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Abstract

In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation
theorems are obtained. Our results generalize and improve those known ones in the literature.
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Introduction
We consider the oscillation behavior of solutions of sec-
ond order forced nonlinear differential equation

r tð Þψ x tð Þð Þ f x′ tð Þ� ��� ��α−1f x′ tð Þ� �� �′
þ q tð Þg x tð Þð Þ

¼ H t; x tð Þ; x′ tð Þ� �
; t∈ t0;∞½ Þ;

ð1:1Þ

and

r tð Þψ x tð Þð Þf x′ tð Þ� �� �′ þ q tð Þg x tð Þð Þ
¼ H t; x tð Þ; x′ tð Þ� �

; t∈ t0;∞½ Þ; ð1:2Þ

where r, q ∈C([t0,∞), ℝ), and f,ψ, g ∈C(ℝ,ℝ) and H is a
continuous function on [t0,∞) ×ℝ2,
α is a positive real number. Throughout the paper, it is

assumed that the following conditions are satisfied:

(A1) r(t) > 0, t ≥ 0;
(A2) xg(x) > 0, g∈ C1(ℝ) for x ≠ 0;
(A3)

H t;x;yð Þ
g xð Þ ≤ p tð Þ∀t∈ t0;∞½ Þ; x; y∈ℝ and x≠0:

We restrict our attention only to the solutions of the
differential equations (1.1) and (1.2) that exist on some
ray [t0,∞), where t0 ≥ t, to may depend on the particular
solutions. Such a solution is said to be oscillatory if it
has arbitrarily large zeros, and otherwise, it is said to be
nonoscillatory. Equations (1.1) and (1.2) are called oscil-
latory if all its solutions are oscillatory.
The problem of finding oscillation criteria for second

order nonlinear ordinary differential equations, which
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involve the average of integral of the alternating coeffi-
cient, has received the attention of many authors be-
cause in the fact there are many physical systems are
modeled by second order nonlinear ordinary differential
equations; for example, the so called Emden – Fowler
equation arises in the study of gas dynamics and fluid
mechanics. This equation appears also in the study of
relativistic mechanics, nuclear physics and in the study
of chemically reacting systems.
The oscillatory theory as a part of the qualitative the-

ory of differential equations has been developed rapidly
in the last decades, and there has been a great deal of
work on the oscillatory behavior of differential equa-
tions; see e.g. (Agarwal et al. 2010; Beqiri and Koci 2012;
Bihari 1963; Elabbasy and Elsharabasy 1997; Elabbasy
and Elhaddad 2007; Grace et al. 1984, 1988; Grace and
Lalli 1987, 1989, 1990; Grace 1989, 1990, 1992; Greaf
and Spikes 1986; Graef et al. 1978; Lee and Yeh 2007;
Kamenev 1978; Kartsatos 1968; Li and Agarwal 2000;
Meng 1996; Nagabuchi and Yamamoto 1988; Ohriska
and Zulova 2004; Ouyang et al. 2009; Philos 1983, 1984,
1985; Remili 2010; Salhin 2014; Tiryaki and Basci 2008;
Tiryaki 2009; Temtek and Tiryaki 2013; Yan 1986; Yibing
et al. 2013a, b; Zhang and Wang 2010).
Remili (2010), studied the equation

r tð Þx′ tð Þ� �′ þ Q t; xð Þ ¼ H t; x′ tð Þ; x tð Þ� �
; ð1:3Þ

and derived some oscillation criteria for the equation
(1.3), where new results with additional suitable weighted
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function are investigated. Zhang and Wang (2010), studied
the following equation

r tð Þψ x tð Þð Þx′ tð Þ� �′ þ Q t; xð Þ ¼ H t; x′ tð Þ; x tð Þ� �
:

ð1:4Þ
Temtek and Tiryaki (2013) obtained several new oscil-

lation results for the equation

�
r tð Þψ x tð Þð Þ x′ tð Þ�� ��α−1x′ tð ÞÞ′þ Q t; xð Þ ¼ H t; x′ tð Þ; x tð Þ� �

;

ð1:5Þ
and its special cases by using generalized Riccati trans-
formation and well known techniques.
In this paper, we continue in this direction the study

of oscillatory properties of equations (1.1) and (1.2).
The purpose of this paper is to improve and extend
the above mentioned results. Our results are more
general than the previous results. The relevance of our
results becomes clear due to some carefully selected
examples.

Main results
In this section we prove our main results.
Theorem 2.1. Suppose that, conditions (A1) – (A3)

hold, and

g′ xð Þ

ψ xð Þ g xð Þj jα−1� �1
α

≥ k > 0 for all x ∈ℝ ð2:1Þ

0 < k1 ≤
f yð Þ
y

≤ k2 for all y ¼ x′ tð Þ ≠ 0: ð2:2Þ

Let ρ be a positive continuously differentiable function
over [T,∞) such that ρ′(t) ≥ 0 over [T0,∞);

lim
t→∞

Z t
T0

1

ρ sð Þr sð Þð Þ1 αds¼∞;=
ð2:3Þ

lim
t→∞

sup
Z t
T0

Z sð Þds¼ ∞; ð2:4Þ

where Z sð Þ ¼ ρ sð Þ q sð Þ−p sð Þð Þ−λr sð Þ ρ′ sð Þ
ρ sð Þ
� �αþ1

� �
and

λ ¼ α

αþ 1
kk1ð Þαþ1;

Then all solutions of equation (1.1) are oscillatory.
Proof. Let x(t) be a non-oscillatory solution on [T,∞),

T ≥ T0 of the equation (1.1). We assume that x(t) is

(2.3)
positive on [T,∞),T ≥ t0. A similar argument holds for
the case when x(t) is negative. Let

w tð Þ ¼ ρ tð Þr tð Þψ x tð Þð Þ f x′ tð Þð Þ�� ��α−1f x′ tð Þð Þ
g x tð Þð Þ ; t ≥T0:

ð2:5Þ

Then differentiating (2.5), (1.1) and take in account as-
sumptions (A1) - (A3), (2.2) we have

w′ tð Þ≤−ρ tð Þ q tð Þ−p tð Þ½ � þ ρ′ tð Þ
ρ tð Þ w tð Þj j

−
1
k2

ρ tð Þr tð Þψ x tð Þð Þ f x′ tð Þð Þ�� ��α−1f 2 x′ tð Þð Þg′ xð Þ
g2 xð Þ :

ð2:6Þ

In view of (2.1) we conclude that

w′ tð Þ≤−ρ tð Þ q tð Þ−p tð Þ½ �

þ ρ′ tð Þ
ρ tð Þ w tð Þj j− k

k2

w tð Þj jαþ1
α

ρ tð Þr tð Þð Þ1 α:=
ð2:7Þ

By using the extremum of one variable function it can
be proved that

DX−EX
α

αþ1 ≤
αα

αþ 1ð Þαþ1 D
αþ1E−α; D ≥ 0; E > 0;X ≥ 0:

Now, by applying this inequality we have

w′ tð Þ ≤ −ρ tð Þ q tð Þ−p tð Þ½ � þ λ
r tð Þ ρ′ tð Þð Þαþ1

ρ tð Þð Þα

¼ −ρ tð Þ q tð Þ−p tð Þ−λr tð Þ ρ′ tð Þ
ρ tð Þ

� �αþ1
� �

:
ð2:8Þ

Integrating (2.8) from T to t, we get

w tð Þ≤w Tð Þ−
Z t
T

ρ sð Þ q sð Þ−p sð Þ−λr sð Þ ρ′ sð Þ
ρ sð Þ

	 
αþ1
" #

ds; t ≥T ≥T 0:

ð2:9Þ

Taking the limit for both sides of (2.9) and using (2.4),
we find w(t)→ − ∞. Hence, there exists T1 ≥ T such that
f(x′(t)) < 0⇒ x′(t) < 0, ∀t ≥ T1.

Condition (2.4) also implies that
Z∞
T

ρ sð Þ q sð Þ−p sð Þ½ �ds ¼ ∞;

and there exists T2 ≥T1such thatZT2

T1

ρ sð Þ q sð Þ−p sð Þ½ �ds ¼ 0 and
Z t
T2

ρ sð Þ q sð Þ−p sð Þ½ �ds≥ 0; ∀t ≥T2:

(2.7)
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Multiplying Eq. (1.1) by ρ(t) and integrating by parts
on [T2, t], we have

ρ tð Þ r tð Þψ x tð Þð Þ f x′ tð Þ� ��� ��α� �′
≤−ρ tð Þg x tð Þð Þ q tð Þ−p tð Þ½ �:

Now, integrating by parts, we get

−ρ tð Þ r tð Þψ x tð Þð Þ −f x′ tð Þð Þð Þα� �þ CT2≤

−
Z t
T2

ρ′ sð Þr sð Þψ x sð Þð Þ −f x′ sð Þ� �� �α
ds

−
Z t
T 2

ρ sð Þg x sð Þð Þ q sð Þ−p sð Þ½ �ds;

where

CT2 ¼
ρ T 2ð Þr T2ð Þψ x T 2ð Þð Þ −f x′ T 2ð Þð Þð Þα

g x T 2ð Þð Þ > 0:

ρ tð Þ r tð Þψ x tð Þð Þ −f x′ tð Þð Þð Þα� �
≥CT2 þ g x tð Þð Þ

Z t
T 2

ρ sð Þ q sð Þ−p sð Þ½ �ds

−
Z t
T2

x′ sð Þg′ x sð Þð Þ
Z s

T2

ρ uð Þ q uð Þ−p uð Þ½ �duds

þ
Z t
T 2

ρ′ sð Þr sð Þψ x sð Þð Þ −f x′ sð Þ� �� �α
ds≤ CT 2 ;

∀t ≥T1:

Therefore,

ρ tð Þ r tð Þψ x tð Þð Þ −f x′ tð Þ� �� �α� �
≥ CT 2

From (2.1) and (2.2), we find

ψ x tð Þð Þ −f x′ tð Þð Þð Þα ≥ CT 2

r tð Þρ tð Þ ;

ψ x tð Þð Þð Þ
1
α −f x′ tð Þð Þð Þ≥ CT 2

r sð Þρ sð Þ
	 
1

α;

Z t
T 2

k2 ψ x sð Þð Þð Þ
1
αx′ sð Þds ≤

Z t
T 2

−CT 2

r sð Þρ sð Þ
	 
1

αds;

Zx tð Þ

x T 2ð Þ

k2 ψ yð Þð Þ
1
αdy ≤

Z t
T2

−CT2

r sð Þρ sð Þ
	 
1

αds:

From (2.3) and 0 < x(t) ≤ x(T2), this implies thatZx tð Þ

x T2ð Þ

k2 ψ yð Þð Þ1αdy is lower bounded, but the right side

of it tends to mines infinity. Then, this is a contradiction.
Example 2.2. Consider the following differential equation
1
t
ð13x′ tð Þ þ x′ tð Þ

x′ tð Þð Þ2 þ 1

" #′
þ t þ sint

t

	 

x tð Þ

¼ 2x8 sint cos x′ tð Þ þ 1ð Þ
x7 þ 1ð Þt3 ; t ≥

π

2
;

Evidently, if we take p tð Þ ¼ 2
t3 ; ρ tð Þ ¼ t and α ¼ 2:

Then all conditions of Theorem 2.1 are satisfied, hence,
all the solutions are oscillatory.
Theorem 2.3. If (A1) – (A3), conditions (2.1) – (2.3)

hold, and

Z∞
T 0

ρ sð Þ q sð Þ−p sð Þ½ �ds < ∞; ð2:10Þ

limt→∞ inf
Z t
T

Z sð Þds
2
4

3
5≥ 0 for all large T ;

ð2:11Þ

lim
t→∞

Z t
T 0

1
ρ sð Þr sð Þ

Z∞
s

Z uð Þd
0
@

1
A

1
αds¼∞;=

ð2:12Þ

and

Z�∞

�ε

ψ yð Þ
g yð Þ

	 
1
αdy < ∞ for every ε > 0 : ð2:13Þ

Thus all solutions of Eq. (1.1) are oscillatory.
Proof. Let x(t) be a non-oscillatory solution on [T,∞),

T ≥ T0 of Eq. (1.1). Let us assume that x(t) is positive on
[T,∞) and consider the following three cases for the be-
havior of x′(t).
Case 1: x′(t) > 0 for T1 ≥ T for some t ≥ T1; then from

(2.10), we obtain

Z t
T1

Z sð Þds ≤ r T 1ð Þρ T1ð Þψ x T1ð Þð Þ f x′ T1ð Þð Þ�� ��α−1f x′ T1ð Þð Þ
g x T1ð Þð Þ

−
ρ tð Þr tð Þψ x tð Þð Þf x′ tð Þð Þα

g x tð Þð Þ :

From (2.1) and (2.2), we obtain

1
r tð Þρ tð Þ

Z t
T 1

Z sð Þds ≤ ψ x tð Þð Þf x′ tð Þð Þα
g x tð Þð Þ

Hence, for all t ≥ T1
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1
r tð Þρ tð Þ

Z∞
T1

Z sð Þds

0
B@

1
CA

1=α

≤
ψ x tð Þð Þ1=αf x′ tð Þð Þ

g x tð Þð Þ1=α

Z t
T1

1
r sð Þρ sð Þ

Z∞
s

Z uð Þdu
0
@

1
A

1=α

ds ≤ k1

Z t
T1

ψ x sð Þð Þ1=αx′ sð Þ
g x sð Þð Þ1=α

ds;

≤ k1

Z∞
x T1ð Þ

ψ yð Þ
g yð Þ

	 
1=α

dy:

Using (2.13), we obtain

Z t
T1

1
r sð Þρ sð Þ

Z∞
s

Z uð Þdu
0
@

1
A

1
αds <∞;=

which contradicts to the condition (2.13).
Case 2: If x′(t) is oscillatory, then there exists a se-

quence {αn}→∞ on [T,∞) such that x′(αn) < 0. Let us as-
sume that N is sufficiently large so that

Z∞
αN

Z sð Þds≥0:

Then, from (2.1), (2.2) and (2.7), we have

−CαN−
Z t
αN

Z sð Þds ≥− ρ tð Þr tð Þψ x tð Þð Þ −f x′ tð Þð Þð Þα
g x tð Þð Þ

CαN þ
Z t
αN

Z sð Þds ≤ ρ tð Þr tð Þψ x tð Þð Þ −f x′ tð Þð Þð Þα
g x tð Þð Þ

Thus

≤ lim
t→∞

inf
ρ tð Þr tð Þψ x tð Þð Þ −f x′ tð Þð Þð Þα

g x tð Þð Þ ≥CαN

þ lim
t→∞

inf
Z t
αN

Z sð Þds> 0;

which contradicts to the assume that x′(t) oscillates.
Case 3: Let x′(t) < 0 for t ≥ T1. Condition (2.11) implies

that for any t0 ≥ T1 such thatZ∞
t

ρ sð Þ q sð Þ−p sð Þ½ �ds ≥0 for all t ≥ T1.

The remaining part of the proof is similar to that of
Theorem 2.1 then will be omitted.
Example 2.4. Let us consider the following equation
t
x4 tð Þ

x4 tð Þ þ 1

	 

7x′ tð Þ þ x′ tð Þð Þ5

x′ tð Þð Þ4 þ 1

 !" #′
þ 1
t3
x3 tð Þ

¼ x3 cosx sin2x′ tð Þ
t4

; t > 1;

Evidently, if we take p tð Þ ¼ 1
t4 ; ρ tð Þ ¼ t and α ¼ 1:

Then the equation given in Example 2.2 is oscillatory by
Theorem 2.2.

Remark 2.1. Condition (2.10) implies that
Z∞
T

Z sð Þ≥0

and lim inf t→∞

Z∞
T

Z sð Þds ¼
Z∞
T

Z sð Þds; hence (2.11) takes

the form of
Z∞
T

Z sð Þ ≥ 0; for all large T.

Remark 2.2. when α = 1, ψ(x(t)) = 1 and f(x′(t)) = x′(t),
Theorem 2.1 and 2.2 reduce to Theorem 1 and 2
Remili (2010) and Theorems 2.1 and 2.3 are obtained
by analogy with Theorems 2.1 and 2.2 from (Temtek
and Tiryaki 2013).
Theorem 2.5. Assume that

f yð Þ≥by for ally ∈ℝ andfor someconstantb > 0;

ð2:14Þ

0 <

Z�ε

0

ψ uð Þ
g uð Þdu < ∞ for allε > 0: ð2:15Þ

Furthermore, assume that there exist a constant A
such that

lim
t→∞

supR tð Þ ¼ A < ∞; ð2:16Þ

where R tð Þ ¼
Z t
t0

ds
r sð Þ ; and
lim
t→∞

sup
Z t
t0

1
r sð Þ
Z s
t0

q uð Þ−p uð Þ½ �duds ¼ ∞: ð2:17Þ

Then the differentia Eq. (1.2) is oscillatory.
Proof. Without loss of generality, let assume that

there exists a solution x(t) of (1.2) such that x(t) >
0 on [T,∞) for some T ≥ t0. A similar argument holds
also for the case when x(t) < 0. Let w(t) be defined by the
Riccati Transformation

w tð Þ ¼ r tð Þψ x tð Þð Þf x′ tð Þð Þ
g x tð Þð Þ ; t ≥T :

Derivation this equality we have
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w′ tð Þ ¼ r tð Þψ x tð Þð Þf x′ tð Þð Þð Þ′
g x tð Þð Þ

−
r tð Þψ x tð Þð Þf x′ tð Þð Þg′ x tð Þð Þx′ tð Þ

g2 x tð Þð Þ :

This, and (1.2) imply

w′ tð Þ≤p tð Þ− q tð Þ t ≥T :

Integrating this inequality from T to t( ≥ T), we obtain

w tð Þ≤w Tð Þ−
Z t
T

q sð Þ−p sð Þ½ �ds

By condition (2.14), we get

b
r tð Þψ x tð Þð Þx′ tð Þ

g x tð Þð Þ ≤
r tð Þψ x tð Þð Þf x′ tð Þð Þ

g x tð Þð Þ

≤w Tð Þ−
Z t
T

q sð Þ−p sð Þ½ �ds; b > 0

Integrating the above inequality multiplied by 1
r tð Þ

from T to t( ≥ T), we have

b
Z t
T

ψ x sð Þð Þx′ sð Þ
g x sð Þð Þ ds ≤

Z t
T

ψ x sð Þð Þf x′ sð Þð Þ
g x sð Þð Þ ds

≤w Tð ÞR tð Þ−
Z t
T

1
r sð Þ

Z s
T

q uð Þ−p uð Þ½ �duds:

From condition (2.16) and (2.17), we get that

θ tð Þ ¼
Z t
T

ψ x sð Þð Þx′ sð Þ
g x sð Þð Þ ds→−∞ as t→∞:

Now, if x(t) ≥ x(T) for large t then θ(t) ≥ 0, which is a
contradiction. Hence for large t, x(t) ≤ x(T), so

θ tð Þ ¼ −
Zx Tð Þ

x tð Þ

ψ uð Þ
g uð Þdu > −

Zx Tð Þ

0

ψ uð Þ
g uð Þdu > −∞;

which is again a contradiction. This completes proof the
Theorem 2.3.
Theorems 2.6. Suppose that conditions (2.14), (2.15)

and (2.16) hold. Furthermore, suppose that, there exist a
function ρ : [t0,∞)→ (0,∞) such that ρ′(t) ≥ 0 for all t ≥
t0, and

lim
t→∞

sup
Z t
t0

1
ρ sð Þr sð Þ

Z s
t0

ρ uð Þ q uð Þ−p uð Þ½ �du
0
@

1
Ads ¼ ∞:

ð2:18Þ
Then the differential equation (1.2) is oscillatory.
Proof. Without loss of generality, let assume that

there exists a solution x(t) of (1.2) such that x(t) >
0 on [T,∞) for some T ≥ t0. Let w(t) be defined by the
Riccati Transformation

w tð Þ ¼ ρ tð Þ r tð Þψ x tð Þð Þf x′ tð Þð Þ
g x tð Þð Þ ; t ≥T :

Derivation this equality we have

w′ tð Þ ¼ ρ tð Þ r tð Þψ x tð Þð Þf x′ tð Þð Þð Þ′
g x tð Þð Þ þ ρ′ tð Þr tð Þψ x tð Þð Þf x′ tð Þð Þ

g x tð Þð Þ

−
ρ tð Þr tð Þψ x tð Þð Þf x′ tð Þð Þg′ x tð Þð Þx′ tð Þ

g2 x tð Þð Þ :

This, and (1.2) imply

w′ tð Þ≤− ρ tð Þ q tð Þ−p tð Þ½ � þ ρ′ tð Þ
ρ tð Þ w tð Þ:

Hence for all t ≥ T, we obtain

Z t
T

ρ sð Þ q sð Þ−p sð Þ½ �ds≤−
Z t
T

ρ sð Þ d
ds

w sð Þ
ρ sð Þ

	 

ds: ð2:19Þ

By the Bonnet’s Theorem that for each t ≥ T, there exist
a T0 ∈ [T, t] such that

−
Z t
T

ρ sð Þ d
ds

w sð Þ
ρ sð Þ

	 

ds ¼ −ρ tð Þ

Z t
T0

d
ds

w sð Þ
ρ sð Þ

	 

ds

¼ −ρ tð Þw tð Þ
ρ tð Þ þ ρ tð Þw T 0ð Þ

ρ T 0ð Þ

−
Z t
T

ρ sð Þ d
ds

w sð Þ
ρ sð Þ

	 

ds ¼ −w tð Þ þ Bρ tð Þ ;B ¼ w T 0ð Þ

ρ T 0ð Þ :

ð2:20Þ
By (2.19) and (2.20) we get

Z t
T

ρ sð Þ q sð Þ−p sð Þ½ �ds ¼ −w tð Þ þ Bρ tð Þ: ð2:21Þ

Integrating the above inequality multiplied by 1
r tð Þρ tð Þ

from T to t( ≥ T), we obtain
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b
Z t
T

ψ x sð Þð Þx′ sð Þ
g x sð Þð Þ ds ≤

Z t
T

ψ x sð Þð Þf x′ sð Þð Þ
g x sð Þð Þ ds

≤ BR tð Þ−
Z t
T

1
r sð Þρ sð Þ

Zs
T

ρ uð Þ q uð Þ−p uð Þ½ �du
0
@

1
Ads:

From (2.16) and (2.18), we have

θ tð Þ ¼
Z t
T

ψ x sð Þð Þx′ sð Þ
g x sð Þð Þ ds→−∞ as t→∞:

Now, if x(t) ≥ x(T) for large t, then θ(t) ≥ 0, which is a
contradiction. Hence for large t, x(t) ≤ x(T), so

θ tð Þ ¼ −
Zx Tð Þ

x tð Þ

ψ uð Þ
g uð Þdu > −

Zx Tð Þ

0

ψ uð Þ
g uð Þdu > −∞;

which is again a contradiction. This completes proof the
Theorem 2.6.
Example 2.7. Consider the differential equation

et
x4 tð Þ

x4 tð Þ þ 1
x′ tð Þ

� �′
þ e2t þ sintð Þx3 tð Þ

¼ x7 tð Þ sint
1þ x4 tð Þð Þ2

x′ tð Þð Þ2
x′ tð Þð Þ2 þ 1

; t ≥0:

Here,

r tð Þ ¼ et; q tð Þ ¼ e2t þ sint;ψ x tð Þð Þ ¼ x4 tð Þ
x4 tð Þ þ 1

;

g xð Þ ¼ x3;H t; x tð Þ; x′ tð Þ� � ¼ x7 tð Þ sint
1þ x4 tð Þð Þ2

x′ tð Þð Þ2
x′ tð Þð Þ2 þ 1

;

H t; x tð Þ; x′ tð Þð Þ
g xð Þ ¼ x7 tð Þ sint

1þ x4 tð Þð Þ2
x′ tð Þð Þ2

x′ tð Þð Þ2 þ 1

� 1
x3

≤ sint ¼ p tð Þ:

So, can note that

limt→∞ supR tð Þ ¼ limt→∞ sup
Z t
t0

ds
es

< ∞;

Z�ε

0

u

u2ð Þ2 þ 1
du ¼ 1

2
tan−1ε2 < ∞:

Let us take ρ(t) = 1 we have
Z t
t0

1
r sð Þρ sð Þ

Z s
t0

ρ uð Þ q uð Þ −p uð Þ½ �du
0
@

1
Ads

¼
Z t
T

1
es

Z s
T

e2u þ sinu − sinu
� �

du

0
@

1
Ads ¼ ∞;

then, Theorem 2.4 ensures that every solution of the
equation given oscillates.
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