using column chromatography over silica gel
(Yamazen Hi-Flash silica gel column; Yamazen Corp.,
Osaka, Japan). Phosphatidylcholine, phosphatidyletha-
nolamine, phosphatidylserine, glucosylceramide, and lac-
tosylceramide in the purified PLF were detected by using
thin-layer chromatography (TLC) analysis (chloroform–
methanol–water; 65:16:2). After alkaline hydrolysis, the
sphingolipid fraction (SLF) was obtained as an acetone-
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insoluble fraction after acetone precipitation. Glucosylcer-
amide, lactosylceramide, and sphingomyelin were detected
by TLC analysis of the SLF. Quantitative analysis by using
high-performance liquid chromatography revealed that
the SLF was 52% sphingomyelin. GTE was prepared and
analyzed as described previously (Haramizu et al. 2011a,
2011b). The total polyphenol (catechin) content of the
GTE was 81%, and the caffeine content was 0.1%. The
polyphenols were made up of epigallocatechin gallate
(41%), epigallocatechin (23%), epicatechin gallate (12%),
epicatechin (9%), gallocatechin (7%), gallocatechin gallate
(4%) and others (4%).

Animals and experimental design
SAMP1 exhibit several characteristics of accelerated
aging and are widely used in aging research (Sakakima
et al. 2004). ICR mice are widely used as a control strain
in experiments on SAMP1 (Lee et al. 2013; Nagano et al.
2000). Male 15-week-old SAMP1 and ICR mice were
purchased from Japan SLC, Inc. (Hamamatsu, Japan) and
maintained under controlled conditions of temperature
(23 ± 2°C), humidity (55% ± 10%), and lighting (0700 to
1900 h). The mice were fed a laboratory chow (CE-2,
CLEA Japan, Inc., Tokyo, Japan) and had free access to
drinking water to acclimate to the housing conditions for
2 months. At the age of 23 wk, all mice were weighed and
those that were self-injurious (i.e., those with visible in-
jury) were removed from the study. SAMP1 and ICR mice
whose body weights were 20% heavier and 9% lighter,
respectively, than the average were also removed to
minimize individual differences in body weight. Then, 40
of 80 SAMP1 and 8 of 12 ICR mice with similar body
weights were selected. The SAMP1 mice were randomly
allocated to five groups, namely the control group, which
was fed a control diet containing 5.5% fat (w/w), 6% ca-
sein, 75.6% potato starch, 8.4% cellulose, 3.5% minerals,
and 1% vitamins; the MFGM group, which was fed an
MFGM diet consisting of the control diet supplemented
with 1% MFGM; the GTE group, which was fed a GTE
diet consisting of the control diet supplemented with 0.5%
GTE; the MFGMEx group, which was fed the MFGM diet
and also given habitual exercise; and the GTEEx group,
which was fed the GTE diet and also given habitual exer-
cise (n = 8 per group).
ICR mice, which had previously been used as a control

strain for comparison with SAMP1 were used as nor-
mally aging mice. The ICR mice were used as normally
aging mice and were fed the control diet (n = 8). For 20
wk (from 23 to 43 wk of age), the mice were allowed ad
libitum access to water and one of the following pow-
dered diets: the control diet (control and ICR groups) or
each experimental diet with or without exercise (MFGM,
MFGMEx, GTE, and GTEEx groups). All mice were indi-
vidually housed in regular plastic cages (TP-106; 175 ×
245 × 125 mm, Toyoriko, Tokyo, Japan), each of which
had a nest box (Shepherd Specialty Papers, Watertown,
TN) to reduce stress. The cages of habitual exercise group
had a running wheel (SW-15 mg; MELQUEST, Toyama,
Japan), whereas those of the non-habitual-exercise groups
did not. Dietary intake was measured throughout the ex-
perimental period by subtracting the remaining food
weight from the initial weight of the food given on the
previous feeding day. All animal experiments were con-
ducted in the Experimental Animal Facility of Kao Cor-
poration R&D Department. The study was approved by
the Animal Care Committee of the Kao Tochigi Institute.
All experiments strictly followed the guidelines of that
committee.

Cell culture and mechanical stretching by using cyclic
strain
Murine C2C12 myoblasts (EC91031101) were obtained
from the European Collection of Cell Cultures (Dainippon
Sumitomo Pharma Biomedical, Osaka, Japan). The cells
were plated onto flexible-bottomed plates (Bioflex Plates
Collagen 1, Flexcell International Corp., Hillsborough,
NC) coated with 1 mg/mL poly-L-lysine (Sigma-Aldrich
Japan, Tokyo, Japan) and fibronectin (1:100, Sigma-
Aldrich Japan) and maintained in an atmosphere of
95% air – 5% CO2 at 37°C in Dulbecco’s modified eagle
medium (DMEM) supplemented with 10% fetal bovine
serum and 10 ml/L Antibiotic-Antimycotic mixture
(Gibco, Grand Island, NY). For differentiation into myo-
tubes, C2C12 myoblasts were grown to subconfluence on
the plates; the culture medium was then replaced with
DMEM containing 2% heat-inactivated horse serum
(Gibco) supplemented or not supplemented with 0.01%
MFGM, 0.001% or 0.005% PLF, SLF, or sphingomyelin.
During differentiation, the cells were subjected to cyclic
equibiaxial stretching consisting of 10% elongation at
0.5 Hz, with 1 h on and 5 h off for 72 h, by using a Flexcell
FX-5000 Tension System (Flexcell International Corp.),
as described previously (Zhang et al. 2007). The culture
media were replaced with fresh media once a day. At
the end of 72 h, the cells were washed with ice-cold
phosphate-buffered saline once, homogenized with a
QIAshredder (Qiagen K.K., Tokyo, Japan), and sub-
jected to RNA extraction. Total RNA was extracted
from frozen samples (n = 6) by using an RNeasy Mini
kit (Qiagen K.K.) in accordance with the manufacturer’s
instructions.

Blood and tissue collection
Whole blood was collected from mice at the age of 43
wk in the non-fasting condition via the post-caval vein
under anesthesia with inhaled sevoflurane (SEVOFRAN®;
Maruishi Pharmaceutical Co., Ltd., Osaka, Japan). The
blood was then immediately analyzed. The remaining
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blood was maintained at 4ºC until plasma preparation.
Immediately after euthanasia by exsanguination, the quad-
riceps, gastrocnemius, plantaris, extensor digitorum longus
(EDL), and soleus muscles, along with the epididymal,
perirenal, and retroperitoneal white adipose tissues (WAT)
and the liver, were removed and weighed. Tissue samples
were stored at –80ºC until analysis.
Biochemical analysis
The concentrations of erythrocytes, leukocytes, and
platelets, along with hemoglobin concentration and
the hematocrit, were measured in heparinized blood
with an automatic hematocytometer (Celltac MEK-5258;
Nihon Kohden, Tokyo, Japan). Plasma was obtained from
the blood by centrifugation at 3500 × g for 15 min. Plasma
glucose; triglycerides (TG); non-esterified fatty acid
(NEFAs); aspartate aminotransferases (AST); alanine
aminotransferase (ALT); total-cholesterol; lactate; lac-
tate dehydrogenase (LDH); and ketone bodies were
quantified by using N-A Glu-UL, N-A L TG-H, NEFA-
HA, N-A L GOT, N-A L GPT, N-A L T-CHO-H, N-A
L LAC, N-A L LDH, and T-KB-H assay kits (Nittobo
Medical Co., Ltd., Tokyo, Japan), respectively. Plasma
insulin-like growth factor (IGF)-1 was measured with a
mouse IGF-1 immunoassay (R&D Systems Inc., Minneapolis,
MN). Plasma adiponectin levels were measured with a
mouse/rat adiponectin ELISA kit (Otsuka Pharmaceuticals
Co. Ltd, Tokyo, Japan). All measurements were performed
in accordance with the manufacturers’ instructions.
Force of soleus and EDL muscle contractions induced by
electrical stimulation
Muscle force measurements were performed as described
previously (Haramizu et al. 2011a, 2011b). The muscle of
the right leg was quickly isolated. The muscle was an-
chored horizontally between two hooks–one fixed and
one attached to an isometric force transducer (World Pre-
cision Instruments, Inc., Sarasota, FL)–and immersed in
Krebs solution of the following composition: 119.7 mM
NaCl, 4.5 mM KCl, 0.5 mM MgCl2, 0.7 mM Na2HPO4,
1.5 mM NaH2PO4, 15 mM NaHCO3, 2.5 mM CaCl2, and
10 mM D-glucose; pH 7.3 ± 0.1. The solution was con-
tinuously bubbled with 95% O2 – 5% CO2 at 37ºC. The
muscle was electrically stimulated with a stimulus-isolation
unit (SEN-3301; Nihon Kohden, Japan) and the optimal
twitch length was set. Twitch force was measured with a
single pulse; tetanic responses were induced with a 0.2-ms
pulse (140 Hz) for 330 ms once every 2 s and digitally re-
corded for 2 min with a bridge amplifier and data acquisi-
tion system (Quad-16I; World Precision Instruments,
Inc.). Measurements were analyzed with Data-Trax soft-
ware (World Precision Instruments, Inc.).
Indirect calorimetry
To elucidate the effect of MFGM or GTE with or with-
out exercise on energy metabolism, we measured the
oxygen consumption (VO2) and respiratory quotient
(RQ) of the mice after 17 to 18 wk of feeding. We used
an indirect calorimetric system equipped with a sixteen-
chamber airtight metabolic cage (ARCO2000-RAT/ANI
16 Chamber System®; Arcosystem Inc., Chiba, Japan)
(Murase et al. 2011). Each mouse was placed in a cham-
ber for 3 d and allowed to acclimate to the surroundings
before the measurement. Oxygen consumption and car-
bon dioxide production were then measured under feed-
ing conditions for 24 h. RQ was calculated by dividing
the measured values of carbon dioxide production by
those of oxygen consumption. During the measurement,
locomotor activity was measured with an automated
motion analysis system (Actracer2000; Arcosystem Inc.),
which detects the amount of centroid fluctuation by using
a weighted transducer.

DNA microarray analysis
Total RNA was extracted from frozen quadriceps muscle
(n = 4) by using an RNeasy Fibrous Tissue Mini kit
(Qiagen K.K., Tokyo, Japan) in accordance with the manu-
facturer’s instructions. For microarray analysis, the quality
of total RNA samples was checked with an Agilent 2100
BioAnalyzer (Agilent Technologies Inc, Tokyo, Japan); the
RNA integrity number of each sample was over 7.0. DNA
microarray analysis was performed with a one-color sys-
tem and the Agilent Mouse SurePrint G3 mouse gene
expression array. In brief, 200 ng of each RNA was labeled
and amplified with a Low Input Quick Amp Labeling Kit
(one color; Agilent Technologies) in accordance with
manufacturer’s instructions. Cyanine 3-labeled cRNA was
fragmented and hybridized by using a Gene Expression
Hybridization Kit and then washed with a Gene Expres-
sion Wash Pack (both Agilent Technologies). The hybrid-
ized microarray slides were scanned with an Agilent
Technologies Microarray Scanner (Agilent Technologies)
and the data were extracted by using Agilent Feature Ex-
traction 10.7.1 in Hokkaido-System Science (Sapporo,
Japan). After we had confirmed the high degree of reliabil-
ity of the microarray processes on the basis of the QC re-
port, data normalization and filtering were performed
with GeneSpring GX 11.5 (Agilent technologies), as fol-
lows: 1) threshold raw signals were set to 1.0.; 2) 75th per-
centile normalization was used for the normalization
algorithm; 3) the baseline was transformed to the median
of all samples; and 4) raw values filtered by signal intensity
value (upper cut-off: 100th percentile; lower cut-off: 20th

percentile) of raw values and flagging to exclude absent
reads. Probe sets were then identified by using unpaired
t-test (P < 0.05) to compare between the experimental and
control SAMP1 groups, with a relative fold-change value
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of >1.2 and no correction for multiple testing; this was
done because the MicroArray Quality Control Consor-
tium suggests the use of a fold-change cut off along with a
non-stringent P-value cut-off as a baseline practice to im-
prove reproducibility in microarray data processing
(MAQC Consortium et al. 2006). Selected probe sets were
analyzed with IPA (Ingenuity Pathways Analysis) software
version 9.0 (Ingenuity Systems, Redwood City, CA).

Quantitative real-time polymerase chain reaction (RT-PCR)
The microarray expression results were verified by using
quantitative RT-PCR. The quadriceps muscles of mice in
all groups (n = 7 or 8) were analyzed for gene expression
as described previously (Haramizu et al. 2011a, 2011b).
The following mouse-specific primer sequences were
used for the mRNAs for the following proteins: docking
protein (Dok)-7 forward, TGAGCTTCCTGTTTGACT
GCA; Dok-7 reverse, GCAACACGCTCTTCTGAGGC;
muscle skeletal receptor-tyrosine kinase (MuSK) forward,
CATGGCAGAGTTTGACAACCC; MuSK reverse, TTC
GGAGGAACTCATTGAGGTC; neural cell adhesion mol-
ecule (NCAM) forward, CAGTGACCACGTCATGCTC
AAG; NCAM reverse, CCTGAACACAAAGTGAGCTGC
C; myogenic differentiation (MyoD)-1; CTAGATCCAGC
CCCAAAGAAAG, MyoD reverse, AGGTGCAGCCAG
AGTGCAA; myogenin forward, GCACTGGAGTTCGGT
CCCA; and myogenin reverse, GTGATGCTGTCCACG
ATGGA. For quantitative precision, the same amount of
total RNA was consistently used for each expression
analysis. Expression of each gene was normalized against
that of the housekeeping gene encoding ribosomal pro-
tein, large, P0 (RPLP0/36B4).

Western blot analysis
Quadriceps muscles were homogenized and lysed on ice
in a Physcotron homogenizer (Microtech, Chiba, Japan)
and a ready-made homogenization buffer, CelLytic MT
Mammalian Tissue Lysis/Extraction Reagent (Sigma, St
Louis, MO) containing a protease inhibitor cocktail
(Sigma), and phosphatase inhibitor cocktail-1 and -2
(Sigma). After centrifugation of the muscle mixtures at
12,000 × g for 15 min at 4°C, the supernatants were re-
moved and their protein concentrations determined
with a BCA protein assay kit (Pierce, Rockford, IL).
Equal amounts of protein (1 μg/μL) were boiled at 100°C
for 5 min in SDS sample buffer (Novagen, Inc., Madison,
WI) and centrifuged at 2400 × g for 5 min at 4°C. The pro-
tein extracts were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to Immobilon-P polyvinylidene fluoride (PVDF)
membranes (Millipore Corp., Bedford, MA) at 200 mA for
1.5 h. The membranes were then blocked with PVDF
Blocking Reagent for Can Get Signal (Toyobo Co., Ltd.,
Osaka, Japan) at room temperature for 1 h and incubated
overnight with anti-Dok-7 (1:1000 dilution, Abcam,
Cambridge, UK) and anti-MuSK (R&D Systems Inc.,
Minneapolis, MN) or anti-α-tubulin (1:1000 dilution,
Cell Signaling, Beverly, MA) primary antibodies in Immu-
noreaction Enhancer Solution 1 (Toyobo). After being
washed four times with Tris-buffered saline containing
0.05% Tween 20 (Bio-Rad Laboratories, Hercules, CA), the
membranes were incubated with horseradish-peroxidase-
labeled anti-rabbit (Cell Signaling) immunoglobulin for
Dok-7 and α-tubulin or anti-goat immunoglobulin for
MuSK (Wako, Osaka, Japan) in Immunoreaction Enhan-
cer Solution 2 (Toyobo). The blots were visualized with an
ECL Prime Western Blotting Detection System (GE Health-
care, Buckinghamshire, UK) and a ChemiDoc XRS imaging
system (Bio-Rad).
Statistical analysis
All values are presented as means ± standard error (SE).
Unpaired Student’s t-tests after a preliminary F-test of the
homogeneity of within-group variance were used to com-
pare values between groups. When more than two groups
were compared, statistical analysis was conducted with
one-way ANOVA followed by Fisher’s protected least
significant difference or Dunnett’s post-hoc tests (Statview
for Windows version 5.0, SAS Institute Inc., Cary, NC).
A P value of less than 0.05 was considered statistically
significant.
Results
Effect of exercise plus MFGM on body and tissue weights
in SAMP1
Body and tissue weights of mice at the age of 43 wk are
shown in Table 1. The quadriceps, gastrocnemius, plan-
taris, EDL and soleus muscles in the control SAMP1
group weighed significantly less than those in the ICR
group. In contrast, the epididymal, perirenal, and retro-
peritoneal WAT tissues were significantly heavier in the
control SAMP1 group than in the ICR group. The quadri-
ceps muscle weighed significantly more in the MFGMEx
mice than in the control SAMP1 group, whereas the
weights of the gastrocnemius, plantaris, EDL and soleus
muscles were similar between the groups. The GTE and
GTEEx groups had significantly lower body weights than
the control SAMP1 group. Fat and liver weights were sig-
nificantly lower in both the GTE and the GTEEx group
than in the control SAMP1, whereas muscle weight did
not differ between the groups. Dietary intake was signifi-
cantly higher in the ICR group than in the control SAMP1
group, but body weights did not differ between the ICR
mice and the control SAMP1.



Table 1 Body weight, feed intakes, feed efficiency, and tissues weights

ICR Control MFGM MFGMEx GTE GTEEx

SAMP1

Body weight, g 44.2 ± 1.4 42.2 ± 2.7 42.2 ± 1.7 40.3 ± 1.6 29.6 ± 1.9* 32.5 ± 1.0*

Dietary intake, g 791.0 ± 26.2* 584.7 ± 13.9 ‡‡ 564.1 ± 8.5 632.6 ± 24.8 527.5 ± 3.8 569.8 ± 4.1

Quadriceps, mg 424.6 ± 13.0* 318.0 ± 6.0 ‡‡ 306.3 ± 6.4 355.8 ± 8.5* 301.1 ± 16.8 323.9 ± 11.5

Gastrocnemius, mg 328.8 ± 14.1* 228.8 ± 7.6 ‡‡ 222.4 ± 5.5 234.3 ± 5.8 198.5 ± 12.3 238.2 ± 16.7

Plantaris, mg 44.5 ± 2.7* 27.3 ± 1.8 ‡‡ 28.5 ± 2.6 29.5 ± 2.2 25.6 ± 2.5 27.8 ± 1.9

EDL, mg 27.6 ± 0.8* 20.4 ± 0.8 ‡‡ 19.2 ± 1.4 19.9 ± 0.9 19.1 ± 0.4 18.4 ± 1.4

Soleus, mg 20.1 ± 1.3* 15.6 ± 0.8 † 17.1 ± 0.8 17.1 ± 1.1 15.4 ± 1.3 16.6 ± 1.2

Epididymal fat, g 1.43 ± 0.13* 2.34 ± 0.22 †† 2.48 ± 0.15 2.31 ± 0.22 1.11 ± 0.31* 1.29 ± 0.25*

Perirenal fat, g 0.19 ± 0.03* 0.37 ± 0.07 † 0.33 ± 0.05 0.26 ± 0.03 0.11 ± 0.03* 0.15 ± 0.02*

Retroperitoneal fat, g 0.37 ± 0.03 0.56 ± 0.07 † 0.58 ± 0.05 0.46 ± 0.04 0.22 ± 0.06* 0.23 ± 0.06*

Liver, g 1.39 ± 0.08 1.36 ± 0.07 1.36 ± 0.04 1.27 ± 0.03 1.09 ± 0.03* 1.09 ± 0.03*

Values are means ± S.E. of 7 or 8 mice.
†P < 0.05, ††P < 0.01, †††P < 0.001,‡‡P < 0.0001, significant difference between ICR group and control SAMP1 group at the age of 43 wk by unpaired t-test.
*P < 0.05, significant difference vs. control SAMP1 group at the age of 43 wk by Dunnett’s test.

Haramizu et al. SpringerPlus 2014, 3:339 Page 6 of 17
http://www.springerplus.com/content/3/1/339
Effect of exercise plus MFGM on blood and plasma
components in SAMP1
The blood level of erythrocytes, as well as the hemoglobin,
and hematocrit values, was significantly lower in the con-
trol SAMP1 group than in the ICR group at the age of
Table 2 Blood and plasma analysis

ICR Control

Blood component

WBC, 102/μL 46.4 ± 13.6 38.7 ± 8.1

RBC, 104/μL 844.4 ± 19.8* 730.1 ± 21.7†† 7

Haemoglobin, mg/dL 13.8 ± 0.2* 12.3 ± 0.3††

Haematocrit,% 43.2 ± 0.8* 37.0 ± 1.0‡

Platelet, 104/μL 93.0 ± 6.4 73.9 ± 2.8†

Plasma component

Glucose, mg/dL 210.8 ± 18.5 230.8 ± 17.1 2

Lactate, mg/dL 55.0 ± 5.1 63.5 ± 4.0

LDH, IU/L 287.4 ± 34.8* 150.6 ± 13.7†† 1

AST, IU/L 48.5 ± 5.3* 28.4 ± 1.3††

ALT, IU/L 15.7 ± 0.8 16.8 ± 2.8

Total Chol, mg/dL 163.2 ± 20.9 170.7 ± 6.8 1

TG, mg/dL 55.8 ± 8.7 88.5 ± 7.4† 1

Ketone body, mg/dL 163.1 ± 41.0 248.8 ± 30.0 2

NEFA, mEq/L 0.9 ± 0.1 1.0 ± 0.1

Adiponectin, pg/mL 3.5 ± 0.2* 2.0 ± 0.1‡‡

IGF-1, ng/mL 596.3 ± 53.7* 474.2 ± 14.1 5

Values are means ± S.E. of 7 or 8 mice.
†P < 0.05, ††P < 0.01, ‡‡P < 0.0001, significant difference between ICR group and cont
*P < 0.05, Significant difference vs. control SAMP1 group at the age of 43 wk by Dun
43 wk (Table 2). The hemoglobin and hematocrit values
were significantly higher in the MFGMEx group than in
the control SAMP1 group. We measured plasma adipo-
nectin and IGF-1 levels, because they play important
roles in regulating energy metabolism (Kahn et al. 2005)
MFGM MFGMEx GTE GTEEx

SAMP1

34.4 ± 4.7 28.5 ± 4.6 41.3 ± 13.7 32.8 ± 9.3

71.6 ± 16.7 779.5 ± 19.7 675.0 ± 27.9 696.2 ± 55.6

12.7 ± 0.2 13.5 ± 0.3* 11.5 ± 0.4 12.3 ± 0.2

38.8 ± 0.8 40.3 ± 1.1* 35.1 ± 1.1 36.4 ± 2.1

76.6 ± 3.4 72.8 ± 9.0 93.2 ± 11.2 72.6 ± 4.5

17.2 ± 5.7 207.7 ± 12.1 219.9 ± 26.7 241.2 ± 19.2

56.2 ± 4.3 66.1 ± 7.6 68.0 ± 10.3 66.1 ± 11.3

58. 7 ± 7.8 150.3 ± 11.8 171.3 ± 19.3 148.2 ± 9.2

28.9 ± 1.9 28.1 ± 2.7 37.3 ± 3.0 33.8 ± 2.0

18.6 ± 1.8 19.2 ± 4.3 14.2 ± 2.1 16.1 ± 2.4

89.1 ± 13.5 188.9 ± 11.0 159.1 ± 13.9 160.2 ± 11.8

04.7 ± 19.4 114.4 ± 24.0 82.6 ± 11.7 90.1 ± 14.6

19.8 ± 45.5 242.6 ± 55.8 310.6 ± 79.7 329.4 ± 86.5

1.0 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1

2.0 ± 0.1 2.4 ± 0.1 2.0 ± 0.2 2.1 ± 0.1

01.6 ± 10.4 549.2 ± 26.9 438.6 ± 24.8 426.8 ± 25.9

rol SAMP1 group at the age of 43 wk by unpaired t-test.
nett’s test.
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and protein synthesis in skeletal muscle (Perrini et al.
2010). The plasma adiponectin level was significantly
lower (P < 0.05), and the plasma IGF-1 level tended to
be lower (P = 0.07) in the control SAMP1 group than in
the ICR group. The MFGMEx group had significantly
higher plasma adiponectin and IGF-1 levels than did the
control SAMP1 group. The control SAMP1 group had
significantly lower plasma LDH and AST and significantly
higher TG levels than did the ICR mice. These plasma
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Figure 1 Effects of milk-fat globule membrane (MFGM) or green tea e
digitorum longus (EDL) muscles. The tetanic contractile force of the isola
Methods. Values are means ± S.E. of 7 or 8 mice. ††P < 0.01 and ‡‡P < 0.0001
by unpaired t-test. *P < 0.05, significant difference vs. the control SAMP1 gr
GTEEx, GTE plus habitual exercise.
measurements did not differ between the experimental
groups and the control SAMP1 group.

Effect of exercise plus MFGM on tetanic contractile force
of soleus and EDL muscles in SAMP1
The tetanic contractile force of the soleus (Figure 1A) and
EDL (Figure 1B) muscles was significantly lower in the
control SAMP1 group than in the ICR group at the age
of 43 wk. The MFGMEx group had significantly higher
SAMP1

MFGM
Ex

*

*

GTE GTE
Ex

SAMP1

MFGM
Ex

GTE GTE
Ex

xtract (GTE) on tetanic contractile force of soleus and extensor
ted soleus (A) and EDL (B) muscles was measured as described in the
, significant difference between ICR group and control SAMP1 group
oup by Dunnett’s posthoc test. MFGMEx, MFGM plus habitual exercise;
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tetanic contractile force than the control SAMP1 group
in the soleus (Figure 1A) and EDL (Figure 1B) muscles.
Contractile force in the GTEEx group did not differ sig-
nificantly from that in the control SAMP1 group.

Effect of exercise plus MFGM on locomotor activity and
energy metabolism in SAMP1
Spontaneous locomotor activity and VO2 were signifi-
cantly lower in the control SAMP1 group than in the ICR
group at the age of 40 – 41 wk (P < 0.05; Table 3). In con-
trast, the MFGMEx group had significantly higher spon-
taneous locomotor activity and VO2 than did the control
SAMP1 group (P < 0.05). Oxygen consumption did not dif-
fer between GTE-fed mice (GTE and GTEEx groups) and
the control SAMP1 mice. There were no differences in RQ
between the experimental groups.

Effects of exercise plus MFGM on muscle gene expression
To identify the potential molecular mechanisms under-
lying the beneficial effects of habitual exercise combined
with dietary MFGM on muscle mass and force, we com-
pared the transcriptomic profile in the quadriceps
muscle between the MFGMEx and the control SAMP1
groups. In the microarray analyses, probe sets identified
as differentially expressed between the groups had a
relative fold change value of >1.2 with no correction for
multiple testing. Volcano plot analysis in GeneSpring
revealed that 893 probes were differentially expressed
in the MFGMEx group compared with the control
SAMP1 group. Among these 893 probes, 317 were
identified as up-regulated and 576 probes were down-
regulated (Additional file 1: Table S1). IPA was then
used to decipher the biological processes characterized
by the list differentially expressed probes. The biological
processes highly represented in the MFGMEx group
compared with the control SAMP1 group were “ner-
vous system development and function” (P = 3.35E-05
to 2.25E-02), “hematological system development and
function” (P = 1.59E-04 to 2.30E-02), “immune cell traffick-
ing” (P = 1.59E-04 to 2.30E-02), “lymphoid tissue structure
and development” (P = 1.59E-04 to 2.25E-02), and “embry-
onic development” (P = 5.04E-04 to 2.25E-02) within the
hierarchy “physiological systems development and func-
tions.” The top five functional annotations in the most
Table 3 Energy metabolism and spontaneous activity

ICR Control MF

Activity, g*cm/min 154.11 ± 18.69 92.02 ± 16.75† 115.99

VO2, ml/min 2.48 ± 0.09* 2.10 ± 0.10† 2.18

RQ 0.851 ± 0.028 0.834 ± 0.026 0.835

Values are means ± S.E. of 7 or 8 mice.
†P < 0.05, significant difference between ICR group and control SAMP1 group at the
*P < 0.05, significant difference vs. control SAMP1 group at the age of 43 wk by Dun
significant process are shown in Table 4. The most
significant function responding to the combination of
habitual exercise and dietary MFGM was “formation of
synapse,” followed by “growth of neurites” and “develop-
ment of neuromuscular junction.” In contrast, the micro-
array analysis followed by the IPA analysis of the GTEEx
and control SAMP1 groups showed that the most signifi-
cant function responding to the combination of habitual
exercise and dietary GTE was “hematological system de-
velopment and function.” These functions by habitual ex-
ercise and dietary MFGM were not observed in response
to combination of habitual exercise and dietary GTE (data
not shown).

Effects of exercise plus MFGM on expression of genes
encoding IGF-1 signaling molecules
To explore the differences in muscle weight between the
SAMP1 controls and the ICR controls and (in the case
of the quadriceps) between the MFGMEx group and the
SAMP1 controls, the genes involved in muscle develop-
ment were assessed by using RT-PCR. The control SAMP1
group had significantly lower igf1r and higher IGF-1 bind-
ing protein (igfbp)-5 gene expression (18.8% and 32.2%,
respectively) than the ICR group. IGF-1 mRNA expression
level did not differ among the groups (Figure 2). The
MFGMEx group had significantly higher igf1r and lower
igfbp5 gene expression (by 23.4% and 24.3%, respectively)
than did the control SAMP1 group.

Effect of exercise plus MFGM on MuSK and Dok-7
In light of the microarray results, the genes involved in
“nervous system development and function” were exam-
ined. Microarray analysis revealed that habitual exercise
plus dietary MFGM significantly increased MuSK mRNA
expression (Additional file 1: Table S1). Because MuSK
and Dok-7 are crucial for NMJ formation (DeChiara et al.
1996; Inoue et al. 2009; Okada et al. 2006), we measured
Dok-7 mRNA expression; our microarray analysis
found only one instance in which the gene tended to
be upregulated.
Expression of mRNAs for MyoD (+37.7%) and myo-

genin (+63.6%) was significantly higher in the MFGMEx
group than in the control SAMP1 group (Figure 3),
whereas it was significantly lower in the control SAMP1
GM MFGMEx GTE GTEEx

SAMP1

± 15.51 171.21 ± 25.17* 72.28 ± 9.45 135.36 ± 16.34

± 0.09 2.45 ± 0.06* 1.82 ± 0.10 2.03 ± 0.07

± 0.021 0.855 ± 0.022 0.838 ± 0.024 0.794 ± 0.016

age of 40 - 41 wk by unpaired t-test.
nett’s test.
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Table 4 “Nervous System Development and Function”
characterised by differentilly expressed probes in the
quadriceps muscles of the control and MFGMEx groups,
as determined by using IPA (Ingenuity Pathways
Analysis) software v9.0

Functional annotation Differentially expressed
genes/total genes

P-value

Formation of synapse 8/179 3.33E-05

Growth of neurites 18/708 1.89E-03

Development of neuromuscular
junction

4/37 2.54E-03

Outgrowth of neurites 15/614 6.53E-03

Morphogenesis of neurites 7/438 1.58E-02
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group than in the ICR group. The MFGMEx group had
significantly higher MuSK mRNA expression (+26.9%)
than the control SAMP1 group, whereas MuSK mRNA
expression did not differ between the ICR group and the
control SAMP1 group. The MFGMEx group had signifi-
cantly higher NCAM mRNA expression (+29.5%) than
sion
F-1 r
0.01
oup
al exe
did the control SAMP1 group; these results were con-
sistent with the microarray results. Whereas Dok-7 was
not found in the microarray results (Additional file 1:
Table S1), our RT-PCR analysis showed that the MFGMEx
group had significantly greater Dok-7 (+31.0%) mRNA
expression than the control SAMP1 group (Figure 3).
The Dok-7 protein level was significantly higher (+30.8%,

P < 0.01), and the MuSK protein level tended to be
higher (+18.2%, P = 0.1), in the MFGMEx group than in
the control SAMP1 group (Figure 4). ICR mice had sig-
nificantly more MuSK protein than the control SAMP1
mice. The Dok-7 protein level did not differ between
these two groups.

Effects of MFGM, PLF, SLF, and sphingomyelin plus
mechanical stretching on expression of genes encoding
Dok-7, MuSK, and myogenin in differentiating C2C12 cells
Skeletal muscle is highly adaptable and responds to exer-
cise and training, thus increasing muscle mass and func-
tion. To further understand the mechanisms underlying
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Figure 3 Effects of milk-fat globule membrane (MFGM) on expression of genes associated with nervous system development and
function-related molecules. mRNA expression levels of MuSK (A), Dok-7 (B), NCAM (C), MyoD (D), and myogenin (E) were measured using
quantitative real-time PCR. Expression of each gene was normalized against that of the housekeeping gene encoding ribosomal protein, large, P0
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the adaptive response of skeletal muscles in vivo, in vitro
culture systems that use mechanical stretching of cultured
myotubes have been developed to mimic in vivo muscle
physiology (Passey et al. 2011), including neuromuscular
adaptation in response to exercise (Folland and Williams
2007; Hubatsch and Jasmin 1997; Jasmin et al. 1991;
Sveistrup et al. 1995). Accordingly, we examined the
effects of MFGM-derived fractions and sphingomyelin
combined with mechanical stretch (as a substitute for
exercise in vivo) on the expression of several genes.
Treatment of the stretched cells with MFGM, PLF,

SLF, or sphingomyelin significantly increased Dok-7 gene
expression compared with that in cells that received
mechanical stretching alone; this was evident especially
in the cells treated with SLF or sphingomyelin (Figure 5).
Myogenin gene expression was increased significantly by
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treatment with 0.01% MFGM or with 0.001% or 0.005%
PLF fraction plus mechanical stretching of the cells. These
results are consistent with the effects of the combination
of habitual exercise and dietary MFGM observed in vivo.
Discussion
Our major finding was that habitual exercise combined
with nutritional supplementation in the form of dietary
MFGM, but not exercise plus dietary GTE, attenuated
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age-related loss of muscle mass and maximum contractile
force in SAMP1; this result may have been due to the in-
crease in metabolic rate and physical activity. Our results
also suggest that the beneficial effects of habitual exercise
plus dietary MFGM on skeletal muscle mass and function
are related to the stimulation of neuromuscular system
development and function.
The control SAMP1 group had smaller muscle mass

and contractile force production than did ICR mice. These
results were consistent with those of Sakakima et al.
(2004) and with our previous finding that contractile force
in the soleus muscle was significantly lower in SAMP1
mice than in SAMR1 mice (Haramizu et al. 2011a,
2011b). We used ICR mice as normal group of controls;
our results suggest that, in comparison with these mice,
SAMP1 mice exhibit aging-related deterioration in the
mass and function of both soleus and EDL muscle.
SAMP1 mice were less active either locomotively or meta-
bolically; this may have been the cause of the increase in
WAT accumulation and plasma TG levels, and the de-
crease in adiponectin levels, compared with those in ICR
mice.
Even though we consider ICR mice to be valid controls

for SAMP1 mice (Lee et al. 2013; Nagano et al. 2000;
Sakakima et al. 2004), we cannot rule out the possibility
that the observed differences in the results obtained with
ICR and SAMP1 mice may be due to differences
between the strains. Because Derave et al. (2005) stated
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that SAMR1 mice were not suitable because of difficul-
ties in breeding them, and because we have had prob-
lems with tumors of the oral cavity in SAMR1 mice, we
prefer to use ICR mice as controls for SAMP1 mice in
our studies.
Our SAMP1 mice had significantly lower skeletal

muscle mass than did ICR mice at age 43 wks. Consid-
ering the fact that there is no difference in the ratio of
gastrocnemius muscle weight to body weight between
ICR and SAMP1 mice at the age of 24 wk (Sakakima
et al. 2004), the lower muscle mass in SAMP1 in this
study is not likely to be caused by arrested muscle
growth but by sarcopenia. Our previous study showed
that the reduced muscle mass in SAMP1 could be ex-
plained partly by a decrease in IGF-1 signaling, which
dynamically regulates muscle protein synthesis (Haramizu
et al. 2011a, 2011b). IGF-1 receptor gene deletion in
muscle causes earlier postnatal diabetes and mortality
(Kitamura et al. 2003). Expression of the gene encoding
IGFBP (binding protein)-5, decreases with age (Welle
et al. 2001); IGFBP-5 is produced by muscle cells and
suppresses muscle differentiation by interfering with
IGF-1-dependent signaling (Mukherjee et al. 2008). We
found that decreased expression of the mRNA for IGF-
1 receptor and increased expression of the mRNA for
IGFBP-5 mRNA expression, either of which can inter-
fere with IGF-1 signaling, seemed to be associated with
decreased mass of the quadriceps muscle in SAMP1.
Most interestingly, the aging-associated deteriorations

in muscle mass and force were significantly attenuated by
a combination of habitual exercise and dietary MFGM.
Aging-dependent declines in serum IGF-1 levels may also
contribute to loss of muscle mass (Perrini et al. 2010); a
recent study has shown that loss of muscle mass in aged
mice can be attenuated partly by increasing serum IGF-1
levels by feeding royal jelly (Niu et al. 2013). Therefore,
the increases in serum IGF-1 and IGF-1 receptor mRNA
levels and decreases in IGFBP-5 mRNA levels after habit-
ual exercise plus dietary MFGM might have contributed
to the increase in muscle mass and contractile force pro-
duction in SAMP1.
SAMP1 had lower concentrations of circulating erythro-

cytes, and lower hemoglobin and hematocrit levels than
did ICR mice, in parallel with previous findings that with
advancing age these levels decline (Boggs and Patrene
1986; Coppola et al. 2000). Concurrently, the decreased
erythrocytes and hemoglobin levels reduce the oxygen-
carrying capacity of the blood (Tsai et al. 2010); this may
be consistent with the lower oxygen consumption in
SAMP1 in the present study. MFGM intake combined
with exercise increased hemoglobin and hematocrit levels
and tended to increase the RBC count in the SAMP1 mice;
this may have resulted in increased oxygen consumption.
The protective effect of habitual exercise plus dietary
MFGM on erythrocytes (including their survival, synthe-
sis, and degradation) needs to be elucidated. Here, we
did not measure mitochondrial and oxidative enzyme
activities. In our previous studies, the lower physical
performance of SAMP1 mice has been associated with a
decrease in muscle β-oxidation capacity and in the
mRNA expression levels of cytochrome c oxidase and per-
oxisome proliferator–activated receptor-gamma coactivator-
1 (Haramizu et al. 2011a, 2011b; Murase et al. 2008).
Therefore, we cannot rule out the possibility that a de-
crease in muscle mitochondrial activity for processing
oxygen is also responsible for the lower whole-body
oxygen consumption in SAMP1 mice.
Plasma adiponectin levels were lower in SAMP1 than in

ICR mice but increased after MFGM intake plus habitual
exercise. Adiponectin stimulates energy metabolism in
skeletal muscle through the action of AMP-activated
protein kinase (Kahn et al. 2005), and the absence of
adiponectin causes muscle dysfunction (Krause et al.
2008). Therefore, our results suggest that an increase
in plasma adiponectin levels also contributes to the in-
crease in muscle force and whole-body energy expend-
iture seen with MFGM intake plus exercise. Bouassida
et al. (2010) have shown that both acute and regular
exercise increase circulating adiponectin levels. How-
ever, increase in adiponectin levels was observed by
exercise plus GTE. Therefore, the results seem to be
related more to the effect of exercise plus MFGM than
of exercise alone.
Of more interest is our finding that the major effect of

habitual exercise plus dietary MFGM was characterized
in our transcriptomic analysis as ‘nervous system devel-
opment.’ A combination of habitual exercise and dietary
MFGM increased the levels of MuSK and Dok-7, both of
which play essential roles in synapse formation at the
NMJ because lacking MuSK or Dok-7 failed to form
NMJ formation (DeChiara et al. 1996; Inoue et al. 2009;
Okada et al. 2006), suggesting that exercise plus MFGM
may help to improve NMJ formation. A combination of
habitual exercise and dietary MFGM also increased the
levels of expression of the mRNAs for MyoD and myo-
genin. The increased levels of expression of the mRNAs
for MyoD and myogenin after exercise plus MFGM may
help to improve NMJ formation and thereby improve
muscle contractile function, because lack of MyoD ex-
pression results in aberrant development of neuromus-
cular synapses, leading to muscle contractile dysfunction
(Macharia et al. 2010). In addition, MyoD and myogenin
are associated with muscle differentiation (Capkovic et al.
2008). Therefore, increased expression of the genes encod-
ing MyoD and myogenin may also contribute to increased
neural or muscle adaptation (i.e., through an in the num-
ber of myonuclei), or both, after habitual exercise plus
dietary MFGM.
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In contrast to our findings, some studies have found
that the expression of some genes (e.g., encoding those
encoding myogenin and NCAM) increases in denerv-
ation or aging (Ibebunjo et al. 2013; Larkin et al. 2003;
Moresi et al. 2010). Although we cannot dismiss the dif-
ference between our findings and these previous ones, it
is possible that the muscle of our SAMP1 at the age of
43 wk, unlike those in these previous models of severe
aging and denervation, did not in fact undergo severe
denervation. Therefore, the decreased levels of mRNAs
for myogenin and NCAM in our SAMP1 mice might not
have been associated with muscle denervation. Similarly,
considering our finding that quadriceps muscle mass and
soleus force was significantly increased by exercise plus
MFGM in SAMP1, the increased levels of myogenin and
NCAM mRNA expression seen with exercise plus MFGM
do not suggest the presence of muscle denervation. How-
ever, more detailed analyses, for example by histological
and molecular approaches, are needed to translate the
transcriptional changes that we found here into improved
muscle mass, function, and metabolism after a com-
bination of habitual exercise and daily consumption of
MFGM.
Our study had some limitations. First, since we did not

count the rotations of the running wheel consistently
during the experimental period, we cannot rule out the
possibility that a combination of habitual exercise plus
dietary MFGM increased total physical activity and thus
affected muscle physiology. However, our preliminary
study showed that dietary supplementation with 1% MFGM
did not change spontaneous activity in mice (data not
shown). Therefore, we speculate that the beneficial effects
of exercise plus MFGM are not the result of a change in
spontaneous activity levels.
Second, because we did not include a group subjected

to habitual exercise alone, the effects on muscle mass,
function, and NMJ formation may have been the result of
exercise alone. A numbers of studies have shown that vol-
untary exercise alone in an unloaded condition (treadmill
running and spontaneous wheel running) fails to improve
muscle mass and strength (Ishihara et al. 1998; Gallo et al.
2006; Legerlotz et al. 2008); considering that resistance
training is effective in improving muscle mass and strength
(Chalé et al. 2013; Leenders et al. 2013), voluntary exercise
may be difficult in managing muscle mass and strength
when used alone. Consistent with this point, habitual run-
ning alone and dietary supplementation with green tea
catechins combined with habitual running did not im-
prove muscle mass (Murase et al. 2008). Here, habitual ex-
ercise plus dietary GTE did not change either muscle
mass, or function, or the expression of NMJ-associated
genes. In addition, the combination of mechanical stretch
plus MFGM supplementation, but not mechanical stretch
alone, increased the expression of genes involved in muscle
differentiation and NMJ formation (Figure 5); this was
consistent with the effects of habitual exercise plus dietary
MFGM in vivo. Taking the results together enables us to
conclude that the beneficial effects of the combination of
habitual exercise and dietary MFGM are produced by the
interaction between habitual exercise and dietary MFGM,
and are unlikely to be produced by habitual exercise alone.
Nevertheless, further studies are required to clarify the
mechanism underlying these effects of combined habitual
exercise and dietary MFGM.
Consumption of whole milk by young adults after resist-

ance training promotes muscle protein synthesis and in-
hibits protein breakdown, leading to improved net muscle
protein balance (Elliot et al. 2006; Josse et al. 2010;
Wilkinson et al. 2007). Moreover, a cohort study has
revealed that muscle strength in community-dwelling
elderly is affected by the type of milk feeding in infancy
(Robinson et al. 2012). The beneficial effects of milk on
muscle mass and function are thought to be due to its
nutritional capacity as a good source of proteins, lipids,
amino acids, vitamins, and minerals. Cantó et al. (2012)
have shown that nicotinamide riboside (the NAD+ precur-
sor found in milk) activates sirtuin activity, enhances
mitochondrial gene expression, and prevents diet-induced
obesity. We demonstrated here that MFGM may also be a
beneficial component of milk that, when combined with
habitual exercise, suppresses aging-associated deterior-
ation of muscle mass and strength and loss of NMJ forma-
tion. Studies are in progress to clarify the clinical efficacy
of dietary supplementation with MFGM combined with
regular exercise in human adults including the elderly.
We found here that while myogenin mRNA expression

was upregulated by MFGM-derived phospholipids, Dok-
7 mRNA expression was upregulated by MFGM-derived
phospholipids and sphingolipids, and by milk-derived
sphingomyelin in differentiating myoblasts under mech-
anical stretch, suggesting that the beneficial effects of
habitual exercise plus dietary MFGM in vivo are at least
partly due to these components. Lipids play crucial roles
in various cellular functions. For example, phosphatidylserine
is involved in myoblast fusion (van den Eijnde et al. 2001)
and phosphatidylcholine triggers IGF-1-stimulated responses
(Rauch and Loughna 2005). Moreover, sphingomyelin levels
in the plasma membrane, a reservoir of bioactive sphin-
golipids, decrease during muscle satellite cell activation
(Nagata et al. 2006), and increased levels of sphingosine-1-
phosphate and sphingosine (metabolites of sphingomyelin)
individually attenuate fatigue-induced decline in muscle
contractile force (Danieli-Betto et al. 2005). In our prelim-
inary experiment in rats, MFGM ingestion increased the
contents of phospholipids, sphingolipids, free fatty acids,
and triglycerides in the mesenteric lymph, suggesting that
dietary MFGM is absorbed and circulates after being
metabolized into phospholipids and sphingolipids (our
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unpublished observation). Therefore, we speculate that
phospholipids and sphingolipids contribute to a mech-
anism by which MFGM combined with habitual exer-
cise improves muscle function. However, further studies
are required to elucidate the effects of this combination
in vivo.

Conclusions
Our findings provide evidence that, in senescence-
accelerated mice, a combination of habitual exercise and
dietary supplementation with MFGM improves age-
related deficits in muscle function by improving neuromus-
cular development and IGF-1 signaling. Further studies are
needed to clarify the mechanism underlying the interaction
between regular exercise and dietary MFGM.

Additional file

Additional file 1: Table S1. Probe names that were increased or
decreased by MFGM intake combined with exercise in the quadriceps
muscle.
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